Surface properties of MoS2 probed by inverse gas chromatography and their impact on electrocatalytic properties

. 2017 Dec 14 ; 9 (48) : 19236-19244.

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29188849

Layered transition metal dichalcogenides (TMDs) are at the forefront of materials research. One of the most important applications of these materials is their electrocatalytic activity towards hydrogen evolution, and these materials are suggested to replace scarce platinum. Whilst there are significant efforts towards this goal, there are various reports of electrocatalysis of MoS2 (which is the most commonly tested TMD) with large variations of the reported electrocatalytic effect of the material, with overpotential varying by several hundreds of millivolts. Here, we analyzed surface properties of various bulk as well as single layer MoS2 samples using inverse gas chromatography. All samples displayed significant variations in surface energies and their heterogeneities. The surface energy ranged from 50 to 120 mJ m-2 depending on the sample and surface coverage. We correlated the surface properties and previously reported structural features of MoS2 with their electrochemical activities. We concluded that the observed differences in electrochemistry are caused by the surface properties. This is an important finding with an enormous impact on the whole field of electrocatalysis of layered materials.

Zobrazit více v PubMed

Clauss F. J., in Solid Lubricants and Self-Lubricating Solids, Academic Press, 1972, pp. 1–14.

Wambeke A., Jalowiecki L., Kasztelan S., Grimblot J., Bonnelle J. P. J. Catal. 1988;109:320–328.

Hermann N., Brorson M., Topsøe H. Catal. Lett. 2000;65:169–174.

Komsa H.-P., Krasheninnikov A.-V. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;86:241201.

Qiu D. Y., da Jornada F. H., Louie S. G. Phys. Rev. Lett. 2013;111:216805. PubMed

Splendiani A., Sun L., Zhang Y. B., Li T. S., Kim J., Chim C.-Y., Galli G., Wang F. Nano Lett. 2010;10:1271–1275. PubMed

Bessonov A. A., Kirikova M. N., Petukhov D. I., Allen M., Ryhänen T., Bailey M. J. A. Nat. Mater. 2015;14:199–204. PubMed

Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., Kis A. Nat. Nanotechnol. 2013;8:497–501. PubMed

Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. Nat. Nanotechnol. 2011;6:147–150. PubMed

Hinnemann B., Moses P. G., Bonde J., Jørgensen K. P., Nielsen J. H., Horch S., Chorkendorff I., Nørskov J. K. J. Am. Chem. Soc. 2005;127:5308–5309. PubMed

Laursen A. B., Kegnæs S., Dahl S., Chorkendorff I. Energy Environ. Sci. 2012;5:5577–5591.

Jaramillo T. F., Jørgensen K. P., Bonde J., Nielsen J. H., Horch S., Chorkendorff I. Science. 2007;317:100–102. PubMed

Chua X. J., Tan S. M., Chia X., Sofer Z., Luxa J., Pumera M. Chem. – Eur. J. 2017;23:3169–3177. PubMed

Ho R., Heng J. Y. Y. KONA Powder Part. J. 2013;30:164–180.

Mohammadi-Jam S., Waters K. E. Adv. Colloid Interface Sci. 2014;212:21–44. PubMed

Lapčík L., Otyepka M., Otyepková E., Lapčíková B., Gabriel R., Gavenda A., Prudilová B. Curr. Opin. Colloid Interface Sci. 2016;24:64–71.

Lazar P., Otyepková E., Banáš P., Fargašová A., Šafářová K., Lapčík L., Pechoušek J., Zbořil R., Otyepka M. Carbon. 2014;73:448–453.

Ferguson A., Caffrey I. T., Backes C., Coleman J. N., Bergin S. D. Chem. Mater. 2016;28:6355–6366.

Otyepková E., Lazar P., Čépe K., Tomanec O., Otyepka M. Appl. Mater. Today. 2016;5:142–149.

Karlický F., Otyepková E., Lo R., Pitoňák M., Jurečka P., Pykal M., Hobza P., Otyepka M. J. Chem. Theory Comput. 2017;13:1328–1340. PubMed PMC

Karlický F., Otyepková E., Banáš P., Lazar P., Kocman M., Otyepka M. J. Phys. Chem. C. 2015;119:20535–20543.

Kelebek S. J. Colloid Interface Sci. 1988;124:504–514.

Cunningham G., Lotya M., Cucinotta C. S., Sanvito S., Bergin S. D., Menzel R., Shaffer M. S. P., Coleman J. N. ACS Nano. 2012;6:3468–3480. PubMed

Gaur A. P. S., Sahoo S., Ahmadi M., Dash S. P., Guinel M. J.-F., Katiyar R. S. Nano Lett. 2014;14:4314–4321. PubMed

Kozbial A., Gong X., Liu H., Li L. Langmuir. 2015;31:8429–8435. PubMed

Eshuis H., Bates J. E., Furche F. Theor. Chem. Acc. 2012;131:1084.

Ren X., Rinke P., Joas C., Scheffler M. J. Mater. Sci. 2012;47:7447–7471.

Björkman T., Gulans A., Krasheninnikov A. V., Nieminen R. M. Phys. Rev. Lett. 2012;108:235502. PubMed

Lazar P., Otyepková E., Karlický F., Čépe K., Otyepka M. Carbon. 2015;94:804–809.

Lebegue S., Harl J., Gould T., Ángyán J. G., Kresse G., Dobson J. F. Phys. Rev. Lett. 2010;105:196401. PubMed

Spanu L., Sorella S., Galli G. Phys. Rev. Lett. 2009;103:196401. PubMed

Martincová J., Otyepka M., Lazar P. Chem. – Eur. J. 2017;23:13233–13239. PubMed

Bonde J., Moses P. G., Jaramillo T. F., Nørskov J. K., Chorkendorff I. Faraday Discuss. 2009;140:219–231. PubMed

Lazar P., Otyepka M. Chem. – Eur. J. 2017;23:4863–4869. PubMed

Gao J., Li B., Tan J., Chow P., Lu T.-M., Koratkar N. ACS Nano. 2016;10:2628–2635. PubMed

Shi B., Wang Y., Jia L. J. Chromatogr., A. 2011;1218:860–862. PubMed

Van Oss C. J., Good R. J., Chaudhury M. K. Langmuir. 1988;4:884–891.

Della Volpe C., Siboni S. J. Colloid Interface Sci. 1997;195:121–136. PubMed

Das S. C., Larson I., Morton D. A. V., Stewart P. J. Langmuir. 2011;27:521–523. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...