Surface properties of MoS2 probed by inverse gas chromatography and their impact on electrocatalytic properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
PubMed
29188849
PubMed Central
PMC5774430
DOI
10.1039/c7nr07342a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Layered transition metal dichalcogenides (TMDs) are at the forefront of materials research. One of the most important applications of these materials is their electrocatalytic activity towards hydrogen evolution, and these materials are suggested to replace scarce platinum. Whilst there are significant efforts towards this goal, there are various reports of electrocatalysis of MoS2 (which is the most commonly tested TMD) with large variations of the reported electrocatalytic effect of the material, with overpotential varying by several hundreds of millivolts. Here, we analyzed surface properties of various bulk as well as single layer MoS2 samples using inverse gas chromatography. All samples displayed significant variations in surface energies and their heterogeneities. The surface energy ranged from 50 to 120 mJ m-2 depending on the sample and surface coverage. We correlated the surface properties and previously reported structural features of MoS2 with their electrochemical activities. We concluded that the observed differences in electrochemistry are caused by the surface properties. This is an important finding with an enormous impact on the whole field of electrocatalysis of layered materials.
Zobrazit více v PubMed
Clauss F. J., in Solid Lubricants and Self-Lubricating Solids, Academic Press, 1972, pp. 1–14.
Wambeke A., Jalowiecki L., Kasztelan S., Grimblot J., Bonnelle J. P. J. Catal. 1988;109:320–328.
Hermann N., Brorson M., Topsøe H. Catal. Lett. 2000;65:169–174.
Komsa H.-P., Krasheninnikov A.-V. Phys. Rev. B: Condens. Matter Mater. Phys. 2012;86:241201.
Qiu D. Y., da Jornada F. H., Louie S. G. Phys. Rev. Lett. 2013;111:216805. PubMed
Splendiani A., Sun L., Zhang Y. B., Li T. S., Kim J., Chim C.-Y., Galli G., Wang F. Nano Lett. 2010;10:1271–1275. PubMed
Bessonov A. A., Kirikova M. N., Petukhov D. I., Allen M., Ryhänen T., Bailey M. J. A. Nat. Mater. 2015;14:199–204. PubMed
Lopez-Sanchez O., Lembke D., Kayci M., Radenovic A., Kis A. Nat. Nanotechnol. 2013;8:497–501. PubMed
Radisavljevic B., Radenovic A., Brivio J., Giacometti V., Kis A. Nat. Nanotechnol. 2011;6:147–150. PubMed
Hinnemann B., Moses P. G., Bonde J., Jørgensen K. P., Nielsen J. H., Horch S., Chorkendorff I., Nørskov J. K. J. Am. Chem. Soc. 2005;127:5308–5309. PubMed
Laursen A. B., Kegnæs S., Dahl S., Chorkendorff I. Energy Environ. Sci. 2012;5:5577–5591.
Jaramillo T. F., Jørgensen K. P., Bonde J., Nielsen J. H., Horch S., Chorkendorff I. Science. 2007;317:100–102. PubMed
Chua X. J., Tan S. M., Chia X., Sofer Z., Luxa J., Pumera M. Chem. – Eur. J. 2017;23:3169–3177. PubMed
Ho R., Heng J. Y. Y. KONA Powder Part. J. 2013;30:164–180.
Mohammadi-Jam S., Waters K. E. Adv. Colloid Interface Sci. 2014;212:21–44. PubMed
Lapčík L., Otyepka M., Otyepková E., Lapčíková B., Gabriel R., Gavenda A., Prudilová B. Curr. Opin. Colloid Interface Sci. 2016;24:64–71.
Lazar P., Otyepková E., Banáš P., Fargašová A., Šafářová K., Lapčík L., Pechoušek J., Zbořil R., Otyepka M. Carbon. 2014;73:448–453.
Ferguson A., Caffrey I. T., Backes C., Coleman J. N., Bergin S. D. Chem. Mater. 2016;28:6355–6366.
Otyepková E., Lazar P., Čépe K., Tomanec O., Otyepka M. Appl. Mater. Today. 2016;5:142–149.
Karlický F., Otyepková E., Lo R., Pitoňák M., Jurečka P., Pykal M., Hobza P., Otyepka M. J. Chem. Theory Comput. 2017;13:1328–1340. PubMed PMC
Karlický F., Otyepková E., Banáš P., Lazar P., Kocman M., Otyepka M. J. Phys. Chem. C. 2015;119:20535–20543.
Kelebek S. J. Colloid Interface Sci. 1988;124:504–514.
Cunningham G., Lotya M., Cucinotta C. S., Sanvito S., Bergin S. D., Menzel R., Shaffer M. S. P., Coleman J. N. ACS Nano. 2012;6:3468–3480. PubMed
Gaur A. P. S., Sahoo S., Ahmadi M., Dash S. P., Guinel M. J.-F., Katiyar R. S. Nano Lett. 2014;14:4314–4321. PubMed
Kozbial A., Gong X., Liu H., Li L. Langmuir. 2015;31:8429–8435. PubMed
Eshuis H., Bates J. E., Furche F. Theor. Chem. Acc. 2012;131:1084.
Ren X., Rinke P., Joas C., Scheffler M. J. Mater. Sci. 2012;47:7447–7471.
Björkman T., Gulans A., Krasheninnikov A. V., Nieminen R. M. Phys. Rev. Lett. 2012;108:235502. PubMed
Lazar P., Otyepková E., Karlický F., Čépe K., Otyepka M. Carbon. 2015;94:804–809.
Lebegue S., Harl J., Gould T., Ángyán J. G., Kresse G., Dobson J. F. Phys. Rev. Lett. 2010;105:196401. PubMed
Spanu L., Sorella S., Galli G. Phys. Rev. Lett. 2009;103:196401. PubMed
Martincová J., Otyepka M., Lazar P. Chem. – Eur. J. 2017;23:13233–13239. PubMed
Bonde J., Moses P. G., Jaramillo T. F., Nørskov J. K., Chorkendorff I. Faraday Discuss. 2009;140:219–231. PubMed
Lazar P., Otyepka M. Chem. – Eur. J. 2017;23:4863–4869. PubMed
Gao J., Li B., Tan J., Chow P., Lu T.-M., Koratkar N. ACS Nano. 2016;10:2628–2635. PubMed
Shi B., Wang Y., Jia L. J. Chromatogr., A. 2011;1218:860–862. PubMed
Van Oss C. J., Good R. J., Chaudhury M. K. Langmuir. 1988;4:884–891.
Della Volpe C., Siboni S. J. Colloid Interface Sci. 1997;195:121–136. PubMed
Das S. C., Larson I., Morton D. A. V., Stewart P. J. Langmuir. 2011;27:521–523. PubMed