Comparative proteome analysis of the tegument of male and female adult Schistosoma mansoni
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35534617
PubMed Central
PMC9085856
DOI
10.1038/s41598-022-11645-3
PII: 10.1038/s41598-022-11645-3
Knihovny.cz E-zdroje
- MeSH
- chromatografie kapalinová MeSH
- proteiny červů metabolismus MeSH
- proteom * metabolismus MeSH
- Schistosoma mansoni * metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny červů MeSH
- proteom * MeSH
The tegument, as the surface layer of adult male and female Schistosoma spp. represents the protective barrier of the worms to the hostile environment of the host bloodstream. Here we present the first comparative analysis of sex-specific tegument proteins of paired or virgin Schistosoma mansoni. We applied a new and highly sensitive workflow, allowing detection of even low abundance proteins. Therefore, a streptavidin-biotin affinity purification technique in combination with single pot solid-phase enhanced sample preparation was established for subsequent LC-MS/MS analysis. We were able to identify 1519 tegument proteins for male and female virgin and paired worms and categorized them by sex. Bioinformatic analysis revealed an involvement of female-specific tegument proteins in signaling pathways of cellular processes and antioxidant mechanisms. Male-specific proteins were found to be enriched in processes linked to phosphorylation and signal transduction. This suggests a task sharing between the sexes that might be necessary for survival in the host. Our datasets provide a basis for further studies to understand and ultimately decipher the strategies of the two worm sexes to evade the immune system.
Zobrazit více v PubMed
World Health Organization. Integrating Neglected Tropical Diseases into Global Health and Development: Fourth WHO Report on Neglected Tropical Diseases (2017).
McManus DP, et al. Schistosomiasis. Nat. Rev. Dis. Primers. 2018;4:13. doi: 10.1038/s41572-018-0013-8. PubMed DOI
Grimes JET, et al. The relationship between water, sanitation and schistosomiasis: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2014;8:e3296. doi: 10.1371/journal.pntd.0003296. PubMed DOI PMC
Cohen J. Unfilled vials. Science (New York, N.Y.) 2016;351:16–19. doi: 10.1126/science.351.6268.16. PubMed DOI
Picard MAL, et al. Sex-biased transcriptome of Schistosoma mansoni: Host-parasite interaction, genetic determinants and epigenetic regulators are associated with sexual differentiation. PLoS Negl. Trop. Dis. 2016;10:e0004930. doi: 10.1371/journal.pntd.0004930. PubMed DOI PMC
Loker ES, Brant SV. Diversification, dioecy and dimorphism in schistosomes. Trends Parasitol. 2006;22:521–528. doi: 10.1016/j.pt.2006.09.001. PubMed DOI
Skelly, P. J. & Alan Wilson, R. Making sense of the schistosome surface. In Advances in Parasitology, vol. 63 185–284 (Elsevier, 2006). PubMed
Hockley, D. J. Ultrastructure of the tegument of schistosoma. In Advances in Parasitology, vol. 11 233–305 (Elsevier, 1973). PubMed
Senft AW, Philpott DE, Pelofsky AH. Electron microscope observations of the integument, flame cells, and gut of Schistosoma mansoni. J. Parasitol. 1961;47:217. doi: 10.2307/3275292. PubMed DOI
Silk MH, Spence IM, Gear JH. Ultrastructural studies of the blood fluke—Schistosoma mansoni. I. The integument. S. Afr. J. Med. Sci. 1969;34:1–10. PubMed
Winkelmann F, et al. Human serum activates the tegument of female schistosomes and supports recovery from Praziquantel. Parasitol. Res. 2020 doi: 10.1007/s00436-020-06968-x. PubMed DOI PMC
van Balkom BWM, et al. Mass spectrometric analysis of the Schistosoma mansoni tegumental sub-proteome. J. Proteome Res. 2005;4:958–966. doi: 10.1021/pr050036w. PubMed DOI
Braschi S, Curwen RS, Ashton PD, Verjovski-Almeida S, Wilson A. The tegument surface membranes of the human blood parasite Schistosoma mansoni: A proteomic analysis after differential extraction. Proteomics. 2006;6:1471–1482. doi: 10.1002/pmic.200500368. PubMed DOI
Braschi S, Wilson RA. Proteins exposed at the adult schistosome surface revealed by biotinylation. Mol. Cell. Proteomics MCP. 2006;5:347–356. doi: 10.1074/mcp.M500287-MCP200. PubMed DOI
Mulvenna J, et al. Exposed proteins of the Schistosoma japonicum tegument. Int. J. Parasitol. 2010;40:543–554. doi: 10.1016/j.ijpara.2009.10.002. PubMed DOI
Zhang M, et al. Proteomic analysis of tegument-exposed proteins of female and male Schistosoma japonicum worms. J. Proteome Res. 2013;12:5260–5270. doi: 10.1021/pr400476a. PubMed DOI
de La Torre-Escudero E, Pérez-Sánchez R, Manzano-Román R, Oleaga A. In vivo intravascular biotinylation of Schistosoma bovis adult worms and proteomic analysis of tegumental surface proteins. J. Proteomics. 2013;94:513–526. doi: 10.1016/j.jprot.2013.09.020. PubMed DOI
Sotillo J, Pearson M, Becker L, Mulvenna J, Loukas A. A quantitative proteomic analysis of the tegumental proteins from Schistosoma mansoni schistosomula reveals novel potential therapeutic targets. Int. J. Parasitol. 2015;45:505–516. doi: 10.1016/j.ijpara.2015.03.004. PubMed DOI
Sotillo J, et al. In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination. PLoS Negl. Trop. Dis. 2019;13:e0007362. doi: 10.1371/journal.pntd.0007362. PubMed DOI PMC
Liu F, et al. New perspectives on host-parasite interplay by comparative transcriptomic and proteomic analyses of Schistosoma japonicum. PLoS Pathog. 2006;2:e29. doi: 10.1371/journal.ppat.0020029. PubMed DOI PMC
Cheng G-F, et al. Proteomic analysis of differentially expressed proteins between the male and female worm of Schistosoma japonicum after pairing. Proteomics. 2005;5:511–521. doi: 10.1002/pmic.200400953. PubMed DOI
Boissier J, Chlichlia K, Digon Y, Ruppel A, Moné H. Preliminary study on sex-related inflammatory reactions in mice infected with Schistosoma mansoni. Parasitol. Res. 2003;91:144–150. doi: 10.1007/s00436-003-0943-1. PubMed DOI
Koslowski N, et al. Single-sex infection with female Schistosoma mansoni cercariae mitigates hepatic fibrosis after secondary infection. PLoS Negl. Trop. Dis. 2017;11:e0005595. doi: 10.1371/journal.pntd.0005595. PubMed DOI PMC
Sombetzki M, et al. Host defense versus immunosuppression: Unisexual infection with male or female Schistosoma mansoni differentially impacts the immune response against invading cercariae. Front. Immunol. 2018;9:861. doi: 10.3389/fimmu.2018.00861. PubMed DOI PMC
LoVerde PT, Andrade LF, Oliveira G. Signal transduction regulates schistosome reproductive biology. Curr. Opin. Microbiol. 2009;12:422–428. doi: 10.1016/j.mib.2009.06.005. PubMed DOI PMC
Leutner S, et al. Combinatory microarray and SuperSAGE analyses identify pairing-dependently transcribed genes in Schistosoma mansoni males, including follistatin. PLoS Negl. Trop. Dis. 2013;7:e2532. doi: 10.1371/journal.pntd.0002532. PubMed DOI PMC
Waisberg M, et al. Microarray analysis of gene expression induced by sexual contact in Schistosoma mansoni. BMC Genom. 2007;8:181. doi: 10.1186/1471-2164-8-181. PubMed DOI PMC
Armstrong JC. Mating behavior and development of schistosomes in the mouse. J. Parasitol. 1965;51:605. doi: 10.2307/3276242. PubMed DOI
Khalil SB, Mansour NS. Worm development in hamsters infected with unisex and cross-mated Schistosoma mansoni and Schistosoma haematobium. J. Parasitol. 1995;81:8. doi: 10.2307/3283998. PubMed DOI
Popiel I, Basch PF. Schistosoma mansoni: Cholesterol uptake by paired and unpaired worms. Exp. Parasitol. 1986;61:343–347. doi: 10.1016/0014-4894(86)90189-X. PubMed DOI
Shaw JR. Schistosoma mansoni: Pairing in vitro and development of females from single sex infections. Exp. Parasitol. 1977;41:54–65. doi: 10.1016/0014-4894(77)90129-1. PubMed DOI
LoVerde PT, Chen L. Schistosome female reproductive development. Parasitol. Today. 1991;7:303–308. doi: 10.1016/0169-4758(91)90263-n. PubMed DOI
Kunz W. Schistosome male–female interaction: Induction of germ-cell differentiation. Trends Parasitol. 2001;17:227–231. doi: 10.1016/s1471-4922(01)01893-1. PubMed DOI
Collins J. A non-ribosomal peptide pheromone controls male-induced female sexual development in schistosomes. In BSP Parasites Online Meeting 2021. Presentation, 22.06.2021. (British Society for Parasitology, 2021).
Wang J, et al. Dynamic transcriptomes identify biogenic amines and insect-like hormonal regulation for mediating reproduction in Schistosoma japonicum. Nat. Commun. 2017;8:14693. doi: 10.1038/ncomms14693. PubMed DOI PMC
Russo-Abrahão T, et al. H+-dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. J. Bioenergy Biomembr. 2017;49:183–194. doi: 10.1007/s10863-017-9695-y. PubMed DOI
Kage-Nakadai E, Uehara T, Mitani S. H+/myo-inositol transporter genes, hmit-1.1 and hmit-1.2, have roles in the osmoprotective response in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2011;410:471–477. doi: 10.1016/j.bbrc.2011.06.001. PubMed DOI
Schneider S. Inositol transport proteins. FEBS Lett. 2015;589:1049–1058. doi: 10.1016/j.febslet.2015.03.012. PubMed DOI
Phuphisut O, et al. Transcriptomic analysis of male and female Schistosoma mekongi adult worms. Parasit. Vectors. 2018;11:504. doi: 10.1186/s13071-018-3086-z. PubMed DOI PMC
Andrade LF, et al. Eukaryotic protein kinases (ePKs) of the helminth parasite Schistosoma mansoni. BMC Genom. 2011;12:215. doi: 10.1186/1471-2164-12-215. PubMed DOI PMC
Stroehlein AJ, et al. Defining the Schistosoma haematobium kinome enables the prediction of essential kinases as anti-schistosome drug targets. Sci. Rep. 2015;5:17759. doi: 10.1038/srep17759. PubMed DOI PMC
McKenzie M, Kirk RS, Walker AJ. Glucose uptake in the human pathogen Schistosoma mansoni is regulated through Akt/protein kinase B signaling. J. Infect. Dis. 2018;218:152–164. doi: 10.1093/infdis/jix654. PubMed DOI PMC
Ressurreição M, et al. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni. PLoS Negl. Trop. Dis. 2014;8:e2924. doi: 10.1371/journal.pntd.0002924. PubMed DOI PMC
Avelar LDGA, et al. Smp38 MAP kinase regulation in Schistosoma mansoni: Roles in survival, oviposition, and protection against oxidative stress. Front. Immunol. 2019;10:21. doi: 10.3389/fimmu.2019.00021. PubMed DOI PMC
Hirst NL, Nebel J-C, Lawton SP, Walker AJ. Deep phosphoproteome analysis of Schistosoma mansoni leads development of a kinomic array that highlights sex-biased differences in adult worm protein phosphorylation. PLoS Negl. Trop. Dis. 2020;14:e0008115. doi: 10.1371/journal.pntd.0008115. PubMed DOI PMC
Wilson RA. Proteomics at the schistosome-mammalian host interface: Any prospects for diagnostics or vaccines? Parasitology. 2012;139:1178–1194. doi: 10.1017/S0031182012000339. PubMed DOI
Imai K, Nakai K. Tools for the recognition of sorting signals and the prediction of subcellular localization of proteins from their amino acid sequences. Front. Genet. 2020;11:607812. doi: 10.3389/fgene.2020.607812. PubMed DOI PMC
Tran MH, et al. Tetraspanins on the surface of Schistosoma mansoni are protective antigens against schistosomiasis. Nat. Med. 2006;12:835–840. doi: 10.1038/nm1430. PubMed DOI
Pearson MS, et al. Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis: A biomarker identification study. Lancet. Microbe. 2021;2:e617–e626. doi: 10.1016/S2666-5247(21)00150-6. PubMed DOI PMC
Wang L, et al. Molecular characterization, expression profile, and preliminary evaluation of diagnostic potential of CD63 in Schistosoma japonicum. Parasitol. Res. 2018;117:3625–3631. doi: 10.1007/s00436-018-6063-8. PubMed DOI
Tran MH, et al. Suppression of mRNAs encoding tegument tetraspanins from Schistosoma mansoni results in impaired tegument turnover. PLoS Pathog. 2010;6:e1000840. doi: 10.1371/journal.ppat.1000840. PubMed DOI PMC
Mekonnen GG, et al. Characterisation of tetraspanins from Schistosoma haematobium and evaluation of their potential as novel diagnostic markers. PLoS Negl. Trop. Dis. 2022;16:e0010151. doi: 10.1371/journal.pntd.0010151. PubMed DOI PMC
Jiang Y, Xu X, Qing X, Pan W. Identification and characterization of six novel tetraspanins from Schistosoma japonicum. Parasit. Vectors. 2011;4:190. doi: 10.1186/1756-3305-4-190. PubMed DOI PMC
Sombetzki M, et al. 24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis. J. Hepatol. 2015;62:871–878. doi: 10.1016/j.jhep.2014.11.020. PubMed DOI PMC
Boissier J, Durand P, Moné H. PCR effectiveness for sexing Schistosoma mansoni cercariae: Application for sexing clonal cercarial populations. Mol. Biochem. Parasitol. 2001;112:139–141. doi: 10.1016/s0166-6851(00)00344-3. PubMed DOI
Tucker MS, Karunaratne LB, Lewis FA, Freitas TC, Liang Y-S. Schistosomiasis. Curr. Protoc. Immunol. 2013;103:19.1.1–19.1.58. doi: 10.1002/0471142735.im1901s103. PubMed DOI
Roberts SM, et al. Tegument surface membranes of adult Schistosoma mansoni: Development of a method for their isolation. Mol. Biochem. Parasitol. 1983;9:105–127. doi: 10.1016/0166-6851(83)90104-4. PubMed DOI
Blankenburg S, et al. Improving proteome coverage for small sample amounts: An advanced method for proteomics approaches with low bacterial cell numbers. Proteomics. 2019;19:e1900192. doi: 10.1002/pmic.201900192. PubMed DOI
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2020).
Wickham H, et al. Welcome to the tidyverse. JOSS. 2019;4:1686. doi: 10.21105/joss.01686. DOI
Conway JR, Lex A, Gehlenborg N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics (Oxford, England) 2017;33:2938–2940. doi: 10.1093/bioinformatics/btx364. PubMed DOI PMC
Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: Visualization of intersecting sets. IEEE Trans. Visual Comput. Graph. 2014;20:1983–1992. doi: 10.1109/TVCG.2014.2346248. PubMed DOI PMC
Yu C-S, et al. CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One. 2014;9:e99368. doi: 10.1371/journal.pone.0099368. PubMed DOI PMC
Käll L, Krogh A, Sonnhammer ELL. A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 2004;338:1027–1036. doi: 10.1016/j.jmb.2004.03.016. PubMed DOI
Raudvere U, et al. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update) Nucleic Acids Res. 2019;47:W191–W198. doi: 10.1093/nar/gkz369. PubMed DOI PMC
El-Gebali S, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D432. doi: 10.1093/nar/gky995. PubMed DOI PMC
Bsep/Abcb11 knockout ameliorates Schistosoma mansoni liver pathology by reducing parasite fecundity