The Effect of Kinematic Conditions and Synovial Fluid Composition on the Frictional Behaviour of Materials for Artificial Joints
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29748491
PubMed Central
PMC5978144
DOI
10.3390/ma11050767
PII: ma11050767
Knihovny.cz E-zdroje
- Klíčová slova
- friction, joint replacement, kinematic conditions, material, proteins,
- Publikační typ
- časopisecké články MeSH
The paper introduces an experimental investigation of frictional behaviour of materials used for joint replacements. The measurements were performed using a ball-on-disc tribometer, while four material combinations were tested; metal-on-metal, ceramic-on-ceramic, metal-on-polyethylene, and ceramic-on-polyethylene, respectively. The contact was lubricated by pure saline and various protein solutions. The experiments were realized at two mean speeds equal to 5.7 mm/s and 22 mm/s and two slide-to-roll ratios, −150% and 150%. It was found that the implant material is the fundamental parameter affecting friction. In general, the metal pair exhibited approximately two times higher friction compared to the ceramic. In particular, the friction in the case of the metal varied between 0.3 and 0.6 while the ceramic pair exhibited friction within the range from 0.15 to 0.3 at the end of the test. The lowest friction was observed for polyethylene while it decreased to 0.05 under some conditions. It can be also concluded that adding proteins to the lubricant has a positive impact on friction in the case of hard-on-hard pairs. For hard-on-soft pairs, no substantial influence of proteins was observed. The effect of kinematic conditions was found to be negligible in most cases.
Zobrazit více v PubMed
The Organisation for Economic Co-operation and Development (OECD) Health at a Glance 2015: OECD Indicators. OECD; Paris, France: 2015.
Pramanik S., Agarwal A.K., Rai K.N. Chronology of total hip joint replacement and materials development. Trends Biomater. Artif. Organs. 2005;19:15–26.
Huch K., Müller K.A.C., Stürmer T., Brenner H., Puhl W., Günther K.-P. Efficacy of prednisone 1–4 mg/day in patients with rheumatoid arthritis: A randomised, double-blind, placebo controlled withdrawal clinical trial. Ann. Rheum. Dis. 2005;64:1715–1720. doi: 10.1136/ard.2004.033266. PubMed DOI PMC
Joshi A.B., Porter M.L., Trail I.A., Hunt L.P., Murphy J.C., Hardinge K. Long-term results of Charnley low-friction arthroplasty in young patients. Bone Jt. J. 1993;75:616–623. doi: 10.1302/0301-620X.75B4.8331119. PubMed DOI
Mavraki A., Cann P.M. Friction and lubricant film thickness measurements on simulated synovial fluids. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009;223:325–335. doi: 10.1243/13506501JET580. DOI
Yao J.Q., Laurent M.P., Johnson T.S., Blanchard C.R., Crowninshield R.D. The influences of lubricant and material on polymer/CoCr sliding friction. Wear. 2003;255:780–784. doi: 10.1016/S0043-1648(03)00180-7. DOI
Scholes S.C., Unsworth A. The Effects of Proteins on the Friction and Lubrication of Artificial Joints. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2006;220:687–693. doi: 10.1243/09544119JEIM21. PubMed DOI
Sawae Y., Murakami T., Chen J. Effect of synovia constituents on friction and wear of ultra-high molecular weight polyethylene sliding against prosthetic joint materials. Wear. 1997;216:213–219. doi: 10.1016/S0043-1648(97)00196-8. DOI
Widmer M.R., Heuberger M., Vörös J., Spencer N.D. Influence of polymer surface chemistry on frictional properties under protein-lubrication conditions: implications for hip-implant design. Tribol. Lett. 2001;10:111–116. doi: 10.1023/A:1009074228662. DOI
Heuberger M.P., Widmer M.R., Zobeley E., Glockshuber R., Spencer N.D. Protein-mediated boundary lubrication in arthroplasty. Biomaterials. 2005;26:1165–1173. doi: 10.1016/j.biomaterials.2004.05.020. PubMed DOI
Nečas D., Sawae Y., Fujisawa T., Nakashima K., Morita T., Yamaguchi T., Vrbka M., Křupka I., Hartl M. The Influence of Proteins and Speed on Friction and Adsorption of Metal/UHMWPE Contact Pair. Biotribology. 2017;11:51–59. doi: 10.1016/j.biotri.2017.03.003. DOI
Yang C.B., Fang H.W., Liu H.L., Chang C.-H., Hsieh M.-C., Lee W.-M., Huang H.-T. Frictional characteristics of the tribological unfolding albumin for polyethylene and cartilage. Chem. Phys. Lett. 2006;431:380–384. doi: 10.1016/j.cplett.2006.10.003. DOI
Wang A., Essner A., Polineni V.K., Stark C., Dumbleton J.H. Lubrication and wear of ultra-high molecular weight polyethylene in total joint replacements. Tribol. Int. 1998;31:17–33. doi: 10.1016/S0301-679X(98)00005-X. DOI
Dowson D., Wang F.C., Wang W.Z., Jin Z.M. A predictive analysis of long-term friction and wear characteristics of metal-on-metal total hip replacement. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2007;221:367–378. doi: 10.1243/13506501JET255. DOI
Brockett C.L., Harper P., Williams S., Isaac G.H., Dwyer-Joyce R.S., Jin Z., Fisher J. The influence of clearance on friction, lubrication and squeaking in large diameter metal-on-metal hip replacements. J. Mater. Sci. Mater. Med. 2008;19:1575–1579. doi: 10.1007/s10856-007-3298-9. PubMed DOI
Vrbka M., Nečas D., Bartošík J., Hartl M., Křupka I., Galandáková A., Gallo J. Determination of a Friction Coefficient for THA Bearing Couples. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca. 2015;82:341–347. PubMed
Brostow W., Hagg Lobland H.E. Materials: Introduction and Applications. John Wiley & Sons; Hoboken, NJ, USA: 2017.
Mavraki A., Cann P.M. Lubricating film thickness measurements with bovine serum. Tribol. Int. 2011;44:550–556. doi: 10.1016/j.triboint.2010.07.008. DOI
Gispert M.P., Serro A.P., Colaço R., Saramago B. Friction and wear mechanisms in hip prosthesis: Comparison of joint materials behaviour in several lubricants. Wear. 2006;260:149–158. doi: 10.1016/j.wear.2004.12.040. DOI
Guezmil M., Bensalah W., Mezlini S. Tribological behavior of UHMWPE against TiAl6V4 and CoCr28Mo alloys under dry and lubricated conditions. J. Mech. Behav. Biomed. Mater. 2016;63:375–385. doi: 10.1016/j.jmbbm.2016.07.002. PubMed DOI
Morillo C., Sawae Y., Murakami T. Effect of bovine serum constituents on the surface of the tribological pair alumina/alumina nanocomposites for total hip replacement. Tribol. Int. 2010;43:1158–1162. doi: 10.1016/j.triboint.2009.12.043. DOI
Nečas D., Vrbka M., Urban F. The effect of lubricant constituents on lubrication mechanisms in hip joint replacements. J. Mech. Behav. Biomed. Mater. 2016;55:295–307. doi: 10.1016/j.jmbbm.2015.11.006. PubMed DOI
Guezmil M., Bensalah W., Mezlini S. Effect of bio-lubrication on the tribological behavior of UHMWPE against M30NW stainless steel. Tribol. Int. 2016;94:550–559. doi: 10.1016/j.triboint.2015.10.022. DOI
Nečas D., Vrbka M., Křupka I., Hartl M., Galandáková A. Lubrication within hip replacements—Implication for ceramic-on-hard bearing couples. J. Mech. Behav. Biomed. Mater. 2016;61:371–383. doi: 10.1016/j.jmbbm.2016.04.003. PubMed DOI
Fan J., Myant C.W., Underwood R., Hart A. Inlet protein aggregation: A new mechanism for lubricating film formation with model synovial fluids. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2011;225:696–709. doi: 10.1177/0954411911401306. PubMed DOI PMC
Myant C., Underwood R., Fan J. Lubrication of metal-on-metal hip joints: The effect of protein content and load on film formation and wear. J. Mech. Behav. Biomed. Mater. 2012;6:30–40. doi: 10.1016/j.jmbbm.2011.09.008. PubMed DOI
Parkes M., Myant C., Cann P.M., Wong J.S.S. The effect of buffer solution choice on protein adsorption and lubrication. Tribol. Int. 2014;72:108–117. doi: 10.1016/j.triboint.2013.12.005. DOI
Nečas D., Vrbka M., Rebenda D., Gallo J., Galandákovác A., Wolfovád L., Křupkaae I., Hartla M. In situ observation of lubricant film formation in THR considering real conformity: The effect of model synovial fluid composition. Tribol. Int. 2018;117:206–216. doi: 10.1016/j.triboint.2017.09.001. PubMed DOI
Nečas D., Vrbka M., Urban F., Gallo J., Křupka I., Hartl M. In situ observation of lubricant film formation in THR considering real conformity: The effect of diameter, clearance and material. J. Mech. Behav. Biomed. Mater. 2017;69:66–74. doi: 10.1016/j.jmbbm.2016.12.018. PubMed DOI
Sawae Y., Yamamoto A., Murakami T. Influence of protein and lipid concentration of the test lubricant on the wear of ultra high molecular weight polyethylene. Tribol. Int. 2008;41:648–656. doi: 10.1016/j.triboint.2007.11.010. DOI