Endosomal Interactions during Root Hair Growth
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
26858728
PubMed Central
PMC4731515
DOI
10.3389/fpls.2015.01262
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, development, endosomes, interaction, root hair, spinning disc microscopy, structured illumination microscopy, trafficking,
- Publikační typ
- časopisecké články MeSH
The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes-termed herein as dancing-endosomes-which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth.
Zobrazit více v PubMed
Alabi A. A., Tsien R. W. (2013). Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu. Rev. Physiol. 75, 393–422. 10.1146/annurev-physiol-020911-153305 PubMed DOI
Baluska F., Salaj J., Mathur J., Braun M., Jasper F., Samaj J., et al. . (2000). Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Dev. Biol. 227, 618–32. 10.1006/dbio.2000.9908 PubMed DOI
Berson T., von Wangenheim D., Takáč T., Šamajová O., Rosero A., Ovečka M., et al. . (2014). Trans-Golgi network localized small GTPase RabA1d is involved in cell plate formation and oscillatory root hair growth. BMC Plant Biol. 14:252. 10.1186/s12870-014-0252-0 PubMed DOI PMC
Bottanelli F., Foresti O., Hanton S., Denecke J. (2011). Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. Plant Cell 23, 3007–3025. 10.1105/tpc.111.085480 PubMed DOI PMC
Campanoni P., Blatt M. R. (2007). Membrane trafficking and polar growth in root hairs and pollen tubes. J. Exp. Bot. 58, 65–74. 10.1093/jxb/erl059 PubMed DOI
Chen X., Irani N. G., Friml J. (2011). Clathrin-mediated endocytosis: the gateway into plant cells. Curr. Opin. Plant Biol. 14, 674–682. 10.1016/j.pbi.2011.08.006 PubMed DOI
Chow C. M., Neto H., Foucart C., Moore I. (2008). Rab-A2 and Rab-A3 GTPases define a trans-golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20, 101–123. 10.1105/tpc.107.052001 PubMed DOI PMC
Cole R. A., Fowler J. E. (2006). Polarized growth: maintaining focus on the tip. Curr. Opin. Plant Biol. 9, 579–588. 10.1016/j.pbi.2006.09.014 PubMed DOI
Contento A. L., Bassham D. C. (2012). Structure and function of endosomes in plant cells. J. Cell Sci. 125, 3511–3518. 10.1242/jcs.093559 PubMed DOI
daSilva L. L., Foresti O., Denecke J. (2006). Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail. Plant Cell 18, 1477–1497. 10.1105/tpc.105.040394 PubMed DOI PMC
daSilva L. L., Taylor J. P., Hadlington J. L., Hanton S. L., Snowden C. J., Fox S. J., et al. . (2005). Receptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting. Plant Cell 17, 132–148. 10.1105/tpc.104.026351 PubMed DOI PMC
Dettmer J., Hong-Hermesdorf A., Stierhof Y. D., Schumacher K. (2006). Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18, 715–730. 10.1105/tpc.105.037978 PubMed DOI PMC
Dhonukshe P., Aniento F., Hwang I., Robinson D. G., Mravec J., Stierhof Y. D., et al. . (2007). Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr. Biol. 17, 520–527. 10.1016/j.cub.2007.01.052 PubMed DOI
Dhonukshe P., Baluška F., Schlicht M., Hlavačka A., Šamaj J., Friml J., et al. . (2006). Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell 10, 137–150. 10.1016/j.devcel.2005.11.015 PubMed DOI
Duclos S., Corsini R., Desjardins M. (2003). Remodeling of endosomes during lysosome biogenesis involves ‘kiss and run’ fusion events regulated by Rab5. J. Cell Sci. 116, 907–918. 10.1242/jcs.00259 PubMed DOI
Egan M. J., Tan K., Reck-Peterson S. L. (2012). Lis1 is an initiation factor for dynein-driven organelle transport. J. Cell Biol. 197, 971–982. 10.1083/jcb.201112101 PubMed DOI PMC
Fan L., Hao H., Xue Y., Zhang L., Song K., Ding Z., et al. . (2013). Dynamic analysis of Arabidopsis AP2 σ reveals its key role in clathrin-mediated endocytosis and plant development. Development 140, 3826–3837. 10.1242/dev.095711 PubMed DOI
Flores-Rodriguez N., Rogers S. S., Kenwright D. A., Waigh T. A., Woodman P. G., Allan V. J. (2011). Roles of dynein and dynactin in early endosome dynamics revealed using automated tracking and global analysis. PLoS ONE 6:e24479. 10.1371/journal.pone.0024479 PubMed DOI PMC
Gandhi S. P., Stevens C. F. (2003). Three modes of synaptic vesicular recycling revealed bysingle-vesicle imaging. Nature 423, 607–613. 10.1038/nature01677 PubMed DOI
Gasman S., Kalaidzidis Y., Zerial M. (2003). RhoD regulates endosome dynamics through Diaphanous-related Formin and Src tyrosine kinase. Nat. Cell Biol. 5, 195–204. 10.1038/ncb935 PubMed DOI
Geldner N., Dénervaud-Tendon V., Hyman D. L., Mayer U., Stierhof Y. D., Chory J. (2009). Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J. 59, 169–178. 10.1111/j.1365-313X.2009.03851.x PubMed DOI PMC
Gillooly D. J., Simonsen A., Stenmark H. (2001). Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem. J. 355, 249–258. 10.1042/bj3550249 PubMed DOI PMC
Haas T. J., Sliwinski M. K., Martínez D. E., Preuss M., Ebine K., Ueda T., et al. . (2007). The Arabidopsis AAA ATPase SKD1 is involved in multivesicular endosome function and interacts with its positive regulator LYST-INTERACTING PROTEIN5. Plant Cell 19, 1295–1312. 10.1105/tpc.106.049346 PubMed DOI PMC
Hao H., Fan L., Chen T., Li R., Li X., He Q., et al. . (2014). Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26, 1729–1745. 10.1105/tpc.113.122358 PubMed DOI PMC
Hause G., Šamaj J., Menzel D., Baluška F. (2006). Fine structural analysis of Brefeldin A-induced compartment formation after high-pressure freeze fixation of maize root epidermis: compound exocytosis resembling cell plate formation during cytokinesis. Plant Signal. Behav. 1, 134–139. 10.4161/psb.1.3.2996 PubMed DOI PMC
Helmuth J. A., Burckhardt C. J., Greber U. F., Sbalzarini I. F. (2009). Shape reconstruction of subcellular structures from live cell fluorescence microscopy images. J. Struct. Biol. 167, 1–10. 10.1016/j.jsb.2009.03.017 PubMed DOI
Idilli A. I., Morandini P., Onelli E., Rodighiero S., Caccianiga M., Moscatelli A. (2013). Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes. Mol. Plant 6, 1109–1130. 10.1093/mp/sst099 PubMed DOI
Ischebeck T., Werner S., Krishnamoorthy P., Lerche J., Meijón M., Stenzel I., et al. . (2013). Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25, 4894–4911. 10.1105/tpc.113.116582 PubMed DOI PMC
Kim S. Y., Xu Z. Y., Song K., Kim D. H., Kang H., Reichardt I., et al. . (2013). Adaptor protein complex 2-mediated endocytosis is crucial for male reproductive organ development in Arabidopsis. Plant Cell 25, 2970–2985. 10.1105/tpc.113.114264 PubMed DOI PMC
Komis G., Mistrik M., Šamajová O., Doskočilová A., Ovečka M., Illés P., et al. . (2014). Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy. Plant Physiol. 165, 129. 10.1104/pp.114.238477 PubMed DOI PMC
Komis G., Mistrik M., Šamajová O., Ovečka M., Bartek J., Šamaj J. (2015). Superresolution live imaging of plant cells using structured illumination microscopy. Nat. Protoc. 10, 1248. 10.1038/nprot.2015.083 PubMed DOI
Lai C., Xie C., Shim H., Chandran J., Howell B. W., Cai H. (2009). Regulation of endosomal motility and degradation by amyotrophic lateral sclerosis 2/alsin. Mol. Brain 2:23. 10.1186/1756-6606-2-23 PubMed DOI PMC
Lam S. K., Siu C. L., Hillmer S., Jang S., An G., Robinson D. G., et al. . (2007). Rice SCAMP1 defines clathrin-coated, trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19, 296–319. 10.1105/tpc.106.045708 PubMed DOI PMC
Lee Y., Bak G., Choi Y., Chuang W. I., Cho H. T., Lee Y. (2008). Roles of phosphatidylinositol 3-kinase in root hair growth. Plant Physiol. 147, 624–635. 10.1104/pp.108.117341 PubMed DOI PMC
Li H., Duan Z. W., Xie P., Liu Y. R., Wang W. C., Dou S. X., et al. . (2012a). Effects of paclitaxel on EGFR endocytic trafficking revealed using quantum dot tracking in single cells. PLoS ONE 7:e45465. 10.1371/journal.pone.0045465 PubMed DOI PMC
Li R., Liu P., Wan Y., Chen T., Wang Q., Mettbach U., et al. . (2012b). A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24, 2105–2122. 10.1105/tpc.112.095695 PubMed DOI PMC
Meijering E., Dzyubachyk O., Smal I. (2012). Methods for cell and particle tracking. Meth. Enzymol. 504, 183–200. 10.1016/B978-0-12-391857-4.00009-4 PubMed DOI
Müller J., Mettbach U., Menzel D., Šamaj J. (2007). Molecular dissection of endosomal compartments in plants. Plant Physiol. 145, 293–304. 10.1104/pp.107.102863 PubMed DOI PMC
Ohashi E., Tanabe K., Henmi Y., Mesaki K., Kobayashi Y., Takei K. (2011). Receptor sorting within endosomal trafficking pathway is facilitated by dynamic actin filaments. PLoS ONE 6:e19942. 10.1371/journal.pone.0019942 PubMed DOI PMC
Ovečka M., Berson T., Beck M., Derksen J., Šamaj J., Baluška F., et al. . (2010). Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. Plant Cell 22, 2999–3019. 10.1105/tpc.109.069880 PubMed DOI PMC
Ovečka M., Lang I., Baluška F., Ismail A., Illéš P., Lichtscheidl I. K. (2005). Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226, 39–54. 10.1007/s00709-005-0103-9 PubMed DOI
Park M., Jürgens G. (2012). Membrane traffic and fusion at post-Golgi compartments. Front. Plant Sci. 2:111. 10.3389/fpls.2011.00111 PubMed DOI PMC
Park S., Szumlanski A. L., Gu F., Guo F., Nielsen E. (2011). A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells. Nat. Cell Biol. 13, 973–980. 10.1038/ncb2294 PubMed DOI
Peremyslov V. V., Klocko A. L., Fowler J. E., Dolja V. V. (2012). Arabidopsis Myosin XI-K localizes to the motile endomembrane vesicles associated with F-actin. Front. Plant Sci. 3:184. 10.3389/fpls.2012.00184 PubMed DOI PMC
Pfeffer S. R. (2001). Membrane transport: retromer to the rescue. Curr. Biol. 11, 109–111. 10.1016/S0960-9822(01)00042-2 PubMed DOI
Puchner E. M., Walter J. M., Kasper R., Huang B., Lim W. A. (2013). Counting molecules in single organelles with superresolution microscopy allows tracking of the endosome maturation trajectory. Proc. Natl. Acad. Sci. U.S.A. 110, 16015–16020. 10.1073/pnas.1309676110 PubMed DOI PMC
Qi X., Zheng H. (2013). Rab-A1c GTPase defines a population of the trans-Golgi network that is sensitive to endosidin1 during cytokinesis in Arabidopsis. Mol. Plant 6, 847–859. 10.1093/mp/sss116 PubMed DOI
Reyes F. C., Buono R., Otegui M. S. (2011). Plant endosomal trafficking pathways. Curr. Opin. Plant Biol. 14, 666–673. 10.1016/j.pbi.2011.07.009 PubMed DOI
Richter S., Müller L. M., Stierhof Y. D., Mayer U., Takada N., Kost B., et al. . (2011). Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nat. Cell Biol. 14, 80–86. 10.1038/ncb2389 PubMed DOI
Ringli C., Baumberger N., Diet A., Frey B., Keller B. (2002). ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol. 129, 1464–1472. 10.1104/pp.005777 PubMed DOI PMC
Rizzoli S. O., Jahn R. (2007). Kiss-and-run, collapse and ‘readily retrievable’ vesicles. Traffic 8, 1137–1144. 10.1111/j.1600-0854.2007.00614.x PubMed DOI
Ruthardt N., Lamb D. C., Bräuchle C. (2011). Single-particle tracking as a quantitative microscopy-based approach to unravel cell entry mechanisms of viruses and pharmaceutical nanoparticles. Mol. Ther. 19, 1199–1211. 10.1038/mt.2011.102 PubMed DOI PMC
Ryan T. A., Reuter H. (2001). Measurements of vesicle recycling in central neurons. News Physiol. Sci. 16, 10–14. PubMed
Šamaj J. (2012). Endocytosis in Plants. Berlin; Heidelberg: Springer.
Šamaj J., Müller J., Beck M., Böhm N., Menzel D. (2006). Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci. 11, 594–600. 10.1016/j.tplants.2006.10.002 PubMed DOI
Sanderfoot A. A., Kovaleva V., Bassham D. C., Raikhel N. V. (2001). Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol. Biol. Cell 12, 3733–3743. 10.1091/mbc.12.12.3733 PubMed DOI PMC
Sbalzarini I. F., Koumoutsakos P. (2005). Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182–195. 10.1016/j.jsb.2005.06.002 PubMed DOI
Scheuring D., Viotti C., Krüger F., Künzl F., Sturm S., Bubeck J., et al. . (2011). Multivesicular bodies mature from the trans-Golgi network/early endosome in Arabidopsis. Plant Cell 23, 3463–3481. 10.1105/tpc.111.086918 PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. . (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schuster M., Lipowsky R., Assmann M. A., Lenz P., Steinberg G. (2011). Transient binding of dynein controls bidirectional long-range motility of early endosomes. Proc. Natl. Acad. Sci. U.S.A. 108, 3618–3623. 10.1073/pnas.1015839108 PubMed DOI PMC
Sharfman M., Bar M., Ehrlich M., Schuster S., Melech-Bonfil S., Ezer R., et al. . (2011). Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. Plant J. 68, 413–423. 10.1111/j.1365-313X.2011.04696.x PubMed DOI
Simon M. L., Platre M. P., Assil S., van Wijk R., Chen W. Y., Chory J., et al. . (2014). A multi-colour/multi-affinity marker set to visualize phosphoinositide dynamics in Arabidopsis. Plant J. 77, 322–337. 10.1111/tpj.12358 PubMed DOI PMC
Spallek T., Beck M., Ben Khaled S., Salomon S., Bourdais G., Schellmann S., et al. . (2013). ESCRT-I mediates FLS2 endosomal sorting and plant immunity. PLoS Genet. 9:e1004035. 10.1371/journal.pgen.1004035 PubMed DOI PMC
Takáč T., Pechan T., Šamajová O., Ovečka M., Richter H., Eck C., et al. . (2012). Wortmannin treatment induces changes in Arabidopsis root proteome and post-Golgi compartments. J. Proteome Res. 11, 3127–3142. 10.1021/pr201111n PubMed DOI
Takáč T., Pechan T., Šamajová O., Šamaj J. (2013). Vesicular trafficking and stress response coupled to PI3K inhibition by LY294002 as revealed by proteomic and cell biological analysis. J. Proteome Res. 12, 4435–4448. 10.1021/pr400466x PubMed DOI PMC
Toshima J. Y., Toshima J., Kaksonen M., Martin A. C., King D. S., Drubin D. G. (2006). Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives. Proc. Natl. Acad. Sci. U.S.A. 103, 5793–5798. 10.1073/pnas.0601042103 PubMed DOI PMC
Trejo H. E., Lecuona E., Grillo D., Szleifer I., Nekrasova O. E., Gelfand V. I., et al. . (2010). Role of kinesin light chain-2 of kinesin-1 in the traffic of Na,K-ATPase-containing vesicles in alveolar epithelial cells. FASEB J. 24, 374–382. 10.1096/fj.09-137802 PubMed DOI PMC
Ueda T., Uemura T., Sato M. H., Nakano A. (2004). Functional differentiation of endosomes in Arabidopsis cells. Plant J. 40, 783–789. 10.1111/j.1365-313X.2004.02249.x PubMed DOI
Uemura T., Ueda T., Ohniwa R. L., Nakano A., Takeyasu K., Sato M. H. (2004). Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65. 10.1247/csf.29.49 PubMed DOI
Vallotton P., Olivier S. (2013). Tri-track: free software for large-scale particle tracking. Microsc. Microanal. 19, 451–460. 10.1017/S1431927612014328 PubMed DOI
Vermeer J. E., Thole J. M., Goedhart J., Nielsen E., Munnik T., Gadella T. W., et al. . (2009). Imaging phosphatidylinositol 4-phosphate dynamics in living plant cells. Plant J. 57, 356–372. 10.1111/j.1365-313X.2008.03679.x PubMed DOI
Vermeer J. E., van Leeuwen W., Tobeña-Santamaria R., Laxalt A. M., Jones D. R., Divecha N., et al. . (2006). Visualization of PtdIns3P dynamics in living plant cells. Plant J. 47, 687–700. 10.1111/j.1365-313X.2006.02830.x PubMed DOI
Viotti C., Bubeck J., Stierhof Y. D., Krebs M., Langhans M., van den Berg W., et al. . (2010). Endocytic and secretory traffic in Arabidopsis merge in the trans-Golgi network/early endosome, an independent and highly dynamic organelle. Plant Cell 22, 1344–1357. 10.1105/tpc.109.072637 PubMed DOI PMC
Voigt B., Timmers A. C., Šamaj J., Hlavacka A., Ueda T., Preuss M., et al. . (2005a). Actin-based motility of endosomes is linked to the polar tip growth of root hairs. Eur. J. Cell Biol. 84, 609–621. 10.1016/j.ejcb.2004.12.029 PubMed DOI
Voigt B., Timmers A. C., Šamaj J., Müller J., Baluska F., Menzel D. (2005b). GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur. J. Cell Biol. 84, 595–608. 10.1016/j.ejcb.2004.11.011 PubMed DOI
Wang J., Cai Y., Miao Y., Lam S. K., Jiang L. (2009). Wortmannin induces homotypic fusion of plant prevacuolar compartments. J. Exp. Bot. 60, 3075–3083. 10.1093/jxb/erp136 PubMed DOI PMC
Zhang Q., Li Y., Tsien R. W. (2009). The dynamic control of kiss-and-run and vesicular reuse probed with single nanoparticles. Science 323, 1448–1453. 10.1126/science.1167373 PubMed DOI PMC