Advanced Microscopy Reveals Complex Developmental and Subcellular Localization Patterns of ANNEXIN 1 in Arabidopsis

. 2020 ; 11 () : 1153. [epub] 20200805

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32849711

Annexin 1 (ANN1) is the most abundant member of the evolutionary conserved multigene protein superfamily of annexins in plants. Generally, annexins participate in diverse cellular processes, such as cell growth, differentiation, vesicle trafficking, and stress responses. The expression of annexins is developmentally regulated, and it is sensitive to the external environment. ANN1 is expressed in almost all Arabidopsis tissues, while the most abundant is in the root, root hairs, and in the hypocotyl epidermal cells. Annexins were also occasionally proposed to associate with cytoskeleton and vesicles, but they were never developmentally localized at the subcellular level in diverse plant tissues and organs. Using advanced light-sheet fluorescence microscopy (LSFM), we followed the developmental and subcellular localization of GFP-tagged ANN1 in post-embryonic Arabidopsis organs. By contrast to conventional microscopy, LSFM allowed long-term imaging of ANN1-GFP in Arabidopsis plants at near-environmental conditions without affecting plant viability. We studied developmental regulation of ANN1-GFP expression and localization in growing Arabidopsis roots: strong accumulation was found in the root cap and epidermal cells (preferentially in elongating trichoblasts), but it was depleted in dividing cells localized in deeper layers of the root meristem. During root hair development, ANN1-GFP accumulated at the tips of emerging and growing root hairs, which was accompanied by decreased abundance in the trichoblasts. In aerial plant parts, ANN1-GFP was localized mainly in the cortical cytoplasm of trichomes and epidermal cells of hypocotyls, cotyledons, true leaves, and their petioles. At the subcellular level, ANN1-GFP was enriched at the plasma membrane (PM) and vesicles of non-dividing cells and in mitotic and cytokinetic microtubular arrays of dividing cells. Additionally, an independent immunolocalization method confirmed ANN1-GFP association with mitotic and cytokinetic microtubules (PPBs and phragmoplasts) in dividing cells of the lateral root cap. Lattice LSFM revealed subcellular accumulation of ANN1-GFP around the nuclear envelope of elongating trichoblasts. Massive relocation and accumulation of ANN1-GFP at the PM and in Hechtian strands and reticulum in plasmolyzed cells suggest a possible osmoprotective role of ANN1-GFP during plasmolysis/deplasmolysis cycle. This study shows complex developmental and subcellular localization patterns of ANN1 in living Arabidopsis plants.

Zobrazit více v PubMed

Andrawis A., Solomon M., Delmer D. P. (1993). Cotton fiber annexins: a potential role in the regulation of callose synthase. Plant J. 3, 763–772.  10.1111/j.1365-313X.1993.00763.x PubMed DOI

Baucher M., Pérez-Morga D., Jaziri M. E. (2012). Insight into plant annexin function. Plant Signal. Behav. 7, 524–528.  10.4161/psb.19647 PubMed DOI PMC

Blackbourn H. D., Battey N. H. (1993). Annexin-mediated secretory vesicle aggregation in plants. Physiol. Plant 89, 27–32.  10.1111/j.1399-3054.1993.tb01782.x DOI

Blackbourn H. D., Barker P. J., Huskisson N. S., Battey N. H. (1992). Properties and partial protein sequence of plant annexins. Plant Physiol. 99, 864–871.  10.1104/pp.99.3.864 PubMed DOI PMC

Brown R. M. (2004). Cellulose structure and biosynthesis: What is in store for the 21st century? J. Polym. Sci. A Polym. Chem. 42, 487–495.  10.1002/pola.10877 DOI

Cangelosi G. A., Best E. A., Martinetti G., Nester E. W. (1991). Genetic analysis of Agrobacterium . Meth. Enzymol. 204, 384–397. 10.1016/0076-6879(91)04020-O PubMed DOI

Cantero A., Barthakur S., Bushart T. J., Chou S., Morgan R. O., Fernandez M. P., et al. (2006). Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol. Biochem. 44, 13–24.  10.1016/j.plaphy.2006.02.002 PubMed DOI

Carroll A. D., Moyen C., Kesteren P. V., Tooke F., Battey N. H., Brownlee C. (1998). Ca2+, annexins, and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell 10, 1267–1276.  10.1105/tpc.10.8.1267 PubMed DOI PMC

Clark G. B., Roux S. J. (1995). Annexins of plant cells. Plant Physiol. 109, 1133–1139.  10.1104/pp.109.4.1133 PubMed DOI PMC

Clark G. B., Dauwalder M., Roux S. J. (1992). Purification and immunolocalization of an annexin-like protein in pea seedlings. Planta 187, 1–9. 10.1007/BF00201617 PubMed DOI

Clark G. B., Dauwalder M., Roux S. J. (1994). Immunolocalization of an annexin-like protein in corn. Adv. Space Res. 14, 341–346.  10.1016/0273-1177(94)90421-9 PubMed DOI

Clark G. B., Dauwalder M., Roux S. J. (1998). Immunological and biochemical evidence for nuclear localization of annexin in peas. Plant Physiol. Biochem. 36, 621–627.  10.1016/s0981-9428(98)80010-7 PubMed DOI

Clark G. B., Sessions A., Eastburn D. J., Roux S. J. (2001). Differential expression of members of the annexin multigene family in Arabidopsis. Plant Physiol. 126, 1072–1084.  10.1104/pp.126.3.1072 PubMed DOI PMC

Clark G. B., Cantero-Garcia A., Butterfield T., Dauwalder M., Roux S. J. (2005. a). Secretion as a key component of gravitropic growth: implications for annexin involvement in differential growth. Gravit. Space Biol. Bull. 18, 113–114. PubMed

Clark G. B., Lee D., Dauwalder M., Roux S. J. (2005. b). Immunolocalization and histochemical evidence for the association of two different Arabidopsis annexins with secretion during early seedling growth and development. Planta 220, 621–631.  10.1007/s00425-004-1374-7 PubMed DOI

Clark G. B., Morgan R. O., Fernandez M. P., Roux S. J. (2012). Evolutionary adaptation of plant annexins has diversified their molecular structures, interactions and functional roles. New Phytol. 196, 695–712.  10.1111/j.1469-8137.2012.04308.x PubMed DOI

Davis A. M., Hall A., Millar A. J., Darrah C., Davis S. J. (2009). Protocol: Streamlined sub-protocols for floral-dip transformation and selection of transformants in Arabidopsis thaliana . Plant Methods 5, 3.  10.1186/1746-4811-5-3 PubMed DOI PMC

De Carvalho-Niebel F., Timmers A. C. J., Chabaud M., Defaux-Petras A., Barker D. G. (2002). The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula . Plant J. 32, 343–352.  10.1046/j.1365-313X.2002.01429.x PubMed DOI

Dhonukshe P., Baluška F., Schlicht M., Hlavacka A., Šamaj J., Friml J., et al. (2006). Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev. Cell 10, 137–150.  10.1016/j.devcel.2005.11.015 PubMed DOI

Divya K., Jami S. K., Kirti P. B. (2010). Constitutive expression of mustard annexin, enhances abiotic stress tolerance and fiber quality in cotton under stress. Plant Mol. Biol. 73, 293–308.  10.1007/s11103-010-9615-6 PubMed DOI

Favery B., Ryan E., Foreman J., Linstead P., Boudonck K., Steer M., et al. (2001). KOJAK encodes a cellulose synthase-like protein required for root hair cell morphogenesis in Arabidopsis. Genes Dev. 15, 79–89.  10.1101/gad.188801 PubMed DOI PMC

Foreman J., Dolan L. (2001). Root hairs as a model system for studying plant cell growth. Ann. Bot. 88, 1–7.  10.1006/anbo.2001.1430 DOI

Gerke V., Moss S. E. (2002). Annexins: from structure to function. Physiol. Rev. 82, 331–371.  10.1152/physrev.00030.2001 PubMed DOI

Gidrol X., Sabelli P. A., Fern Y. S., Kush A. K. (1996). Annexin-like protein from Arabidopsis thaliana rescues delta oxyR mutant of Escherichia coli from H2O2 stress. Proc. Natl. Acad. Sci. U. S. A. 93, 11268–11273.  10.1073/pnas.93.20.11268 PubMed DOI PMC

Gorecka K. M., Konopka-Postupolska D., Hennig J., Buchet R., Pikula S. (2005). Peroxidase activity of annexin 1 from Arabidopsis thaliana . Biochem. Biophys. Res. Commun. 336, 868–875.  10.1016/j.bbrc.2005.08.181 PubMed DOI

Gorecka K. M., Thouverey C., Buchet R., Pikula S. (2007). Potential role of annexin AnnAt1 from Arabidopsis thaliana in pH-mediated cellular response to environmental stimuli. Plant Cell Physiol. 48, 792–803.  10.1093/pcp/pcm046 PubMed DOI

Guelette B. S., Benning U. F., Hoffmann-Benning S. (2012). Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana . J. Exp. Bot. 63, 3603–3616.  10.1093/jxb/ers028 PubMed DOI PMC

Gutierrez-Carbonell E., Takahashi D., Lüthje S., González-Reyes J. A., Mongrand S., Contreras-Moreira B., et al. (2016). A shotgun proteomic approach reveals that Fe deficiency causes marked changes in the protein profiles of plasma membrane and detergent-resistant microdomain preparations from Beta vulgaris roots. J. Proteome Res. 15, 2510–2524.  10.1021/acs.jproteome.6b00026 PubMed DOI

Hamaji K., Nagira M., Yoshida K., Ohnishi M., Oda Y., Uemura T., et al. (2009). Dynamic aspects of ion accumulation by vesicle traffic under salt stress in Arabidopsis. Plant Cell Physiol. 50, 2023–2033.  10.1093/pcp/pcp143 PubMed DOI

He F., Gao C., Guo G., Liu J., Gao Y., Pan R., et al. (2019). Maize annexin genes ZmANN33 and ZmANN35 encode proteins that function in cell membrane recovery during seed germination. J. Exp. Bot. 70, 1183–1195.  10.1093/jxb/ery452 PubMed DOI PMC

He X., Liao L., Xie S., Yao M., Xie P., Liu W., et al. (2020). Comprehensive analyses of the annexin (ANN) gene family in Brassica rapa, Brassica oleracea and Brassica napus reveals their roles in stress response. Sci. Rep. 10, 4295.  10.1038/s41598-020-59953-w PubMed DOI PMC

Hofmann A., Proust J., Dorowski A., Schantz R., Huber R. (2000). Annexin 24 from Capsicum annuum – X-ray structure and biochemical characterization. J. Biol. Chem. 275, 8072–8082.  10.1074/jbc.275.11.8072 PubMed DOI

Hofmann A., Delmer D. P., Wlodawer A. (2003). The crystal structure of annexin Gh1 from Gossypium hirsutum reveals an unusual S3 cluster. Eur. J. Biochem. 270, 2557–2564.  10.1046/j.1432-1033.2003.03612.x PubMed DOI

Hong Z., Verma D. (2013). “Molecular analysis of the cell plate forming machinery,” in Cell Division Control in Plants. Plant Cell Monographs, vol. 9 . Eds. Verma D. P. S., Hong Z. (Berlin, Heidelberg: Springer; ).  10.1007/7089_2007_133 DOI

Huh S. M., Noh E. K., Kim H. G., Jeon B. W., Bae K., Hu H.-C., et al. (2010). Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses. Plant Cell Physiol. 51, 1499–1514.  10.1093/pcp/pcq111 PubMed DOI

Jami S. K., Clark G. B., Ayele B. T., Ashe P., Kirti P. B. (2012). Genome-wide comparative analysis of annexin superfamily in plants. PLoS One 7, e47801.  10.1371/journal.pone.0047801 PubMed DOI PMC

Konopka-Postupolska D., Clark G. (2017). Annexins as overlooked regulators of membrane trafficking in plant cells. Int. J. Mol. Sci. 18, 863.  10.3390/ijms18040863 PubMed DOI PMC

Konopka-Postupolska D., Clark G., Goch G., Debski J., Floras K., Cantero A., et al. (2009). The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol. 150, 1394–1410.  10.1104/pp.109.135228 PubMed DOI PMC

Konopka-Postupolska D., Clark G., Hofmann A. (2011). Structure, function and membrane interactions of plant annexins: an update. Plant Sci. 181, 230–241.  10.1016/j.plantsci.2011.05.013 PubMed DOI

Konopka-Postupolska D. (2007). Annexins: putative linkers in dynamic membrane-cytoskeleton interactions in plant cells. Protoplasma 230, 203–215.  10.1007/s00709-006-0234-7 PubMed DOI

Kovács I., Ayaydin F., Oberschall A., Ipacs I., Bottka S., Pongor S., et al. (1998). Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa. Plant J. 15, 185–197.  10.1046/j.1365-313x.1998.00194.x PubMed DOI

Laohavisit A., Davies J. M. (2009). Multifunctional annexins. Plant Sci. 177, 532–539.  10.1016/j.plantsci.2009.09.008 DOI

Laohavisit A., Davies J. M. (2011). Annexins. New Phytol. 189, 40–53.  10.1111/j.1469-8137.2010.03533.x PubMed DOI

Leborgne-Castel N., Bouhidel K. (2014). Plasma membrane protein trafficking in plant–microbe interactions: a plant cell point of view. Front. Plant Sci. 5, 735.  10.3389/fpls.2014.00735 PubMed DOI PMC

Lizarbe M. A., Barrasa J., II, Olmo N., Gavilanes F., Turnay J. (2013). Annexin-phospholipid interactions. Functional implications. Int. J. Mol. Sci. 14, 2652–2683.  10.3390/ijms14022652 PubMed DOI PMC

Mano S., Hayashi M., Nishimura M. (1999). Light regulates alternative splicing of hydroxypyruvate reductase in pumpkin. Plant J. 17, 309–320.  10.1046/j.1365-313x.1999.00378.x PubMed DOI

Mathur J., Hülskamp M. (2001). Cell growth: How to grow and where to grow. Curr. Biol. 11, R402–R404.  10.1016/S0960-9822(01)00219-6 PubMed DOI

Matsuoka K., Nakamura K. (1991). Propeptide of a precursor to a plant vacuolar protein required for vacuolar targeting. Proc. Natl. Acad. Sci. U. S. A. 88, 834–838.  10.1073/pnas.88.3.834 PubMed DOI PMC

Mortimer J. C., Laohavisit A., Macpherson N., Webb A., Brownlee C., Battey N. H., et al. (2008). Annexins: multifunctional components of growth and adaptation. J. Exp. Bot. 59, 533–544.  10.1093/jxb/erm344 PubMed DOI

Moss S. E., Morgan R. O. (2004). The annexins. Genome Biol. 5, 219.  10.1186/gb-2004-5-4-219 PubMed DOI PMC

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473–497.  10.1111/j.1399-3054.1962.tb08052.x DOI

Noack L. C., Jaillais Y. (2020). Functions of anionic lipids in plants. Annu. Rev. Plant Biol. 71, 71–102.  10.1146/annurev-arplant-081519-035910 PubMed DOI

Ovečka M., Vaškebová L., Komis G., Luptovčiak I., Smertenko A., Šamaj J. (2015). Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat. Protoc. 10, 1234–1247.  10.1038/nprot.2015.081 PubMed DOI

Ovečka M., von Wangenheim D., Tomančák P., Šamajová O., Komis G., Šamaj J. (2018). Multiscale imaging of plant development by light-sheet fluorescence microscopy. Nat. Plants 9, 639–650.  10.1038/s41477-018-0238-2 PubMed DOI

Pittman J. (2012). Multiple transport pathways for mediating intracellular pH homeostasis: The contribution of H+/ion exchangers. Front. Plant Sci. 3, 11.  10.3389/fpls.2012.00011 PubMed DOI PMC

Proust J., Houlné G., Schantz M. L., Shen W. H., Schantz R. (1999). Regulation of biosynthesis and cellular localization of Sp32 annexins in tobacco BY2 cells. Plant Mol. Biol. 39, 361–372.  10.1023/A:100619981 PubMed DOI

Reichel C., Mathur J., Eckes P., Langenkemper K., Koncz C., Schell J., et al. (1996). Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc. Natl. Acad. Sci. U. S. A. 93, 5888–5893.  10.1073/pnas.93.12.5888 PubMed DOI PMC

Richter H. (2014). Untersuchungen zur Funktion der Annexine 1 bis 4 aus Arabidopsis mit hilfe fluoreszierender Reporte. [dissertation thesis] ([Bonn (DE)]: Friedrich-Wilhelms-Universität Bonn; ).

Rohila J. S., Chen M., Chen S., Chen J., Cerny R., Dardick C., et al. (2006). Protein-protein interactions of tandem affinity purification-tagged protein kinases in rice. Plant J. 1, 1–13.  10.1111/j.1365-313X.2006.02671.x PubMed DOI

Saad R. B., Romdhane W. B., Hsouna A. B., Mihoubi W., Harbaoui M., Brini F. (2020). Insights into plant annexins function in abiotic and biotic stress tolerance. Plant Signal. Behav. 15, e1699264-1–e1699264-3.  10.1080/15592324.2019.1699264 PubMed DOI PMC

Šamajová O., Komis G., Šamaj J. (2014). “Immunofluorescent localization of MAPKs and colocalization with microtubules in seedling whole-mount probes,” in Plant MAP Kinases. Methods in Molecular Biology. Eds. Komis G., Šamaj J. (New York: Springer; ), 107–115. PubMed

Shin H., Brown R. M. (1999). GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol. 119, 925–934.  10.1104/pp.119.3.925 PubMed DOI PMC

Surpin M., Zheng H., Morita M. T., Saito C., Avila E., Blakeslee J. J., et al. (2003). The VTI family of SNARE proteins is necessary for plant viability and mediates different protein transport pathways. Plant Cell 15, 2885–2899.  10.1105/tpc.016121 PubMed DOI PMC

Tuteja N. (2009). “Integrated calcium signaling in plants,” in Signaling in Plants. Eds. Mancuso S., Baluška F. (Berlin, Heidelberg: Springer; ), 29–49.  10.1007/978-3-540-89228-1_2 DOI

Verma D. P. S., Hong Z. (2001). Plant callose synthase complexes. Plant Mol. Biol. 47, 693–701.  10.1023/A:1013679111111 PubMed DOI

Véry A. A., Davies J. M. (2000). Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc. Natl. Acad. Sci. U. S. A. 97, 9801–9806.  10.1073/pnas.160250397 PubMed DOI PMC

Wang J., Song J., Clark G., Roux S. J. (2018). ANN1 and ANN2 function in post-phloem sugar transport in root tips to affect primary rot growth. Plant Physiol. 178, 390–401.  10.1104/pp.18.00713 PubMed DOI PMC

White P. J., Bowen H. C., Demidchik V., Nichols C., Davies J. M. (2002). Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim. Biophys. Acta 1564, 299–309.  10.1016/s0005-2736(02)00509-6 PubMed DOI

Yadav D., Boyidi P., Ahmed I., Kirti P. B. (2018). Plant annexins and their involvement in stress responses. Environ. Exp. Bot. 155, 293–306.  10.1016/j.envexpbot.2018.07.002 DOI

Zhao J., Li L., Liu Q., Liu P., Li S., Yang D., et al. (2019). A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. J. Exp. Bot. 70, 5943–5958.  10.1093/jxb/erz348 PubMed DOI PMC

Zhu J., Gong Z., Zhang C., Song C.-P., Damsz B., Inan G., et al. (2002). OSM1/SYP61: a syntaxin protein in Arabidopsis controls abscisic acid–mediated and non-abscisic acid–mediated responses to abiotic stress. Plant Cell 14, 3009–3028.  10.1105/tpc.006981 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Imaging plant cells and organs with light-sheet and super-resolution microscopy

. 2022 Feb 04 ; 188 (2) : 683-702.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...