Alfalfa Root Growth Rate Correlates with Progression of Microtubules during Mitosis and Cytokinesis as Revealed by Environmental Light-Sheet Microscopy

. 2017 ; 8 () : 1870. [epub] 20171030

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29163595

Cell division and expansion are two fundamental biological processes supporting indeterminate root growth and development of plants. Quantitative evaluations of cell divisions related to root growth analyses have been performed in several model crop and non-crop plant species, but not in important legume plant Medicago sativa. Light-sheet fluorescence microscopy (LSFM) is an advanced imaging technique widely used in animal developmental biology, providing efficient fast optical sectioning under physiological conditions with considerably reduced phototoxicity and photobleaching. Long-term 4D imaging of living plants offers advantages for developmental cell biology not available in other microscopy approaches. Recently, LSFM was implemented in plant developmental biology studies, however, it is largely restricted to the model plant Arabidopsis thaliana. Cellular and subcellular events in crop species and robust plant samples have not been studied by this method yet. Therefore we performed LSFM long-term live imaging of growing root tips of transgenic alfalfa plants expressing the fluorescent molecular marker for the microtubule-binding domain (GFP-MBD), in order to study dynamic patterns of microtubule arrays during mitotic cell division. Quantitative evaluations of cell division progress in the two root tissues (epidermis and cortex) clearly indicate that root growth rate is correlated with duration of cell division in alfalfa roots. Our results favor non-invasive environmental LSFM as one of the most suitable methods for qualitative and quantitative cellular and developmental imaging of living transgenic legume crops.

Zobrazit více v PubMed

Ayaydin F., Vissi E., Mészáros T., Miskolczi P., Kovács I., Fehér A., et al. . (2000). Inhibition of serine/threonine-specific protein phosphatases causes premature activation of cdc2MsF kinase at G2/M transition and early mitotic microtubule organisation in alfalfa. Plant J. 23, 85–96. 10.1046/j.1365-313x.2000.00798.x PubMed DOI

Azimzadeh J., Nacry P., Christodoulidou A., Drevensek S., Camilleri C., Amiour N., et al. . (2008). Arabidopsis TONNEAU1 proteins are essential for preprophase band formation and interact with centrin. Plant Cell 20, 2146–2159. 10.1105/tpc.107.056812 PubMed DOI PMC

Baluška F., Kubica S., Hauskrecht M. (1990). Postmitotic ‘isodiametric’ cell growth in the maize root apex. Planta 181, 269–274. 10.1007/BF00195876 PubMed DOI

Baskin T. I. (2000). On the constancy of cell division rate in the root meristem. Plant Mol. Biol. 43, 545–554. 10.1023/A:1006383921517 PubMed DOI

Baskin T. I. (2013). Patterns of root growth acclimation: constant processes, changing boundaries. WIREs Dev. Biol. 2, 65–73. 10.1002/wdev.94 PubMed DOI

Beck M., Komis G., Ziemann A., Menzel D., Šamaj J. (2011). Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol. 189, 1069–1083. 10.1111/j.1469-8137.2010.03565.x PubMed DOI

Beemster G. T. S., Baskin T. I. (1998). Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol. 116, 1515–1526. 10.1104/pp.116.4.1515 PubMed DOI PMC

Beemster G. T. S., De Vusser K., De Tavernier E., De Bock K., Inzé D. (2002). Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity. Plant Physiol. 129, 854–864. 10.1104/pp.002923 PubMed DOI PMC

Bekešová S., Komis G., Křenek P., Vyplelová P., Ovečka M., Luptovčiak I., et al. . (2015). Monitoring protein phosphorylation by acrylamide pendant Phos-TagTM in various plants. Front. Plant Sci. 6:336. 10.3389/fpls.2015.00336 PubMed DOI PMC

Bingham E. T. (1991). Registration of alfalfa hybrid Regen-SY germplasm for tissue culture and transformation research. Crop Sci. 31, 1098 10.2135/cropsci1991.0011183X003100040075x DOI

Boruc J., Weimer A. K., Stoppin-Mellet V., Mylle E., Kosetsu K., Cedeño C., et al. . (2017). Phosphorylation of MAP65-1 by Arabidopsis Aurora kinases is required for efficient cell cycle progression. Plant Physiol. 173, 582–599. 10.1104/pp.16.01602 PubMed DOI PMC

Calder G., Hindle C., Chan J., Shaw P. (2015). An optical imaging chamber for viewing living plant cells and tissues at high resolution for extended periods. Plant Methods 11, 22. 10.1186/s13007-015-0065-7 PubMed DOI PMC

Campilho A., Garcia B., van den Toorn H., van Wijk H., Campilho A., Scheres B. (2006). Time-lapse analysis of stem-cell divisions in the Arabidopsis thaliana root meristem. Plant J. 48, 619–627. 10.1111/j.1365-313X.2006.02892.x PubMed DOI

Chan J., Calder G. M., Doonan J. H., Lloyd C. W. (2003). EB1 reveals mobile microtubule nucleation sites in Arabidopsis. Nat. Cell Biol. 5, 967–971. 10.1038/ncb1057 PubMed DOI

Chan J., Calder G., Fox S., Lloyd C. (2005). Localization of the microtubule end binding protein EB1 reveals alternative pathways of spindle development in Arabidopsis suspension cells. Plant Cell 17, 1737–1748. 10.1105/tpc.105.032615 PubMed DOI PMC

Chang H.-Y., Smertenko A. P., Igarashi H., Dixon D. P., Hussey P. J. (2005). Dynamic interaction of NtMAP65-1a with microtubules in vivo. J. Cell. Sci. 118, 3195–3201. 10.1242/jcs.02433 PubMed DOI

Dhonukshe P., Gadella T. W., Jr. (2003). Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15, 597–611. 10.1105/tpc.008961 PubMed DOI PMC

Dhonukshe P., Vischer N., Gadella T. W., Jr. (2006). Contribution of microtubule growth polarity and flux to spindle assembly and functioning in plant cells. J. Cell. Sci. 119, 3193–3205. 10.1242/jcs.03048 PubMed DOI

Gaillard J., Neumann E., Van Damme D., Stoppin-Mellet V., Ebel C., Barbier E., et al. . (2008). Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol. Biol. Cell 19, 4534–4544. 10.1091/mbc.E08-04-0341 PubMed DOI PMC

Ho C.-M. K., Hotta T., Guo F., Roberson R. W., Lee Y.-R. J., Liu B. (2011). Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. Plant Cell 23, 2909–2923. 10.1105/tpc.110.078204 PubMed DOI PMC

Ho C.-M. K., Lee Y.-R. J., Kiyma L. D., Dinesh-Kumar S. P., Liu B. (2012). Arabidopsis microtubule-associated protein MAP65-3 cross-links antiparallel microtubules toward their plus ends in the phragmoplast via its distinct C-terminal microtubule binding domain. Plant Cell 24, 2071–2085. 10.1105/tpc.111.092569 PubMed DOI PMC

Joubès J., Chevalier C., Dudits D., Herberle-Bors E., Inzé D., Umeda M., et al. . (2000). CDK-related protein kinases in plants. Plant Mol. Biol. 43, 607–620. 10.1023/A:1006470301554 PubMed DOI

Kimata Y., Higaki T., Kawashima T., Kurihara D., Sato Y., Yamada T., et al. . (2016). Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote. Proc. Natl. Acad. Sci. U.S.A 113, 14157–14162. 10.1073/pnas.1613979113 PubMed DOI PMC

Kirschner G. K., Stahl Y., Von Korff M., Simon R. (2017). Unique and conserved features of the barley root meristem. Front. Plant Sci. 8:1240. 10.3389/fpls.2017.01240 PubMed DOI PMC

Komaki S., Abe T., Coutuer S., Inzé D., Russinova E., Hashimoto T. (2009). Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J. Cell. Sci. 123, 451–459. 10.1242/jcs.062703 PubMed DOI

Komis G., Luptovčiak I., Doskočilová A., Šamaj J. (2015). Biotechnological aspects of cytoskeletal regulation in plants. Biotech. Adv. 33, 1043–1062. 10.1016/j.biotechadv.2015.03.008 PubMed DOI

Komis G., Luptovčiak I., Ovečka M., Samakovli D., Šamajová O., Šamaj J. (2017). Katanin effects on dynamics of cortical microtubules and mitotic arrays in Arabidopsis thaliana revealed by advanced live-cell imaging. Front. Plant Sci. 8:866. 10.3389/fpls.2017.00866 PubMed DOI PMC

Lavrekha V. V., Pasternak T., Ivanov V. B., Palme K., Mironova V. V. (2017). 3D analysis of mitosis distribution highlights the longitudinal zonation and diarch symmetry in proliferation activity of the Arabidopsis thaliana root meristem. Plant J. [Epub ahead of print]. 10.1111/tpj.13720 PubMed DOI

Lee Y.-R. J., Liu B. (2013). The rise and fall of the phragmoplast microtubule array. Curr. Opin. Plant Biol. 16, 757–763. 10.1016/j.pbi.2013.10.008 PubMed DOI

Lucas M., Kenobi K., von Wangenheim D., Voβ U., Swarup K., De Smet I., et al. . (2013). Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues. Proc. Natl Acad. Sci. U.S.A. 110, 5229–5234. 10.1073/pnas.1210807110 PubMed DOI PMC

Maizel A., von Wangenheim D., Federici F., Haseloff J., Stelzer E. H. K. (2011). High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J. 68, 377–385. 10.1111/j.1365-313X.2011.04692.x PubMed DOI

Mao G., Chan J., Calder G., Doonan J. H., Lloyd C. W. (2005). Modulated targeting of GFP-AtMAP65-1 to central spindle microtubules during division. Plant J. 43, 469–478. 10.1111/j.1365-313X.2005.02464.x PubMed DOI

Marc J., Granger C. L., Brincat J., Fisher D. D., Kao T.-H., McCubbin A. G., et al. . (1998). A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10, 1927–1939. 10.2307/3870914 PubMed DOI PMC

Marcus A. I., Dixit R., Cyr R. J. (2005). Narrowing of the preprophase microtubule band is not required for cell division plane determination in cultured plant cells. Protoplasma 226, 169–174. 10.1007/s00709-005-0119-1 PubMed DOI

Mészáros T., Miskolczi P., Ayaydin F., Pettkó-Szandtner A., Peres A., Magyar Z., et al. . (2000). Multiple cyclin-dependent kinase complexes and phosphatases control G2/M progression in alfalfa cells. Plant Mol. Biol. 43, 595–605. 10.1023/A:1006412413671 PubMed DOI

Murata T., Sano T., Sasabe M., Nonaka S., Higashiyama T., Hasezawa S., et al. . (2013). Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat. Commun. 4, 1967. 10.1038/ncomms2967 PubMed DOI PMC

Nakamura M., Ehrhardt D. W., Hashimoto T. (2010). Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat. Cell Biol. 12, 1064–1070. 10.1038/ncb2110 PubMed DOI

Ni J., Shen Y., Zhang Y., Wu P. (2014). Definition and stabilisation of the quiescent centre in rice roots. Plant Biol. 16, 1014–1019. 10.1111/plb.12138 PubMed DOI

Novák D., Kuchařová A., Ovečka M., Komis G., Šamaj J. (2016). Develomental nuclear localization and quantification of GFP-tagged EB1c in Arabidopsis root using light-sheet microscopy. Front. Plant Sci. 6:1187. 10.3389/fpls.2015.01187 PubMed DOI PMC

Ovečka M., Vaškebová L., Komis G., Luptovčiak I., Smertenko A., Šamaj J. (2015). Preparation of plants for developmental and cellular imaging by light-sheet microscopy. Nat. Protoc. 10, 1234–1247. 10.1038/nprot.2015.081 PubMed DOI

Pasternak T., Haser T., Falk T., Ronneberger O., Palme K., Otten L. (2017). A 3D digital atlas of the Nicotiana tabacum root tip and its use to investigate changes in the root apical meristem induced by the Agrobacterium 6b oncogene. Plant J. 92, 31–42. 10.1111/tpj.13631 PubMed DOI

Pastuglia M., Azimzadeh J., Goussot M., Camilleri C., Belcram K., Evrard J.-L., et al. . (2006). γ-Tubulin is essential for microtubule organization and development in Arabidopsis. Plant Cell 18, 1412–1425. 10.1105/tpc.105.039644 PubMed DOI PMC

Rasmussen C. G., Humphries J. A., Smith L. G. (2011). Determination of symmetric and asymmetric division planes in plant cells. Ann. Rev. Plant Biol. 62, 387–409. 10.1146/annurev-arplant-042110-103802 PubMed DOI

Rebouillat J., Dievart A., Verdeil J. L., Escoute J., Giese G., Breitler J. C., et al. (2009). Molecular genetics of rice root development. Rice 2, 15–34. 10.1007/s12284-008-9016-5 DOI

Rosero A., Oulehlová D., Stillerová L., Schiebertová P., Grunt M., Žárský V., et al. . (2016). Arabidopsis FH1 formin affects cotyledon pavement cell shape by modulating cytoskeleton dynamics. Plant Cell Physiol. 57, 488–504. 10.1093/pcp/pcv209 PubMed DOI

Rosquete M. R., von Wangenheim D., Marhavý P., Barbez E., Stelzer E. H., Benková E., et al. . (2013). An auxin transport mechanism restricts positive orthogravitropism in lateral roots. Curr. Biol. 23, 817–822. 10.1016/j.cub.2013.03.064 PubMed DOI

Sacks M. M., Silk W. K., Burman P. (1997). Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol. 114, 519–527. 10.1104/pp.114.2.519 PubMed DOI PMC

Samac D. A., Austin-Phillips S. (2006). Alfalfa (Medicago sativa L.), in Methods in Molecular Biology: Agrobacterium Protocols, ed Wang K. (Tonowa: Springer; ), 301–311. PubMed

Schmidt T., Pasternak T., Liu K., Blein T., Aubry-Hivet D., Dovzhenko A., et al. . (2014). The iRoCS Toolbox - 3D analysis of the plant root apical meristem at cellular resolution. Plant J. 77, 806–814. 10.1111/tpj.12429 PubMed DOI

Shaw S. L., Lucas J. (2011). Intrabundle microtubule dynamics in the Arabidopsis cortical array. Cytoskeleton 68, 56–67. 10.1002/cm.20495 PubMed DOI

Sieberer B. J., Timmers A. C., Emons A. M. (2005). Nod factors alter the microtubule cytoskeleton in Medicago truncatula root hairs to allow root hair reorientation. Mol. Plant Microbe. Interact. 18, 1195–1204. 10.1094/MPMI-18-1195 PubMed DOI

Sieberer B. J., Timmers A. C., Lhuissier F. G., Emons A. M. (2002). Endoplasmic microtubules configure the subapical cytoplasm and are required for fast growth of Medicago truncatula root hairs. Plant Physiol. 130, 977–988. 10.1104/pp.004267 PubMed DOI PMC

Smertenko A. P., Chang H.-Y., Sonobe S., Fenyk S. I., Weingartner M., Bögre L., et al. (2006). Control of the MAP65-1 interaction with microtubules through the cell cycle. J. Cell. Sci. 119, 3227–3237. 10.1242/jcs.03051 PubMed DOI

Smertenko A., Assaad F., Baluška F., Bezanilla M., Buschmann H., Drakakaki G., et al. . (2017). Plant cytokinesis: terminology for structures and processes. Trends Cell Biol. [Epub ahead of print]. 10.1016/j.tcb.2017.08.008 PubMed DOI

Stelzer E. H. K. (2015). Light-sheet fluorescence microscopy for quantitative biology. Nat. Methods 12, 23–26. 10.1038/nmeth.3219 PubMed DOI

Timmers A. C. J., Valloton P., Heym C., Menzel D. (2007). Microtubule dynamics in root hairs of Medicago truncatula. Eur. J. Cell Biol. 86, 69–83. 10.1016/j.ejcb.2006.11.001 PubMed DOI

Van Damme D. (2009). Division plane determination during plant somatic cytokinesis. Curr. Opin. Plant Biol. 12, 745–751. 10.1016/j.pbi.2009.09.014 PubMed DOI

Van Damme D., Van Poucke K., Boutant E., Ritzenthaler C., Inzé D., Geelen D. (2004). In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol. 136, 3956–3967. 10.1104/pp.104.051623 PubMed DOI PMC

Van Damme D., Vanstraelen M., Geelen D. (2007). Cortical division zone establishment in plant cells. Trends Plant Sci. 12, 458–464. 10.1016/j.tplants.2007.08.011 PubMed DOI

Vermeer J. E. M., von Wangenheim D., Barberon M., Lee Y., Stelzer E. H. K., Maizel A., et al. . (2014). A spatial accommodation by neighboring cells is required for organ initiation in Arabidopsis. Science 343, 178–183. 10.1126/science.1245871 PubMed DOI

Voigt B., Timmers A. C. J., Šamaj J., Müller J., Baluška F., Menzel D. (2005). GFP–FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings. Eur. J. Cell Biol. 84, 595–608. 10.1016/j.ejcb.2004.11.011 PubMed DOI

von Wangenheim D., Fangerau J., Schmitz A., Smith R. S., Leitte H., Stelzer E. H. K., et al. . (2016). Rules and self-organizing properties of post-embryonic plant organ cell division patterns. Curr. Biol. 26, 1–11. 10.1016/j.cub.2015.12.047 PubMed DOI

Vos J. W., Dogterom M., Emons A. M. (2004). Microtubules become more dynamic but not shorter during preprophase band formation: a possible “search-and-capture” mechanism for microtubule translocation. Cell Motil. Cytoskeleton 57, 246–258. 10.1002/cm.10169 PubMed DOI

Yang X., Dong G., Palaniappan K., Mi G., Baskin T. I. (2017). Temperature-compensated cell production rate and elongation zone length in the root of Arabidopsis thaliana. Plant Cell Environ. 40, 264–276. 10.1111/pce.12855 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace