• This record comes from PubMed

Dynamics and organization of cortical microtubules as revealed by superresolution structured illumination microscopy

. 2014 May ; 165 (1) : 129-48. [epub] 20140331

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Plants employ acentrosomal mechanisms to organize cortical microtubule arrays essential for cell growth and differentiation. Using structured illumination microscopy (SIM) adopted for the optimal documentation of Arabidopsis (Arabidopsis thaliana) hypocotyl epidermal cells, dynamic cortical microtubules labeled with green fluorescent protein fused to the microtubule-binding domain of the mammalian microtubule-associated protein MAP4 and with green fluorescent protein-fused to the alpha tubulin6 were comparatively recorded in wild-type Arabidopsis plants and in the mitogen-activated protein kinase mutant mpk4 possessing the former microtubule marker. The mpk4 mutant exhibits extensive microtubule bundling, due to increased abundance and reduced phosphorylation of the microtubule-associated protein MAP65-1, thus providing a very useful genetic tool to record intrabundle microtubule dynamics at the subdiffraction level. SIM imaging revealed nano-sized defects in microtubule bundling, spatially resolved microtubule branching and release, and finally allowed the quantification of individual microtubules within cortical bundles. Time-lapse SIM imaging allowed the visualization of subdiffraction, short-lived excursions of the microtubule plus end, and dynamic instability behavior of both ends during free, intrabundle, or microtubule-templated microtubule growth and shrinkage. Finally, short, rigid, and nondynamic microtubule bundles in the mpk4 mutant were observed to glide along the parent microtubule in a tip-wise manner. In conclusion, this study demonstrates the potential of SIM for superresolution time-lapse imaging of plant cells, showing unprecedented details accompanying microtubule dynamic organization.

See more in PubMed

Allen JR, Ross ST, Davidson MW. (2014) Structured illumination microscopy for superresolution. ChemPhysChem 15: 566–576 10.1002/cphc.201301086 PubMed DOI

Allen RD, Allen NS, Travis JL. (1981) Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticonaris. Cell Motil 1: 291–302 PubMed

Beck M, Komis G, Müller J, Menzel D, Šamaj J. (2010) Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22: 755–771 PubMed PMC

Binarová P, Cenklová V, Procházková J, Doskocilová A, Volc J, Vrlík M, Bögre L. (2006) γ-Tubulin is essential for acentrosomal microtubule nucleation and coordination of late mitotic events in Arabidopsis. Plant Cell 18: 1199–1212 PubMed PMC

Buschmann H, Sambade A, Pesquet E, Calder G, Lloyd CW. (2010) Microtubule dynamics in plant cells. Methods Cell Biol 97: 373–400 PubMed

Chan J, Sambade A, Calder G, Lloyd C. (2009) Arabidopsis cortical microtubules are initiated along, as well as branching from, existing microtubules. Plant Cell 21: 2298–2306 PubMed PMC

Clough SJ, Bent AF. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743 PubMed

Cox S, Jones GE. (2013) Imaging cells at the nanoscale. Int J Biochem Cell Biol 45: 1669–1678 PubMed

Desai A, Mitchison TJ. (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13: 83–117 PubMed

Dhonukshe P, Gadella TW., Jr (2003) Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein-CLIP170 microtubule plus-end labeling. Plant Cell 15: 597–611 PubMed PMC

Dixit R, Cyr R. (2004) Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. Plant Cell 16: 3274–3284 PubMed PMC

Dogterom M, Surrey T. (2013) Microtubule organization in vitro. Curr Opin Cell Biol 25: 23–29 PubMed

Ehrhardt DW. (2008) Straighten up and fly right: microtubule dynamics and organization of non-centrosomal arrays in higher plants. Curr Opin Cell Biol 20: 107–116 PubMed

Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MG. (2012) Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc Natl Acad Sci USA 109: 5311–5315 PubMed PMC

Fishel EA, Dixit R. (2013) Role of nucleation in cortical microtubule array organization: variations on a theme. Plant J 75: 270–277 PubMed

Fitzgibbon J, Beck M, Zhou J, Faulkner C, Robatzek S, Oparka K. (2013) A developmental framework for complex plasmodesmata formation revealed by large-scale imaging of the Arabidopsis leaf epidermis. Plant Cell 25: 57–70 PubMed PMC

Fitzgibbon J, Bell K, King E, Oparka K. (2010) Super-resolution imaging of plasmodesmata using three-dimensional structured illumination microscopy. Plant Physiol 153: 1453–1463 PubMed PMC

Gardner MK, Zanic M, Howard J. (2013) Microtubule catastrophe and rescue. Curr Opin Cell Biol 25: 14–22 PubMed PMC

Gustafsson MG. (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198: 82–87 PubMed

Hell SW. (2007) Far-field optical nanoscopy. Science 316: 1153–1158 PubMed

Hensel M, Klingauf J, Piehler J. (2013) Imaging the invisible: resolving cellular microcompartments by superresolution microscopy techniques. Biol Chem 394: 1097–1113 PubMed

Kamiyama D, Huang B. (2012) Development in the STORM. Dev Cell 23: 1103–1110 PubMed PMC

Kang BH. (2010) Electron microscopy and high-pressure freezing of Arabidopsis. Methods Cell Biol 96: 259–283 PubMed

Kirik A, Ehrhardt DW, Kirik V. (2012) TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24: 1158–1170 PubMed PMC

Kleine-Vehn J, Wabnik K, Martinière A, Łangowski Ł, Willig K, Naramoto S, Leitner J, Tanaka H, Jakobs S, Robert S, et al. (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7: 540 10.1038/msb.2011.72 PubMed DOI PMC

Kner P, Chhun BB, Griffis ER, Winoto L, Gustafsson MG. (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6: 339–342 PubMed PMC

Kutschera U. (2008) The growing outer epidermal wall: design and physiological role of a composite structure. Ann Bot (Lond) 101: 615–621 PubMed PMC

Leung BO, Chou KC. (2011) Review of super-resolution fluorescence microscopy for biology. Appl Spectrosc 65: 967–980 PubMed

Li W, Moriwaki T, Tani T, Watanabe T, Kaibuchi K, Goshima G. (2012) Reconstitution of dynamic microtubules with Drosophila XMAP215, EB1, and Sentin. J Cell Biol 199: 849–862 PubMed PMC

Liesche J, Ziomkiewicz I, Schulz A. (2013) Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells. BMC Plant Biol 13: 226 10.1186/1471-2229-13-226 PubMed DOI PMC

Linnik O, Liesche J, Tilsner J, Oparka KJ. (2013) Unraveling the structure of viral replication complexes at super-resolution. Front Plant Sci 4: 6 10.3389/fpls.2013.00006 PubMed DOI PMC

Lucas JR, Shaw SL. (2012) MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J 71: 454–463 PubMed

Marc J, Granger CL, Brincat J, Fisher DD, Kao T, McCubbin AG, Cyr RJ. (1998) A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells. Plant Cell 10: 1927–1940 PubMed PMC

Martin-Fernandez ML, Tynan CJ, Webb SE. (2013) A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252: 16–22 PubMed PMC

Mattheyses AL, Simon SM, Rappoport JZ. (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123: 3621–3628 PubMed PMC

Moore RC, Zhang M, Cassimeris L, Cyr RJ. (1997) In vitro assembled plant microtubules exhibit a high state of dynamic instability. Cell Motil Cytoskeleton 38: 278–286 PubMed

Müller S, Wright AJ, Smith LG. (2009) Division plane control in plants: new players in the band. Trends Cell Biol 19: 180–188 PubMed

Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M. (2005) Microtubule-dependent microtubule nucleation based on recruitment of gamma-tubulin in higher plants. Nat Cell Biol 7: 961–968 PubMed

Nakamura M, Ehrhardt DW, Hashimoto T. (2010) Microtubule and katanin-dependent dynamics of microtubule nucleation complexes in the acentrosomal Arabidopsis cortical array. Nat Cell Biol 12: 1064–1070 PubMed

Nakamura M, Hashimoto T. (2009) A mutation in the Arabidopsis gamma-tubulin-containing complex causes helical growth and abnormal microtubule branching. J Cell Sci 122: 2208–2217 PubMed

Portran D, Zoccoler M, Gaillard J, Stoppin-Mellet V, Neumann E, Arnal I, Martiel JL, Vantard M. (2013) MAP65/Ase1 promote microtubule flexibility. Mol Biol Cell 24: 1964–1973 PubMed PMC

Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG. (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109: E135–E143 PubMed PMC

Rosero A, Zárský V, Cvrčková F. (2014) Visualizing and quantifying the in vivo structure and dynamics of the Arabidopsis cortical cytoskeleton using CLSM and VAEM. Methods Mol Biol 1080: 87–97 PubMed

Salmon ED, Waterman CM. (2011) How we discovered fluorescent speckle microscopy. Mol Biol Cell 22: 3940–3942 PubMed PMC

Šamajová O, Komis G, Šamaj J. (2013) Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci 18: 140–148 PubMed

Sasabe M, Kosetsu K, Hidaka M, Murase A, Machida Y. (2011) Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal Behav 6: 743–747 PubMed PMC

Sengupta P, Van Engelenburg S, Lippincott-Schwartz J. (2012) Visualizing cell structure and function with point-localization superresolution imaging. Dev Cell 23: 1092–1102 PubMed PMC

Shao L, Kner P, Rego EH, Gustafsson MG. (2011) Super-resolution 3D microscopy of live whole cells using structured illumination. Nat Methods 8: 1044–1046 PubMed

Shaw SL, Ehrhardt DW. (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol 64: 351–375 PubMed

Shaw SL, Kamyar R, Ehrhardt DW. (2003) Sustained microtubule treadmilling in Arabidopsis cortical arrays. Science 300: 1715–1718 PubMed

Shaw SL, Lucas J. (2011) Intrabundle microtubule dynamics in the Arabidopsis cortical array. Cytoskeleton (Hoboken) 68: 56–67 PubMed

Small AR, Parthasarathy R. (2014) Superresolution localization methods. Annu Rev Phys Chem 65: 107–125 PubMed

Smertenko AP, Chang HY, Sonobe S, Fenyk SI, Weingartner M, Bögre L, Hussey PJ. (2006) Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J Cell Sci 119: 3227–3237 PubMed

Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ. (2004) The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16: 2035–2047 PubMed PMC

Smertenko AP, Kaloriti D, Chang HY, Fiserova J, Opatrny Z, Hussey PJ. (2008) The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20: 3346–3358 PubMed PMC

Smertenko AP, Piette B, Hussey PJ. (2011) The origin of phragmoplast asymmetry. Curr Biol 21: 1924–1930 PubMed

Song H, Golovkin M, Reddy AS, Endow SA. (1997) In vitro motility of AtKCBP, a calmodulin-binding kinesin protein of Arabidopsis. Proc Natl Acad Sci USA 94: 322–327 PubMed PMC

Stoppin-Mellet V, Fache V, Portran D, Martiel JL, Vantard M. (2013) MAP65 coordinate microtubule growth during bundle formation. PLoS ONE 8: e56808 10.1371/journal.pone.0056808 PubMed DOI PMC

Stoppin-Mellet V, Gaillard J, Timmers T, Neumann E, Conway J, Vantard M. (2007) Arabidopsis katanin binds microtubules using a multimeric microtubule-binding domain. Plant Physiol Biochem 45: 867–877 PubMed

Tiwari DK, Nagai T. (2013) Smart fluorescent proteins: innovation for barrier-free superresolution imaging in living cells. Dev Growth Differ 55: 491–507 PubMed

Tulin A, McClerklin S, Huang Y, Dixit R. (2012) Single-molecule analysis of the microtubule cross-linking protein MAP65-1 reveals a molecular mechanism for contact-angle-dependent microtubule bundling. Biophys J 102: 802–809 PubMed PMC

Vallotton P, Ponti A, Waterman-Storer CM, Salmon ED, Danuser G. (2003) Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study. Biophys J 85: 1289–1306 PubMed PMC

Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inzé D, Geelen D. (2004) In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136: 3956–3967 PubMed PMC

Verdaasdonk JS, Stephens AD, Haase J, Bloom K. (2014) Bending the rules: widefield microscopy and the Abbe limit of resolution. J Cell Physiol 229: 132–138 PubMed PMC

Vizcay-Barrena G, Webb SE, Martin-Fernandez ML, Wilson ZA. (2011) Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). J Exp Bot 62: 5419–5428 PubMed PMC

Vos JW, Dogterom M, Emons AM. (2004) Microtubules become more dynamic but not shorter during preprophase band formation: a possible “search-and-capture” mechanism for microtubule translocation. Cell Motil Cytoskeleton 57: 246–258 PubMed

Wan Y, Ash WM, III, Fan L, Hao H, Kim MK, Lin J. (2011) Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods 7: 27 10.1186/1746-4811-7-27 PubMed DOI PMC

Wang E, Babbey CM, Dunn KW. (2005) Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. J Microsc 218: 148–159 PubMed

Wasteneys GO, Ambrose JC. (2009) Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol 19: 62–71 PubMed

Waterman-Storer CM. (1998) Microtubules and microscopes: how the development of light microscopic imaging technologies has contributed to discoveries about microtubule dynamics in living cells. Mol Biol Cell 9: 3263–3271 PubMed PMC

Waterman-Storer CM, Salmon ED. (1997) Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 139: 417–434 PubMed PMC

Waterman-Storer CM, Salmon ED. (1998) How microtubules get fluorescent speckles. Biophys J 75: 2059–2069 PubMed PMC

Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW. (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320: 246–249 PubMed

Wightman R, Turner SR. (2007) Severing at sites of microtubule crossover contributes to microtubule alignment in cortical arrays. Plant J 52: 742–751 PubMed

Zanic M, Widlund PO, Hyman AA, Howard J. (2013) Synergy between XMAP215 and EB1 increases microtubule growth rates to physiological levels. Nat Cell Biol 15: 688–693 PubMed

Zhang D, Wadsworth P, Hepler PK. (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87: 8820–8824 PubMed PMC

Zhang H, Dawe RK. (2011) Mechanisms of plant spindle formation. Chromosome Res 19: 335–344 PubMed

Zucker RM, Price OT. (1999) Practical confocal microscopy and the evaluation of system performance. Methods 18: 447–458 PubMed

Newest 20 citations...

See more in
Medvik | PubMed

GR24, A Synthetic Strigolactone Analog, and Light Affect the Organization of Cortical Microtubules in Arabidopsis Hypocotyl Cells

. 2021 ; 12 () : 675981. [epub] 20210707

Spatiotemporal Pattern of Ectopic Cell Divisions Contribute to Mis-Shaped Phenotype of Primary and Lateral Roots of katanin1 Mutant

. 2020 ; 11 () : 734. [epub] 20200609

Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics

. 2020 ; 11 () : 693. [epub] 20200605

Multicolour three dimensional structured illumination microscopy of immunolabeled plant microtubules and associated proteins

. 2019 ; 15 () : 22. [epub] 20190309

Advances in Imaging Plant Cell Dynamics

. 2018 Jan ; 176 (1) : 80-93. [epub] 20171122

Katanin Effects on Dynamics of Cortical Microtubules and Mitotic Arrays in Arabidopsis thaliana Revealed by Advanced Live-Cell Imaging

. 2017 ; 8 () : 866. [epub] 20170524

Preparation of plants for developmental and cellular imaging by light-sheet microscopy

. 2015 Aug ; 10 (8) : 1234-47. [epub] 20150723

Superresolution live imaging of plant cells using structured illumination microscopy

. 2015 Aug ; 10 (8) : 1248-63. [epub] 20150723

Endosomal Interactions during Root Hair Growth

. 2015 ; 6 () : 1262. [epub] 20160129

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...