Phosphorylation of Plant Microtubule-Associated Proteins During Cell Division

. 2019 ; 10 () : 238. [epub] 20190311

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30915087

Progression of mitosis and cytokinesis depends on the reorganization of cytoskeleton, with microtubules driving the segregation of chromosomes and their partitioning to two daughter cells. In dividing plant cells, microtubules undergo global reorganization throughout mitosis and cytokinesis, and with the aid of various microtubule-associated proteins (MAPs), they form unique systems such as the preprophase band (PPB), the acentrosomal mitotic spindle, and the phragmoplast. Such proteins include nucleators of de novo microtubule formation, plus end binding proteins involved in the regulation of microtubule dynamics, crosslinking proteins underlying microtubule bundle formation and members of the kinesin superfamily with microtubule-dependent motor activities. The coordinated function of such proteins not only drives the continuous remodeling of microtubules during mitosis and cytokinesis but also assists the positioning of the PPB, the mitotic spindle, and the phragmoplast, affecting tissue patterning by controlling cell division plane (CDP) orientation. The affinity and the function of such proteins is variably regulated by reversible phosphorylation of serine and threonine residues within the microtubule binding domain through a number of protein kinases and phosphatases which are differentially involved throughout cell division. The purpose of the present review is to provide an overview of the function of protein kinases and protein phosphatases involved in cell division regulation and to identify cytoskeletal substrates relevant to the progression of mitosis and cytokinesis and the regulation of CDP orientation.

Zobrazit více v PubMed

Agueci F., Rutten T., Demidov D., Houben A. (2012). Arabidopsis AtNek2 kinase is essential and associates with microtubules. Plant Mol. Biol. Report. 30, 339–348. 10.1007/s11105-011-0342-1 DOI

Ambrose C., Allard J. F., Cytrynbaum E. N., Wasteneys G. O. (2011). A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat. Commun. 2430. 10.1038/ncomms1444, PMID: PubMed DOI PMC

Ambrose J. C., Shoji T., Kotzer A. M., Pighin J. A., Wasteneys G. O. (2007). The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19, 2763–2775. 10.1105/tpc.107.053777, PMID: PubMed DOI PMC

Ayaydin F., Vissi E., Mészáros T., Miskolczi P., Kovács I., Fehér A., et al. . (2000). Inhibition of serine/threonine-specific protein phosphatases causes premature activation of cdc2MsF kinase at G2/M transition and early mitotic microtubule organisation in alfalfa. Plant J. 23, 85–96. 10.1046/j.1365-313x.2000.00798.x, PMID: PubMed DOI

Ban Y., Kobayashi Y., Hara T., Hamada T., Hashimoto T., Takeda S., et al. . (2013). α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. Plant Cell Physiol. 54, 848–858. 10.1093/pcp/pct065, PMID: PubMed DOI

Beck M., Komis G., Müller J., Menzel D., Šamaj J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22, 755–771. 10.1105/tpc.109.071746, PMID: PubMed DOI PMC

Bergmann D. C., Lukowitz W., Somerville C. R. (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science 304, 1494–1497. 10.1126/science.1096014, PMID: PubMed DOI

Bhaskara G. B., Wen T. -N., Nguyen T. T., Verslues P. E. (2017). Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell 29, 169–191. 10.1105/tpc.16.00847, PMID: PubMed DOI PMC

Binarova P., Cihalikova C., Dolezel J., Gilmer S., Fowke L. C. (1996). Actin distribution in somatic embryos and embryogenic protoplasts of white spruce (Picea glauca). In Vitro-Plant 32, 59–65. 10.1007/BF02823132 DOI

Bögre L., Calderini O., Binarova P., Mattauch M., Till S., Kiegerl S., et al. . (1999). A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11, 101–114. 10.1105/tpc.11.1.101, PMID: PubMed DOI PMC

Boruc J., Weimer A. K., Stoppin-Mellet V., Mylle E., Kosetsu K., Cedeño C., et al. . (2017). Phosphorylation of MAP65-1 by Arabidopsis Aurora kinases is required for efficient cell cycle progression. Plant Physiol. 173, 582–599. 10.1104/pp.16.01602, PMID: PubMed DOI PMC

Boyer F., Simon R. (2015). Asymmetric cell divisions constructing Arabidopsis stem cell niches: the emerging role of protein phosphatases. Plant Biol. 17, 935–945. 10.1111/plb.12352, PMID: PubMed DOI

Brieño-Enríquez M. A., Moak S. L., Holloway J. K., Cohen P. E. (2017). NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between α-Adducin and Myosin X. PLoS One 12e0185780. 10.1371/journal.pone.0185780, PMID: PubMed DOI PMC

Brumbarova T., Ivanov R. (2016). Differential gene expression and protein phosphorylation as factors regulating the state of the Arabidopsis SNX1 protein complexes in response to environmental stimuli. Front. Plant Sci. 71456. 10.3389/fpls.2016.01456, PMID: PubMed DOI PMC

Buschmann H., Zachgo S. (2016). The evolution of cell division: from streptophyte algae to land plants. Trends Plant Sci. 21, 872–883. 10.1016/j.tplants.2016.07.004, PMID: PubMed DOI

Buschmann H., Chan J., Sanchez-Pulido L., Andrade-Navarro M. A., Doonan J. H., Lloyd C. W. (2006). Microtubule-associated AIR9 recognizes the cortical division site at preprophase and cell-plate insertion. Curr. Biol. 16, 1938–1943. 10.1016/j.cub.2006.08.028, PMID: PubMed DOI

Buschmann H., Dols J., Kopischke S., Peña E. J., Andrade-Navarro M. A., Heinlein M., et al. (2015). Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain. J. Cell Sci. 128, 2033–2046. 10.1242/jcs.156570 PubMed DOI

Caillaud M. -C., Lecomte P., Jammes F., Quentin M., Pagnotta S., Andrio E., et al. . (2008). MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20, 423–437. 10.1105/tpc.107.057422, PMID: PubMed DOI PMC

Calderini O., Bogre L., Vicente O., Binarova P., Heberle-Bors E., Wilson C. (1998). A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J. Cell Sci. 111, 3091–3100. PubMed

Calderini O., Glab N., Bergounioux C., Heberle-Bors E., Wilson C. (2001). A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J. Biol. Chem. 276, 18139–18145. 10.1074/jbc.M010621200, PMID: PubMed DOI

Camilleri C., Azimzadeh J., Pastuglia M., Bellini C., Grandjean O., Bouchez D. (2002). The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14, 833–845. 10.1105/tpc.010402, PMID: PubMed DOI PMC

Castro A., Arlot-Bonnemains Y., Vigneron S., Labbé J. -C., Prigent C., Lorca T. (2002a). APC/fizzy-related targets Aurora-A kinase for proteolysis. EMBO Rep. 3, 457–462. 10.1093/embo-reports/kvf095 PubMed DOI PMC

Castro A., Vigneron S., Bernis C., Labbé J. -C., Prigent C., Lorca T. (2002b). The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep. 3, 1209–1214. 10.1093/embo-reports/kvf241 PubMed DOI PMC

Chan J., Jensen C. G., Jensen L. C. W., Bush M., Lloyd C. W. (1999). The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc. Natl. Acad. Sci. 96, 14931–14936. 10.1073/pnas.96.26.14931 PubMed DOI PMC

Chang H. -Y., Smertenko A. P., Igarashi H., Dixon D. P., Hussey P. J. (2005). Dynamic interaction of NtMAP65-1a with microtubules in vivo. J. Cell Sci. 118, 3195–3201. 10.1242/jcs.02433, PMID: PubMed DOI

Chang-Jie J., Sonobe S. (1993). Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J. Cell Sci. 105, 891–901. PubMed

Chen H. -W., Persson S., Grebe M., McFarlane H. E. (2018). Cellulose synthesis during cell plate assembly. Physiol. Plant. 164, 17–26. 10.1111/ppl.12703, PMID: PubMed DOI

Cohen P. (2000). The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem. Sci. 25, 596–601. 10.1016/S0968-0004(00)01712-6, PMID: PubMed DOI

Costa S. (2017). Are division plane determination and cell-cycle progression coordinated? New Phytol. 213, 16–21. 10.1111/nph.14261, PMID: PubMed DOI

Day I. S., Miller C., Golovkin M., Reddy A. S. (2000). Interaction of a kinesin-like calmodulin-binding protein with a protein kinase. J. Biol. Chem. 275, 13737–13745. 10.1074/jbc.275.18.13737, PMID: PubMed DOI

de Keijzer J., Kieft H., Ketelaar T., Goshima G., Janson M. E. (2017). Shortening of microtubule overlap regions defines membrane delivery sites during plant cytokinesis. Curr. Biol. 27, 514–520. 10.1016/j.cub.2016.12.043 PubMed DOI

Demidov D., Damme D. V., Geelen D., Blattner F. R., Houben A. (2005). Identification and dynamics of two classes of Aurora-like kinases in Arabidopsis and other plants. Plant Cell 17, 836–848. 10.1105/tpc.104.029710, PMID: PubMed DOI PMC

Dhonukshe P., Gadella T. W. J. (2003). Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein–CLIP170 microtubule plus-end labeling. Plant Cell 15, 597–611. 10.1105/tpc.008961, PMID: PubMed DOI PMC

Drevensek S., Goussot M., Duroc Y., Christodoulidou A., Steyaert S., Schaefer E., et al. . (2012). The Arabidopsis TRM1–TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell. 24, 178–191. 10.1105/tpc.111.089748, PMID: PubMed DOI PMC

Eng R. C., Halat L. S., Livingston S. J., Sakai T., Motose H., Wasteneys G. O. (2017). The ARM domain of ARMADILLO-REPEAT KINESIN 1 is not required for microtubule catastrophe but can negatively regulate NIMA-RELATED KINASE 6 in Arabidopsis thaliana. Plant Cell Physiol. 58, 1350–1363. 10.1093/pcp/pcx070, PMID: PubMed DOI

Enos S. J., Dressler M., Ferreira Gomes B., Hyman A. A., Woodruff J. B. (2017). Phosphatase PP2A and microtubule pulling forces disassemble centrosomes during mitotic exit. Biol. Open. 10.1242/bio.029777 PubMed DOI PMC

Farkas I., Dombrádi V., Miskei M., Szabados L., Koncz C. (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci. 12, 169–176. 10.1016/j.tplants.2007.03.003 PubMed DOI

Fujita S., Pytela J., Hotta T., Kato T., Hamada T., Akamatsu R., et al. (2013). An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr. Biol. 23, 1969–1978. 10.1016/j.cub.2013.08.006 PubMed DOI

Gaillard J., Neumann E., Van Damme D., Stoppin-Mellet V., Ebel C., Barbier E., et al. (2008). Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol. Biol. Cell 19, 4534–4544. 10.1091/mbc.e08-04-0341 PubMed DOI PMC

Herrmann A., Livanos P., Lipka E., Gadeyne A., Hauser M. T., Van Damme D., et al. . (2018). Dual localized kinesin-12 POK2 plays multiple roles during cell division and interacts with MAP65-3. EMBO Rep. 19e46085. 10.15252/embr.201846085, PMID: PubMed DOI PMC

Hoshi M., Ohta K., Gotoh Y., Mori A., Murofushi H., Sakai H., et al. (1992). Mitogen-activated-protein-kinase-catalyzed phosphorylation of microtubule-associated proteins, microtubule-associated protein 2 and microtubule-associated protein 4, induces an alteration in their function. Eur. J. Biochem. 203, 43–52. PubMed

Humphrey T. V., Haasen K. E., Aldea-Brydges M. G., Sun H., Zayed Y., Indriolo E., et al. . (2015). PERK-KIPK-KCBP signalling negatively regulates root growth in Arabidopsis thaliana. J. Exp. Bot. 66, 71–83. 10.1093/jxb/eru390, PMID: PubMed DOI PMC

Hussey P. J., Hawkins T. J., Igarashi H., Kaloriti D., Smertenko A. (2002). The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol. Biol. 50, 915–924. 10.1023/A:1021236307508, PMID: PubMed DOI

Kawabe A., Matsunaga S., Nakagawa K., Kurihara D., Yoneda A., Hasezawa S., et al. . (2005). Characterization of plant Aurora kinases during mitosis. Plant Mol. Biol. 58, 1–13. 10.1007/s11103-005-3454-x, PMID: PubMed DOI

Kawamura E. (2005). MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol. 140, 102–114. 10.1104/pp.105.069989, PMID: PubMed DOI PMC

Kirik A., Ehrhardt D. W., Kirik V. (2012). TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24, 1158–1170. 10.1105/tpc.111.094367, PMID: PubMed DOI PMC

Kohoutová L., Kourová H., Nagy S. K., Volc J., Halada P., Mészáros T., et al. . (2015). The Arabidopsis mitogen-activated protein kinase 6 is associated with γ-tubulin on microtubules, phosphorylates EB1c and maintains spindle orientation under nitrosative stress. New Phytol. 207, 1061–1074. 10.1111/nph.13501, PMID: PubMed DOI

Komaki S., Abe T., Coutuer S., Inzé D., Russinova E., Hashimoto T. (2010). Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J. Cell Sci. 123, 451–459. 10.1242/jcs.062703, PMID: PubMed DOI

Komis G., Luptovčiak I., Ovečka M., Samakovli D., Šamajová O., Šamaj J. (2017). Katanin effects on dynamics of cortical microtubules and mitotic arrays in Arabidopsis thaliana revealed by advanced live-cell imaging. Front. Plant Sci. 8866. 10.3389/fpls.2017.00866 PubMed DOI PMC

Komis G., Novák D., Ovečka M., Šamajová O., Šamaj J. (2018). Advances in imaging plant cell dynamics. Plant Physiol. 176, 80–93. 10.1104/pp.17.00962 PubMed DOI PMC

Kosetsu K., Matsunaga S., Nakagami H., Colcombet J., Sasabe M., Soyano T., et al. . (2010). The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22, 3778–3790. 10.1105/tpc.110.077164, PMID: PubMed DOI PMC

Krysan P. J., Jester P. J., Gottwald J. R., Sussman M. R. (2002). An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14, 1109–1120. 10.1105/tpc.001164, PMID: PubMed DOI PMC

Kwon Y. -G., Lee S. Y., Choi Y., Greengard P., Nairn A. C. (1997). Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc. Natl. Acad. Sci. 94, 2168–2173. 10.1073/pnas.94.6.2168 PubMed DOI PMC

Lee J., Das A., Yamaguchi M., Hashimoto J., Tsutsumi N., Uchimiya H., et al. . (2003). Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. Plant J. 34, 417–425. 10.1046/j.1365-313X.2003.01736.x, PMID: PubMed DOI

Li H., Sun B., Sasabe M., Deng X., Machida Y., Lin H., et al. . (2017). Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. New Phytol. 215, 187–201. 10.1111/nph.14532, PMID: PubMed DOI

Lin F., Krishnamoorthy P., Schubert V., Hause G., Heilmann M., Heilmann I. (2019). A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J. (In Press). 10.15252/embj.2018100303, PMID: PubMed DOI PMC

Lipka E., Gadeyne A., Stöckle D., Zimmermann S., Jaeger G. D., Ehrhardt D. W., et al. . (2014). The phragmoplast-orienting kinesin-12 class proteins translate the positional information of the preprophase band to establish the cortical division zone in Arabidopsis thaliana. Plant Cell. 26, 2617–2632. 10.1105/tpc.114.124933, PMID: PubMed DOI PMC

Lipka E., Herrmann A., Mueller S. (2015). Mechanisms of plant cell division. Wiley Interdiscip. Rev. Dev. Biol. 4, 391–405. 10.1002/wdev.186, PMID: PubMed DOI

López-Bucio J. S., Dubrovsky J. G., Raya-González J., Ugartechea-Chirino Y., López-Bucio J., Luna-Valdez D., et al. . (2014). Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. J. Exp. Bot. 65, 169–183. 10.1093/jxb/ert368, PMID: PubMed DOI PMC

Loughlin R., Wilbur J. D., McNally F. J., Nédélec F. J., Heald R. (2011). Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147, 1397–1407. 10.1016/j.cell.2011.11.014, PMID: PubMed DOI PMC

Lucas J. R., Shaw S. L. (2012). MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J. 71, 454–463. 10.1111/j.1365-313X.2012.05002.x, PMID: PubMed DOI

Lukowitz W., Roeder A., Parmenter D., Somerville C. (2004). A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116, 109–119. 10.1016/S0092-8674(03)01067-5, PMID: PubMed DOI

Mao T., Jin L., Li H., Liu B., Yuan M. (2005). Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol. 138, 654–662. 10.1104/pp.104.052456 PubMed DOI PMC

Marcus A. I., Dixit R., Cyr R. J. (2005). Narrowing of the preprophase microtubule band is not required for cell division plane determination in cultured plant cells. Protoplasma 226, 169–174. 10.1007/s00709-005-0119-1, PMID: PubMed DOI

McClinton R. S., Sung Z. R. (1997). Organization of cortical microtubules at the plasma membrane in Arabidopsis. Planta 201, 252–260. 10.1007/s004250050064, PMID: PubMed DOI

Meskiene I., Bogre L., Glaser W., Balog J., Brandstotter M., Zwerger K., et al. (1998). MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc. Natl. Acad. Sci. 95, 1938–1943. 10.1073/pnas.95.4.1938 PubMed DOI PMC

Motose H., Hamada T., Yoshimoto K., Murata T., Hasebe M., Watanabe Y., et al. (2011). NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana. Plant J. 67, 993–1005. 10.1111/j.1365-313X.2011.04652.x PubMed DOI

Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. . (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61, 234–248. 10.1111/j.1365-313X.2009.04046.x, PMID: PubMed DOI

Müller S., Han S., Smith L. G. (2006). Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr. Biol. 16, 888–894. 10.1016/j.cub.2006.03.034, PMID: PubMed DOI

Müller S., Smertenko A., Wagner V., Heinrich M., Hussey P. J., Hauser M. -T. (2004). The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr. Biol. 14, 412–417. 10.1016/j.cub.2004.02.032, PMID: PubMed DOI PMC

Murata T., Sano T., Sasabe M., Nonaka S., Higashiyama T., Hasezawa S., et al. (2013). Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat. Commun. 41967. 10.1038/ncomms2967 PubMed DOI PMC

Naoi K., Hashimoto T. (2004). A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16, 1841–1853. 10.1105/tpc.021865, PMID: PubMed DOI PMC

Nishihama R. (2001). The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev. 15, 352–363. 10.1101/gad.863701, PMID: PubMed DOI PMC

Nishihama R., Soyano T., Ishikawa M., Araki S., Tanaka H., Asada T., et al. . (2002). Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87–99. 10.1016/S0092-8674(02)00691-8, PMID: PubMed DOI

O’Connell M. J., Krien M. J. E., Hunter T. (2003). Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol. 13, 221–228. 10.1016/S0962-8924(03)00056-4, PMID: PubMed DOI

Oh S. A., Allen T., Kim G. J., Sidorova A., Borg M., Park S. K., et al. . (2012). Arabidopsis fused kinase and the kinesin-12 subfamily constitute a signalling module required for phragmoplast expansion. Plant J. 72, 308–319. 10.1111/j.1365-313X.2012.05077.x, PMID: PubMed DOI

Oh S. A., Johnson A., Smertenko A., Rahman D., Park S. K., Hussey P. J., et al. (2005). A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr. Biol. 15, 2107–2111. 10.1016/j.cub.2005.10.044 PubMed DOI

Ookata K., Hisanaga S., Sugita M., Okuyama A., Murofushi H., Kitazawa H., et al. . (1997). MAP4 is the in vivo substrate for CDC2 kinase in HeLa cells: identification of an M-phase specific and a cell cycle-independent phosphorylation site in MAP4. Biochemist 36, 15873–15883. 10.1021/bi971251w, PMID: PubMed DOI

Panteris E., Diannelidis B. -E., Adamakis I. -D. S. (2018). Cortical microtubule orientation in Arabidopsis thaliana root meristematic zone depends on cell division and requires severing by katanin. J. Biol. Res.Thessalon. 2512. 10.1186/s40709-018-0082-6, PMID: PubMed DOI PMC

Petrovská B., Cenklová V., Pochylová Ž., Kourová H., Doskočilová A., Plíhal O., et al. . (2012). Plant Aurora kinases play a role in maintenance of primary meristems and control of endoreduplication. New Phytol. 193, 590–604. 10.1111/j.1469-8137.2011.03989.x, PMID: PubMed DOI

Petrovská B., Jerábková H., Kohoutová L., Cenklová V., Pochylová Ž., Gelová Z., et al. . (2013). Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells. J. Exp. Bot. 64, 4575–4587. 10.1093/jxb/ert271, PMID: PubMed DOI PMC

Pickett-Heaps J. D., Northcote D. H. (1966). Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J. Cell Sci. 1, 109–120. PMID: PubMed

Qu Y., Song P., Hu Y., Jin X., Jia Q., Zhang X., et al. (2018). Regulation of stomatal movement by cortical microtubule organization in response to darkness and ABA signaling in Arabidopsis. Plant Growth Regul. 84, 467–479. 10.1007/s10725-017-0353-5 DOI

Repetto M. V., Winters M. J., Bush A., Reiter W., Hollenstein D. M., Ammerer G., et al. . (2018). CDK and MAPK synergistically regulate signaling dynamics via a shared multi-site phosphorylation region on the scaffold protein Ste5. Mol. Cell 69, 938–952.e6. 10.1016/j.molcel.2018.02.018, PMID: PubMed DOI PMC

Ritchey L., Chakrabarti R. (2014). Aurora A kinase modulates actin cytoskeleton through phosphorylation of Cofilin: implication in the mitotic process. Biochim. Biophys. Acta BBA Mol. Cell Res. 1843, 2719–2729. 10.1016/j.bbamcr.2014.07.014, PMID: PubMed DOI PMC

Rodrigues N. T. L., Lekomtsev S., Jananji S., Kriston-Vizi J., Hickson G. R. X., Baum B. (2015). Kinetochore-localized PP1–Sds22 couples chromosome segregation to polar relaxation. Nature 524, 489–492. 10.1038/nature14496, PMID: PubMed DOI

Samaj J., Baluska F., Hirt H. (2004). From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. J. Exp. Bot. 55, 189–198. 10.1093/jxb/erh012, PMID: PubMed DOI

Samaj J., Ovecka M., Hlavacka A., Lecourieux F., Meskiene I., Lichtscheidl I., et al. . (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21, 3296–3306. 10.1093/emboj/cdf349, PMID: PubMed DOI PMC

Samofalova D. O., Karpov P. A., Raevsky A. V., Blume Y. B. (2017). Protein phosphatases potentially associated with regulation of microtubules, their spatial structure reconstruction and analysis. Cell Biol. Int. 10.1002/cbin.10810, PMID: PubMed DOI

Sasabe M., Boudolf V., Veylder L. D., Inzé D., Genschik P., Machida Y. (2011a). Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants. Proc. Natl. Acad. Sci. 108, 17844–17849. 10.1073/pnas.1110174108 PubMed DOI PMC

Sasabe M., Kosetsu K., Hidaka M., Murase A., Machida Y. (2011b). Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal. Behav. 6, 743–747. 10.4161/psb.6.5.15146 PubMed DOI PMC

Schaefer E., Belcram K., Uyttewaal M., Duroc Y., Goussot M., Legland D., et al. (2017). The preprophase band of microtubules controls the robustness of division orientation in plants. Science 356, 186–189. 10.1126/science.aal3016 PubMed DOI

Schecher S., Walter B., Falkenstein M., Macher-Goeppinger S., Stenzel P., Krümpelmann K., et al. . (2017). Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer: cyclin K in prostate cancer. Int. J. Cancer 141, 1643–1653. 10.1002/ijc.30864, PMID: PubMed DOI

Sedbrook J. C., Ehrhardt D. W., Fisher S. E., Scheible W. R., Somerville C. R. (2004). The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16, 1506–1520. 10.1105/tpc.020644, PMID: PubMed DOI PMC

Shiina N., Moriguchi T., Ohta K., Gotoh Y., Nishida E. (1992). Regulation of a major microtubule-associated protein by MPF and MAP kinase. EMBO J. 11, 3977–3984. 10.1002/j.1460-2075.1992.tb05491.x, PMID: PubMed DOI PMC

Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. . (2014). Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203, 1175–1193. 10.1111/nph.12880, PMID: PubMed DOI PMC

Smertenko A. P., Chang H. -Y., Sonobe S., Fenyk S., Weingartner M., Bögre L., et al. . (2006). Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J. Cell Sci. 119, 3227–3237. 10.1242/jcs.03051, PMID: PubMed DOI

Smertenko A. P., Kaloriti D., Chang H. -Y., Fiserova J., Opatrny Z., Hussey P. J. (2008). The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20, 3346–3358. 10.1105/tpc.108.063362, PMID: PubMed DOI PMC

Smertenko A., Hewitt S. L., Jacques C. N., Kacprzyk R., Liu Y., Marcec M. J., et al. . (2018). Phragmoplast microtubule dynamics - a game of zones. J. Cell Sci. 131, 1–11. 10.1242/jcs.203331, PMID: PubMed DOI PMC

Song S. -K., Lee M. M., Clark S. E. (2006). POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 133, 4691–4698. 10.1242/dev.02652, PMID: PubMed DOI

Spinner L., Gadeyne A., Belcram K., Goussot M., Moison M., Duroc Y., et al. (2013). A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 41863. 10.1038/ncomms2831 PubMed DOI

Stals H., Bauwens S., Traas J., Montagu M. V., Engler G., Inzé D. (1997). Plant CDC2 is not only targeted to the pre-prophase band, but also co-localizes with the spindle, phragmoplast, and chromosomes. FEBS Lett. 418, 229–234. 10.1016/S0014-5793(97)01368-9, PMID: PubMed DOI

Strompen G., El Kasmi F., Richter S., Lukowitz W., Assaad F. F., Jürgens G., et al. (2002). The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr. Biol. 12, 153–158. 10.1016/S0960-9822(01)00655-8 PubMed DOI

Takahashi Y., Soyano T., Kosetsu K., Sasabe M., Machida Y. (2010). HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol. 51, 1766–1776. 10.1093/pcp/pcq135, PMID: PubMed DOI PMC

Takatani S., Ozawa S., Yagi N., Hotta T., Hashimoto T., Takahashi Y., et al. . (2017). Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization. Sci. Rep. 77826. 10.1038/s41598-017-08453-5, PMID: PubMed DOI PMC

Tang A., Shi P., Song A., Zou D., Zhou Y., Gu P., et al. . (2016). PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte. Cell Cycle 15, 1450–1461. 10.1080/15384101.2016.1175256, PMID: PubMed DOI PMC

Tomaštíková E., Demidov D., Jeřábková H., Binarová P., Houben A., Doležel J., et al. (2015). TPX2 protein of Arabidopsis activates Aurora kinase 1, but not Aurora kinase 3 in vitro. Plant Mol. Biol. Report. 33, 1988–1995. 10.1007/s11105-015-0890-x DOI

Torres-Ruiz R. A., Jurgens G. (1994). Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120, 2967–2978. PubMed

Traas J., Bellini C., Nacry P., Kronenberger J., Bouchez D., Caboche M. (1995). Normal differentiation patterns in plants lacking microtubular pre-prophase bands. Nature 375, 676–677. 10.1038/375676a0 DOI

Twell D., Park S. K., Hawkins T. J., Schubert D., Schmidt R., Smertenko A., et al. . (2002). MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat. Cell Biol. 4, 711–714. 10.1038/ncb844, PMID: PubMed DOI PMC

Umbrasaite J., Schweighofer A., Kazanaviciute V., Magyar Z., Ayatollahi Z., Unterwurzacher V., et al. . (2010). MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PLoS One 5e15357. 10.1371/journal.pone.0015357, PMID: PubMed DOI PMC

Van Damme D. V., De Rybel B., Gudesblat G., Demidov D., Grunewald W., De Smet I., et al. . (2011). Arabidopsis α Aurora kinases function in formative cell division plane orientation. Plant Cell. 23, 4013–4024. 10.1105/tpc.111.089565, PMID: PubMed DOI PMC

Varadkar P., Abbasi F., Takeda K., Dyson J. J., McCright B. (2017). PP2A-B56γ is required for an efficient spindle assembly checkpoint. Cell Cycle 16, 1210–1219. 10.1080/15384101.2017.1325042, PMID: PubMed DOI PMC

Vasquez R. J., Gard D. L., Cassimeris L. (1999). Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motil. 43, 310–321. 10.1002/(SICI)1097-0169(1999)43:4<310::AID-CM4>3.0.CO;2-J PubMed DOI

Vigneault F., Lachance D., Cloutier M., Pelletier G., Levasseur C., Séguin A. (2007). Members of the plant NIMA-related kinases are involved in organ development and vascularization in poplar, Arabidopsis and rice. Plant J. 51, 575–588. 10.1111/j.1365-313X.2007.03161.x, PMID: PubMed DOI

Walia A., Lee J. S., Wasteneys G., Ellis B. (2009). Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. Plant J. 59, 565–575. 10.1111/j.1365-313X.2009.03895.x, PMID: PubMed DOI

Walker K. L., Müller S., Moss D., Ehrhardt D. W., Smith L. G. (2007). Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr. Biol. 17, 1827–1836. 10.1016/j.cub.2007.09.063, PMID: PubMed DOI PMC

Weingartner M., Binarova P., Drykova D., Schweighofer A., David J. -P., Heberle-Bors E., et al. . (2001). Dynamic recruitment of Cdc2 to specific microtubule structures during mitosis. Plant Cell 13, 1929–1943. 10.1105/tpc.13.8.1929, PMID: PubMed DOI PMC

Whitehead E., Heald R., Wilbur J. D. (2013). N-terminal phosphorylation of p60 katanin directly regulates microtubule severing. J. Mol. Biol. 425, 214–221. 10.1016/j.jmb.2012.11.022, PMID: PubMed DOI PMC

Wong J. H., Hashimoto T. (2017). Novel Arabidopsis microtubule-associated proteins track growing microtubule plus ends. BMC Plant Biol. 1733. 10.1186/s12870-017-0987-5 PubMed DOI PMC

Wright A. J., Smith L. G. (2007). “Division plane orientation in plant cells” in Cell division control in plants plant cell monographs. (Berlin, Heidelberg: Springer; ), 33–57.

Wright A. J., Gallagher K., Smith L. G. (2009). Discordia1 and alternative discordia1 function redundantly at the cortical division site to promote preprophase band formation and orient division planes in maize. Plant Cell 21, 234–247. 10.1105/tpc.108.062810 PubMed DOI PMC

Wu S. -Z., Bezanilla M. (2014). Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. elife 3e03498. 10.7554/eLife.03498, PMID: PubMed DOI PMC

Xu X. M., Zhao Q., Rodrigo-Peiris T., Brkljacic J., He C. S., Muller S., et al. (2008). RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc. Natl. Acad. Sci. 105, 18637–18642. 10.1073/pnas.0806157105 PubMed DOI PMC

Xue Y., Ren J., Gao X., Jin C., Wen L., Yao X. (2008). GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell. Proteomics 7, 1598–1608. 10.1074/mcp.M700574-MCP200, PMID: PubMed DOI PMC

Yoon J. -T., Ahn H. -K., Pai H. -S. (2018). The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization. Planta 248, 1–17. 10.1007/s00425-018-3000-0, PMID: PubMed DOI

Zhou S., Chen Q., Li X., Li Y. (2017). MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. Plant Sci. 264, 112–121. 10.1016/j.plantsci.2017.09.004, PMID: PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...