Phosphorylation of Plant Microtubule-Associated Proteins During Cell Division
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30915087
PubMed Central
PMC6421500
DOI
10.3389/fpls.2019.00238
Knihovny.cz E-zdroje
- Klíčová slova
- microtubule-associated proteins, microtubules, mitotic spindle, phragmoplast, protein kinase, protein phosphatase,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Progression of mitosis and cytokinesis depends on the reorganization of cytoskeleton, with microtubules driving the segregation of chromosomes and their partitioning to two daughter cells. In dividing plant cells, microtubules undergo global reorganization throughout mitosis and cytokinesis, and with the aid of various microtubule-associated proteins (MAPs), they form unique systems such as the preprophase band (PPB), the acentrosomal mitotic spindle, and the phragmoplast. Such proteins include nucleators of de novo microtubule formation, plus end binding proteins involved in the regulation of microtubule dynamics, crosslinking proteins underlying microtubule bundle formation and members of the kinesin superfamily with microtubule-dependent motor activities. The coordinated function of such proteins not only drives the continuous remodeling of microtubules during mitosis and cytokinesis but also assists the positioning of the PPB, the mitotic spindle, and the phragmoplast, affecting tissue patterning by controlling cell division plane (CDP) orientation. The affinity and the function of such proteins is variably regulated by reversible phosphorylation of serine and threonine residues within the microtubule binding domain through a number of protein kinases and phosphatases which are differentially involved throughout cell division. The purpose of the present review is to provide an overview of the function of protein kinases and protein phosphatases involved in cell division regulation and to identify cytoskeletal substrates relevant to the progression of mitosis and cytokinesis and the regulation of CDP orientation.
Zobrazit více v PubMed
Agueci F., Rutten T., Demidov D., Houben A. (2012). Arabidopsis AtNek2 kinase is essential and associates with microtubules. Plant Mol. Biol. Report. 30, 339–348. 10.1007/s11105-011-0342-1 DOI
Ambrose C., Allard J. F., Cytrynbaum E. N., Wasteneys G. O. (2011). A CLASP-modulated cell edge barrier mechanism drives cell-wide cortical microtubule organization in Arabidopsis. Nat. Commun. 2430. 10.1038/ncomms1444, PMID: PubMed DOI PMC
Ambrose J. C., Shoji T., Kotzer A. M., Pighin J. A., Wasteneys G. O. (2007). The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19, 2763–2775. 10.1105/tpc.107.053777, PMID: PubMed DOI PMC
Ayaydin F., Vissi E., Mészáros T., Miskolczi P., Kovács I., Fehér A., et al. . (2000). Inhibition of serine/threonine-specific protein phosphatases causes premature activation of cdc2MsF kinase at G2/M transition and early mitotic microtubule organisation in alfalfa. Plant J. 23, 85–96. 10.1046/j.1365-313x.2000.00798.x, PMID: PubMed DOI
Ban Y., Kobayashi Y., Hara T., Hamada T., Hashimoto T., Takeda S., et al. . (2013). α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. Plant Cell Physiol. 54, 848–858. 10.1093/pcp/pct065, PMID: PubMed DOI
Beck M., Komis G., Müller J., Menzel D., Šamaj J. (2010). Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22, 755–771. 10.1105/tpc.109.071746, PMID: PubMed DOI PMC
Bergmann D. C., Lukowitz W., Somerville C. R. (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science 304, 1494–1497. 10.1126/science.1096014, PMID: PubMed DOI
Bhaskara G. B., Wen T. -N., Nguyen T. T., Verslues P. E. (2017). Protein phosphatase 2Cs and microtubule-associated stress protein 1 control microtubule stability, plant growth, and drought response. Plant Cell 29, 169–191. 10.1105/tpc.16.00847, PMID: PubMed DOI PMC
Binarova P., Cihalikova C., Dolezel J., Gilmer S., Fowke L. C. (1996). Actin distribution in somatic embryos and embryogenic protoplasts of white spruce (Picea glauca). In Vitro-Plant 32, 59–65. 10.1007/BF02823132 DOI
Bögre L., Calderini O., Binarova P., Mattauch M., Till S., Kiegerl S., et al. . (1999). A MAP kinase is activated late in plant mitosis and becomes localized to the plane of cell division. Plant Cell 11, 101–114. 10.1105/tpc.11.1.101, PMID: PubMed DOI PMC
Boruc J., Weimer A. K., Stoppin-Mellet V., Mylle E., Kosetsu K., Cedeño C., et al. . (2017). Phosphorylation of MAP65-1 by Arabidopsis Aurora kinases is required for efficient cell cycle progression. Plant Physiol. 173, 582–599. 10.1104/pp.16.01602, PMID: PubMed DOI PMC
Boyer F., Simon R. (2015). Asymmetric cell divisions constructing Arabidopsis stem cell niches: the emerging role of protein phosphatases. Plant Biol. 17, 935–945. 10.1111/plb.12352, PMID: PubMed DOI
Brieño-Enríquez M. A., Moak S. L., Holloway J. K., Cohen P. E. (2017). NIMA-related kinase 1 (NEK1) regulates meiosis I spindle assembly by altering the balance between α-Adducin and Myosin X. PLoS One 12e0185780. 10.1371/journal.pone.0185780, PMID: PubMed DOI PMC
Brumbarova T., Ivanov R. (2016). Differential gene expression and protein phosphorylation as factors regulating the state of the Arabidopsis SNX1 protein complexes in response to environmental stimuli. Front. Plant Sci. 71456. 10.3389/fpls.2016.01456, PMID: PubMed DOI PMC
Buschmann H., Zachgo S. (2016). The evolution of cell division: from streptophyte algae to land plants. Trends Plant Sci. 21, 872–883. 10.1016/j.tplants.2016.07.004, PMID: PubMed DOI
Buschmann H., Chan J., Sanchez-Pulido L., Andrade-Navarro M. A., Doonan J. H., Lloyd C. W. (2006). Microtubule-associated AIR9 recognizes the cortical division site at preprophase and cell-plate insertion. Curr. Biol. 16, 1938–1943. 10.1016/j.cub.2006.08.028, PMID: PubMed DOI
Buschmann H., Dols J., Kopischke S., Peña E. J., Andrade-Navarro M. A., Heinlein M., et al. (2015). Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain. J. Cell Sci. 128, 2033–2046. 10.1242/jcs.156570 PubMed DOI
Caillaud M. -C., Lecomte P., Jammes F., Quentin M., Pagnotta S., Andrio E., et al. . (2008). MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20, 423–437. 10.1105/tpc.107.057422, PMID: PubMed DOI PMC
Calderini O., Bogre L., Vicente O., Binarova P., Heberle-Bors E., Wilson C. (1998). A cell cycle regulated MAP kinase with a possible role in cytokinesis in tobacco cells. J. Cell Sci. 111, 3091–3100. PubMed
Calderini O., Glab N., Bergounioux C., Heberle-Bors E., Wilson C. (2001). A novel tobacco mitogen-activated protein (MAP) kinase kinase, NtMEK1, activates the cell cycle-regulated p43Ntf6 MAP kinase. J. Biol. Chem. 276, 18139–18145. 10.1074/jbc.M010621200, PMID: PubMed DOI
Camilleri C., Azimzadeh J., Pastuglia M., Bellini C., Grandjean O., Bouchez D. (2002). The Arabidopsis TONNEAU2 gene encodes a putative novel protein phosphatase 2A regulatory subunit essential for the control of the cortical cytoskeleton. Plant Cell 14, 833–845. 10.1105/tpc.010402, PMID: PubMed DOI PMC
Castro A., Arlot-Bonnemains Y., Vigneron S., Labbé J. -C., Prigent C., Lorca T. (2002a). APC/fizzy-related targets Aurora-A kinase for proteolysis. EMBO Rep. 3, 457–462. 10.1093/embo-reports/kvf095 PubMed DOI PMC
Castro A., Vigneron S., Bernis C., Labbé J. -C., Prigent C., Lorca T. (2002b). The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep. 3, 1209–1214. 10.1093/embo-reports/kvf241 PubMed DOI PMC
Chan J., Jensen C. G., Jensen L. C. W., Bush M., Lloyd C. W. (1999). The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc. Natl. Acad. Sci. 96, 14931–14936. 10.1073/pnas.96.26.14931 PubMed DOI PMC
Chang H. -Y., Smertenko A. P., Igarashi H., Dixon D. P., Hussey P. J. (2005). Dynamic interaction of NtMAP65-1a with microtubules in vivo. J. Cell Sci. 118, 3195–3201. 10.1242/jcs.02433, PMID: PubMed DOI
Chang-Jie J., Sonobe S. (1993). Identification and preliminary characterization of a 65 kDa higher-plant microtubule-associated protein. J. Cell Sci. 105, 891–901. PubMed
Chen H. -W., Persson S., Grebe M., McFarlane H. E. (2018). Cellulose synthesis during cell plate assembly. Physiol. Plant. 164, 17–26. 10.1111/ppl.12703, PMID: PubMed DOI
Cohen P. (2000). The regulation of protein function by multisite phosphorylation – a 25 year update. Trends Biochem. Sci. 25, 596–601. 10.1016/S0968-0004(00)01712-6, PMID: PubMed DOI
Costa S. (2017). Are division plane determination and cell-cycle progression coordinated? New Phytol. 213, 16–21. 10.1111/nph.14261, PMID: PubMed DOI
Day I. S., Miller C., Golovkin M., Reddy A. S. (2000). Interaction of a kinesin-like calmodulin-binding protein with a protein kinase. J. Biol. Chem. 275, 13737–13745. 10.1074/jbc.275.18.13737, PMID: PubMed DOI
de Keijzer J., Kieft H., Ketelaar T., Goshima G., Janson M. E. (2017). Shortening of microtubule overlap regions defines membrane delivery sites during plant cytokinesis. Curr. Biol. 27, 514–520. 10.1016/j.cub.2016.12.043 PubMed DOI
Demidov D., Damme D. V., Geelen D., Blattner F. R., Houben A. (2005). Identification and dynamics of two classes of Aurora-like kinases in Arabidopsis and other plants. Plant Cell 17, 836–848. 10.1105/tpc.104.029710, PMID: PubMed DOI PMC
Dhonukshe P., Gadella T. W. J. (2003). Alteration of microtubule dynamic instability during preprophase band formation revealed by yellow fluorescent protein–CLIP170 microtubule plus-end labeling. Plant Cell 15, 597–611. 10.1105/tpc.008961, PMID: PubMed DOI PMC
Drevensek S., Goussot M., Duroc Y., Christodoulidou A., Steyaert S., Schaefer E., et al. . (2012). The Arabidopsis TRM1–TON1 interaction reveals a recruitment network common to plant cortical microtubule arrays and eukaryotic centrosomes. Plant Cell. 24, 178–191. 10.1105/tpc.111.089748, PMID: PubMed DOI PMC
Eng R. C., Halat L. S., Livingston S. J., Sakai T., Motose H., Wasteneys G. O. (2017). The ARM domain of ARMADILLO-REPEAT KINESIN 1 is not required for microtubule catastrophe but can negatively regulate NIMA-RELATED KINASE 6 in Arabidopsis thaliana. Plant Cell Physiol. 58, 1350–1363. 10.1093/pcp/pcx070, PMID: PubMed DOI
Enos S. J., Dressler M., Ferreira Gomes B., Hyman A. A., Woodruff J. B. (2017). Phosphatase PP2A and microtubule pulling forces disassemble centrosomes during mitotic exit. Biol. Open. 10.1242/bio.029777 PubMed DOI PMC
Farkas I., Dombrádi V., Miskei M., Szabados L., Koncz C. (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci. 12, 169–176. 10.1016/j.tplants.2007.03.003 PubMed DOI
Fujita S., Pytela J., Hotta T., Kato T., Hamada T., Akamatsu R., et al. (2013). An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr. Biol. 23, 1969–1978. 10.1016/j.cub.2013.08.006 PubMed DOI
Gaillard J., Neumann E., Van Damme D., Stoppin-Mellet V., Ebel C., Barbier E., et al. (2008). Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol. Biol. Cell 19, 4534–4544. 10.1091/mbc.e08-04-0341 PubMed DOI PMC
Herrmann A., Livanos P., Lipka E., Gadeyne A., Hauser M. T., Van Damme D., et al. . (2018). Dual localized kinesin-12 POK2 plays multiple roles during cell division and interacts with MAP65-3. EMBO Rep. 19e46085. 10.15252/embr.201846085, PMID: PubMed DOI PMC
Hoshi M., Ohta K., Gotoh Y., Mori A., Murofushi H., Sakai H., et al. (1992). Mitogen-activated-protein-kinase-catalyzed phosphorylation of microtubule-associated proteins, microtubule-associated protein 2 and microtubule-associated protein 4, induces an alteration in their function. Eur. J. Biochem. 203, 43–52. PubMed
Humphrey T. V., Haasen K. E., Aldea-Brydges M. G., Sun H., Zayed Y., Indriolo E., et al. . (2015). PERK-KIPK-KCBP signalling negatively regulates root growth in Arabidopsis thaliana. J. Exp. Bot. 66, 71–83. 10.1093/jxb/eru390, PMID: PubMed DOI PMC
Hussey P. J., Hawkins T. J., Igarashi H., Kaloriti D., Smertenko A. (2002). The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol. Biol. 50, 915–924. 10.1023/A:1021236307508, PMID: PubMed DOI
Kawabe A., Matsunaga S., Nakagawa K., Kurihara D., Yoneda A., Hasezawa S., et al. . (2005). Characterization of plant Aurora kinases during mitosis. Plant Mol. Biol. 58, 1–13. 10.1007/s11103-005-3454-x, PMID: PubMed DOI
Kawamura E. (2005). MICROTUBULE ORGANIZATION 1 regulates structure and function of microtubule arrays during mitosis and cytokinesis in the Arabidopsis root. Plant Physiol. 140, 102–114. 10.1104/pp.105.069989, PMID: PubMed DOI PMC
Kirik A., Ehrhardt D. W., Kirik V. (2012). TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24, 1158–1170. 10.1105/tpc.111.094367, PMID: PubMed DOI PMC
Kohoutová L., Kourová H., Nagy S. K., Volc J., Halada P., Mészáros T., et al. . (2015). The Arabidopsis mitogen-activated protein kinase 6 is associated with γ-tubulin on microtubules, phosphorylates EB1c and maintains spindle orientation under nitrosative stress. New Phytol. 207, 1061–1074. 10.1111/nph.13501, PMID: PubMed DOI
Komaki S., Abe T., Coutuer S., Inzé D., Russinova E., Hashimoto T. (2010). Nuclear-localized subtype of end-binding 1 protein regulates spindle organization in Arabidopsis. J. Cell Sci. 123, 451–459. 10.1242/jcs.062703, PMID: PubMed DOI
Komis G., Luptovčiak I., Ovečka M., Samakovli D., Šamajová O., Šamaj J. (2017). Katanin effects on dynamics of cortical microtubules and mitotic arrays in Arabidopsis thaliana revealed by advanced live-cell imaging. Front. Plant Sci. 8866. 10.3389/fpls.2017.00866 PubMed DOI PMC
Komis G., Novák D., Ovečka M., Šamajová O., Šamaj J. (2018). Advances in imaging plant cell dynamics. Plant Physiol. 176, 80–93. 10.1104/pp.17.00962 PubMed DOI PMC
Kosetsu K., Matsunaga S., Nakagami H., Colcombet J., Sasabe M., Soyano T., et al. . (2010). The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. Plant Cell 22, 3778–3790. 10.1105/tpc.110.077164, PMID: PubMed DOI PMC
Krysan P. J., Jester P. J., Gottwald J. R., Sussman M. R. (2002). An Arabidopsis mitogen-activated protein kinase kinase kinase gene family encodes essential positive regulators of cytokinesis. Plant Cell 14, 1109–1120. 10.1105/tpc.001164, PMID: PubMed DOI PMC
Kwon Y. -G., Lee S. Y., Choi Y., Greengard P., Nairn A. C. (1997). Cell cycle-dependent phosphorylation of mammalian protein phosphatase 1 by cdc2 kinase. Proc. Natl. Acad. Sci. 94, 2168–2173. 10.1073/pnas.94.6.2168 PubMed DOI PMC
Lee J., Das A., Yamaguchi M., Hashimoto J., Tsutsumi N., Uchimiya H., et al. . (2003). Cell cycle function of a rice B2-type cyclin interacting with a B-type cyclin-dependent kinase. Plant J. 34, 417–425. 10.1046/j.1365-313X.2003.01736.x, PMID: PubMed DOI
Li H., Sun B., Sasabe M., Deng X., Machida Y., Lin H., et al. . (2017). Arabidopsis MAP65-4 plays a role in phragmoplast microtubule organization and marks the cortical cell division site. New Phytol. 215, 187–201. 10.1111/nph.14532, PMID: PubMed DOI
Lin F., Krishnamoorthy P., Schubert V., Hause G., Heilmann M., Heilmann I. (2019). A dual role for cell plate-associated PI4Kβ in endocytosis and phragmoplast dynamics during plant somatic cytokinesis. EMBO J. (In Press). 10.15252/embj.2018100303, PMID: PubMed DOI PMC
Lipka E., Gadeyne A., Stöckle D., Zimmermann S., Jaeger G. D., Ehrhardt D. W., et al. . (2014). The phragmoplast-orienting kinesin-12 class proteins translate the positional information of the preprophase band to establish the cortical division zone in Arabidopsis thaliana. Plant Cell. 26, 2617–2632. 10.1105/tpc.114.124933, PMID: PubMed DOI PMC
Lipka E., Herrmann A., Mueller S. (2015). Mechanisms of plant cell division. Wiley Interdiscip. Rev. Dev. Biol. 4, 391–405. 10.1002/wdev.186, PMID: PubMed DOI
López-Bucio J. S., Dubrovsky J. G., Raya-González J., Ugartechea-Chirino Y., López-Bucio J., Luna-Valdez D., et al. . (2014). Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. J. Exp. Bot. 65, 169–183. 10.1093/jxb/ert368, PMID: PubMed DOI PMC
Loughlin R., Wilbur J. D., McNally F. J., Nédélec F. J., Heald R. (2011). Katanin contributes to interspecies spindle length scaling in Xenopus. Cell 147, 1397–1407. 10.1016/j.cell.2011.11.014, PMID: PubMed DOI PMC
Lucas J. R., Shaw S. L. (2012). MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J. 71, 454–463. 10.1111/j.1365-313X.2012.05002.x, PMID: PubMed DOI
Lukowitz W., Roeder A., Parmenter D., Somerville C. (2004). A MAPKK kinase gene regulates extra-embryonic cell fate in Arabidopsis. Cell 116, 109–119. 10.1016/S0092-8674(03)01067-5, PMID: PubMed DOI
Mao T., Jin L., Li H., Liu B., Yuan M. (2005). Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol. 138, 654–662. 10.1104/pp.104.052456 PubMed DOI PMC
Marcus A. I., Dixit R., Cyr R. J. (2005). Narrowing of the preprophase microtubule band is not required for cell division plane determination in cultured plant cells. Protoplasma 226, 169–174. 10.1007/s00709-005-0119-1, PMID: PubMed DOI
McClinton R. S., Sung Z. R. (1997). Organization of cortical microtubules at the plasma membrane in Arabidopsis. Planta 201, 252–260. 10.1007/s004250050064, PMID: PubMed DOI
Meskiene I., Bogre L., Glaser W., Balog J., Brandstotter M., Zwerger K., et al. (1998). MP2C, a plant protein phosphatase 2C, functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc. Natl. Acad. Sci. 95, 1938–1943. 10.1073/pnas.95.4.1938 PubMed DOI PMC
Motose H., Hamada T., Yoshimoto K., Murata T., Hasebe M., Watanabe Y., et al. (2011). NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana. Plant J. 67, 993–1005. 10.1111/j.1365-313X.2011.04652.x PubMed DOI
Müller J., Beck M., Mettbach U., Komis G., Hause G., Menzel D., et al. . (2010). Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J. 61, 234–248. 10.1111/j.1365-313X.2009.04046.x, PMID: PubMed DOI
Müller S., Han S., Smith L. G. (2006). Two kinesins are involved in the spatial control of cytokinesis in Arabidopsis thaliana. Curr. Biol. 16, 888–894. 10.1016/j.cub.2006.03.034, PMID: PubMed DOI
Müller S., Smertenko A., Wagner V., Heinrich M., Hussey P. J., Hauser M. -T. (2004). The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr. Biol. 14, 412–417. 10.1016/j.cub.2004.02.032, PMID: PubMed DOI PMC
Murata T., Sano T., Sasabe M., Nonaka S., Higashiyama T., Hasezawa S., et al. (2013). Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat. Commun. 41967. 10.1038/ncomms2967 PubMed DOI PMC
Naoi K., Hashimoto T. (2004). A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 16, 1841–1853. 10.1105/tpc.021865, PMID: PubMed DOI PMC
Nishihama R. (2001). The NPK1 mitogen-activated protein kinase kinase kinase is a regulator of cell-plate formation in plant cytokinesis. Genes Dev. 15, 352–363. 10.1101/gad.863701, PMID: PubMed DOI PMC
Nishihama R., Soyano T., Ishikawa M., Araki S., Tanaka H., Asada T., et al. . (2002). Expansion of the cell plate in plant cytokinesis requires a kinesin-like protein/MAPKKK complex. Cell 109, 87–99. 10.1016/S0092-8674(02)00691-8, PMID: PubMed DOI
O’Connell M. J., Krien M. J. E., Hunter T. (2003). Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol. 13, 221–228. 10.1016/S0962-8924(03)00056-4, PMID: PubMed DOI
Oh S. A., Allen T., Kim G. J., Sidorova A., Borg M., Park S. K., et al. . (2012). Arabidopsis fused kinase and the kinesin-12 subfamily constitute a signalling module required for phragmoplast expansion. Plant J. 72, 308–319. 10.1111/j.1365-313X.2012.05077.x, PMID: PubMed DOI
Oh S. A., Johnson A., Smertenko A., Rahman D., Park S. K., Hussey P. J., et al. (2005). A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Curr. Biol. 15, 2107–2111. 10.1016/j.cub.2005.10.044 PubMed DOI
Ookata K., Hisanaga S., Sugita M., Okuyama A., Murofushi H., Kitazawa H., et al. . (1997). MAP4 is the in vivo substrate for CDC2 kinase in HeLa cells: identification of an M-phase specific and a cell cycle-independent phosphorylation site in MAP4. Biochemist 36, 15873–15883. 10.1021/bi971251w, PMID: PubMed DOI
Panteris E., Diannelidis B. -E., Adamakis I. -D. S. (2018). Cortical microtubule orientation in Arabidopsis thaliana root meristematic zone depends on cell division and requires severing by katanin. J. Biol. Res.Thessalon. 2512. 10.1186/s40709-018-0082-6, PMID: PubMed DOI PMC
Petrovská B., Cenklová V., Pochylová Ž., Kourová H., Doskočilová A., Plíhal O., et al. . (2012). Plant Aurora kinases play a role in maintenance of primary meristems and control of endoreduplication. New Phytol. 193, 590–604. 10.1111/j.1469-8137.2011.03989.x, PMID: PubMed DOI
Petrovská B., Jerábková H., Kohoutová L., Cenklová V., Pochylová Ž., Gelová Z., et al. . (2013). Overexpressed TPX2 causes ectopic formation of microtubular arrays in the nuclei of acentrosomal plant cells. J. Exp. Bot. 64, 4575–4587. 10.1093/jxb/ert271, PMID: PubMed DOI PMC
Pickett-Heaps J. D., Northcote D. H. (1966). Organization of microtubules and endoplasmic reticulum during mitosis and cytokinesis in wheat meristems. J. Cell Sci. 1, 109–120. PMID: PubMed
Qu Y., Song P., Hu Y., Jin X., Jia Q., Zhang X., et al. (2018). Regulation of stomatal movement by cortical microtubule organization in response to darkness and ABA signaling in Arabidopsis. Plant Growth Regul. 84, 467–479. 10.1007/s10725-017-0353-5 DOI
Repetto M. V., Winters M. J., Bush A., Reiter W., Hollenstein D. M., Ammerer G., et al. . (2018). CDK and MAPK synergistically regulate signaling dynamics via a shared multi-site phosphorylation region on the scaffold protein Ste5. Mol. Cell 69, 938–952.e6. 10.1016/j.molcel.2018.02.018, PMID: PubMed DOI PMC
Ritchey L., Chakrabarti R. (2014). Aurora A kinase modulates actin cytoskeleton through phosphorylation of Cofilin: implication in the mitotic process. Biochim. Biophys. Acta BBA Mol. Cell Res. 1843, 2719–2729. 10.1016/j.bbamcr.2014.07.014, PMID: PubMed DOI PMC
Rodrigues N. T. L., Lekomtsev S., Jananji S., Kriston-Vizi J., Hickson G. R. X., Baum B. (2015). Kinetochore-localized PP1–Sds22 couples chromosome segregation to polar relaxation. Nature 524, 489–492. 10.1038/nature14496, PMID: PubMed DOI
Samaj J., Baluska F., Hirt H. (2004). From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. J. Exp. Bot. 55, 189–198. 10.1093/jxb/erh012, PMID: PubMed DOI
Samaj J., Ovecka M., Hlavacka A., Lecourieux F., Meskiene I., Lichtscheidl I., et al. . (2002). Involvement of the mitogen-activated protein kinase SIMK in regulation of root hair tip growth. EMBO J. 21, 3296–3306. 10.1093/emboj/cdf349, PMID: PubMed DOI PMC
Samofalova D. O., Karpov P. A., Raevsky A. V., Blume Y. B. (2017). Protein phosphatases potentially associated with regulation of microtubules, their spatial structure reconstruction and analysis. Cell Biol. Int. 10.1002/cbin.10810, PMID: PubMed DOI
Sasabe M., Boudolf V., Veylder L. D., Inzé D., Genschik P., Machida Y. (2011a). Phosphorylation of a mitotic kinesin-like protein and a MAPKKK by cyclin-dependent kinases (CDKs) is involved in the transition to cytokinesis in plants. Proc. Natl. Acad. Sci. 108, 17844–17849. 10.1073/pnas.1110174108 PubMed DOI PMC
Sasabe M., Kosetsu K., Hidaka M., Murase A., Machida Y. (2011b). Arabidopsis thaliana MAP65-1 and MAP65-2 function redundantly with MAP65-3/PLEIADE in cytokinesis downstream of MPK4. Plant Signal. Behav. 6, 743–747. 10.4161/psb.6.5.15146 PubMed DOI PMC
Schaefer E., Belcram K., Uyttewaal M., Duroc Y., Goussot M., Legland D., et al. (2017). The preprophase band of microtubules controls the robustness of division orientation in plants. Science 356, 186–189. 10.1126/science.aal3016 PubMed DOI
Schecher S., Walter B., Falkenstein M., Macher-Goeppinger S., Stenzel P., Krümpelmann K., et al. . (2017). Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer: cyclin K in prostate cancer. Int. J. Cancer 141, 1643–1653. 10.1002/ijc.30864, PMID: PubMed DOI
Sedbrook J. C., Ehrhardt D. W., Fisher S. E., Scheible W. R., Somerville C. R. (2004). The Arabidopsis sku6/spiral1 gene encodes a plus end-localized microtubule-interacting protein involved in directional cell expansion. Plant Cell 16, 1506–1520. 10.1105/tpc.020644, PMID: PubMed DOI PMC
Shiina N., Moriguchi T., Ohta K., Gotoh Y., Nishida E. (1992). Regulation of a major microtubule-associated protein by MPF and MAP kinase. EMBO J. 11, 3977–3984. 10.1002/j.1460-2075.1992.tb05491.x, PMID: PubMed DOI PMC
Smékalová V., Luptovčiak I., Komis G., Šamajová O., Ovečka M., Doskočilová A., et al. . (2014). Involvement of YODA and mitogen activated protein kinase 6 in Arabidopsis post-embryogenic root development through auxin up-regulation and cell division plane orientation. New Phytol. 203, 1175–1193. 10.1111/nph.12880, PMID: PubMed DOI PMC
Smertenko A. P., Chang H. -Y., Sonobe S., Fenyk S., Weingartner M., Bögre L., et al. . (2006). Control of the AtMAP65-1 interaction with microtubules through the cell cycle. J. Cell Sci. 119, 3227–3237. 10.1242/jcs.03051, PMID: PubMed DOI
Smertenko A. P., Kaloriti D., Chang H. -Y., Fiserova J., Opatrny Z., Hussey P. J. (2008). The C-terminal variable region specifies the dynamic properties of Arabidopsis microtubule-associated protein MAP65 isotypes. Plant Cell 20, 3346–3358. 10.1105/tpc.108.063362, PMID: PubMed DOI PMC
Smertenko A., Hewitt S. L., Jacques C. N., Kacprzyk R., Liu Y., Marcec M. J., et al. . (2018). Phragmoplast microtubule dynamics - a game of zones. J. Cell Sci. 131, 1–11. 10.1242/jcs.203331, PMID: PubMed DOI PMC
Song S. -K., Lee M. M., Clark S. E. (2006). POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 133, 4691–4698. 10.1242/dev.02652, PMID: PubMed DOI
Spinner L., Gadeyne A., Belcram K., Goussot M., Moison M., Duroc Y., et al. (2013). A protein phosphatase 2A complex spatially controls plant cell division. Nat. Commun. 41863. 10.1038/ncomms2831 PubMed DOI
Stals H., Bauwens S., Traas J., Montagu M. V., Engler G., Inzé D. (1997). Plant CDC2 is not only targeted to the pre-prophase band, but also co-localizes with the spindle, phragmoplast, and chromosomes. FEBS Lett. 418, 229–234. 10.1016/S0014-5793(97)01368-9, PMID: PubMed DOI
Strompen G., El Kasmi F., Richter S., Lukowitz W., Assaad F. F., Jürgens G., et al. (2002). The Arabidopsis HINKEL gene encodes a kinesin-related protein involved in cytokinesis and is expressed in a cell cycle-dependent manner. Curr. Biol. 12, 153–158. 10.1016/S0960-9822(01)00655-8 PubMed DOI
Takahashi Y., Soyano T., Kosetsu K., Sasabe M., Machida Y. (2010). HINKEL kinesin, ANP MAPKKKs and MKK6/ANQ MAPKK, which phosphorylates and activates MPK4 MAPK, constitute a pathway that is required for cytokinesis in Arabidopsis thaliana. Plant Cell Physiol. 51, 1766–1776. 10.1093/pcp/pcq135, PMID: PubMed DOI PMC
Takatani S., Ozawa S., Yagi N., Hotta T., Hashimoto T., Takahashi Y., et al. . (2017). Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization. Sci. Rep. 77826. 10.1038/s41598-017-08453-5, PMID: PubMed DOI PMC
Tang A., Shi P., Song A., Zou D., Zhou Y., Gu P., et al. . (2016). PP2A regulates kinetochore-microtubule attachment during meiosis I in oocyte. Cell Cycle 15, 1450–1461. 10.1080/15384101.2016.1175256, PMID: PubMed DOI PMC
Tomaštíková E., Demidov D., Jeřábková H., Binarová P., Houben A., Doležel J., et al. (2015). TPX2 protein of Arabidopsis activates Aurora kinase 1, but not Aurora kinase 3 in vitro. Plant Mol. Biol. Report. 33, 1988–1995. 10.1007/s11105-015-0890-x DOI
Torres-Ruiz R. A., Jurgens G. (1994). Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120, 2967–2978. PubMed
Traas J., Bellini C., Nacry P., Kronenberger J., Bouchez D., Caboche M. (1995). Normal differentiation patterns in plants lacking microtubular pre-prophase bands. Nature 375, 676–677. 10.1038/375676a0 DOI
Twell D., Park S. K., Hawkins T. J., Schubert D., Schmidt R., Smertenko A., et al. . (2002). MOR1/GEM1 has an essential role in the plant-specific cytokinetic phragmoplast. Nat. Cell Biol. 4, 711–714. 10.1038/ncb844, PMID: PubMed DOI PMC
Umbrasaite J., Schweighofer A., Kazanaviciute V., Magyar Z., Ayatollahi Z., Unterwurzacher V., et al. . (2010). MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PLoS One 5e15357. 10.1371/journal.pone.0015357, PMID: PubMed DOI PMC
Van Damme D. V., De Rybel B., Gudesblat G., Demidov D., Grunewald W., De Smet I., et al. . (2011). Arabidopsis α Aurora kinases function in formative cell division plane orientation. Plant Cell. 23, 4013–4024. 10.1105/tpc.111.089565, PMID: PubMed DOI PMC
Varadkar P., Abbasi F., Takeda K., Dyson J. J., McCright B. (2017). PP2A-B56γ is required for an efficient spindle assembly checkpoint. Cell Cycle 16, 1210–1219. 10.1080/15384101.2017.1325042, PMID: PubMed DOI PMC
Vasquez R. J., Gard D. L., Cassimeris L. (1999). Phosphorylation by CDK1 regulates XMAP215 function in vitro. Cell Motil. 43, 310–321. 10.1002/(SICI)1097-0169(1999)43:4<310::AID-CM4>3.0.CO;2-J PubMed DOI
Vigneault F., Lachance D., Cloutier M., Pelletier G., Levasseur C., Séguin A. (2007). Members of the plant NIMA-related kinases are involved in organ development and vascularization in poplar, Arabidopsis and rice. Plant J. 51, 575–588. 10.1111/j.1365-313X.2007.03161.x, PMID: PubMed DOI
Walia A., Lee J. S., Wasteneys G., Ellis B. (2009). Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. Plant J. 59, 565–575. 10.1111/j.1365-313X.2009.03895.x, PMID: PubMed DOI
Walker K. L., Müller S., Moss D., Ehrhardt D. W., Smith L. G. (2007). Arabidopsis TANGLED identifies the division plane throughout mitosis and cytokinesis. Curr. Biol. 17, 1827–1836. 10.1016/j.cub.2007.09.063, PMID: PubMed DOI PMC
Weingartner M., Binarova P., Drykova D., Schweighofer A., David J. -P., Heberle-Bors E., et al. . (2001). Dynamic recruitment of Cdc2 to specific microtubule structures during mitosis. Plant Cell 13, 1929–1943. 10.1105/tpc.13.8.1929, PMID: PubMed DOI PMC
Whitehead E., Heald R., Wilbur J. D. (2013). N-terminal phosphorylation of p60 katanin directly regulates microtubule severing. J. Mol. Biol. 425, 214–221. 10.1016/j.jmb.2012.11.022, PMID: PubMed DOI PMC
Wong J. H., Hashimoto T. (2017). Novel Arabidopsis microtubule-associated proteins track growing microtubule plus ends. BMC Plant Biol. 1733. 10.1186/s12870-017-0987-5 PubMed DOI PMC
Wright A. J., Smith L. G. (2007). “Division plane orientation in plant cells” in Cell division control in plants plant cell monographs. (Berlin, Heidelberg: Springer; ), 33–57.
Wright A. J., Gallagher K., Smith L. G. (2009). Discordia1 and alternative discordia1 function redundantly at the cortical division site to promote preprophase band formation and orient division planes in maize. Plant Cell 21, 234–247. 10.1105/tpc.108.062810 PubMed DOI PMC
Wu S. -Z., Bezanilla M. (2014). Myosin VIII associates with microtubule ends and together with actin plays a role in guiding plant cell division. elife 3e03498. 10.7554/eLife.03498, PMID: PubMed DOI PMC
Xu X. M., Zhao Q., Rodrigo-Peiris T., Brkljacic J., He C. S., Muller S., et al. (2008). RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc. Natl. Acad. Sci. 105, 18637–18642. 10.1073/pnas.0806157105 PubMed DOI PMC
Xue Y., Ren J., Gao X., Jin C., Wen L., Yao X. (2008). GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell. Proteomics 7, 1598–1608. 10.1074/mcp.M700574-MCP200, PMID: PubMed DOI PMC
Yoon J. -T., Ahn H. -K., Pai H. -S. (2018). The subfamily II catalytic subunits of protein phosphatase 2A (PP2A) are involved in cortical microtubule organization. Planta 248, 1–17. 10.1007/s00425-018-3000-0, PMID: PubMed DOI
Zhou S., Chen Q., Li X., Li Y. (2017). MAP65-1 is required for the depolymerization and reorganization of cortical microtubules in the response to salt stress in Arabidopsis. Plant Sci. 264, 112–121. 10.1016/j.plantsci.2017.09.004, PMID: PubMed DOI
Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics