Spatial occurrence records and distributions of tropical Asian butterflies

. 2025 Jun 13 ; 12 (1) : 1004. [epub] 20250613

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, dataset

Perzistentní odkaz   https://www.medvik.cz/link/pmid40514354
Odkazy

PubMed 40514354
PubMed Central PMC12166064
DOI 10.1038/s41597-025-05333-w
PII: 10.1038/s41597-025-05333-w
Knihovny.cz E-zdroje

Insect biogeography is poorly documented globally, particularly in the tropics. Recent intensive research in tropical Asia, combined with increasingly available records from citizen science, provides an opportunity to map the distributions of tropical Asian butterflies. We compiled a dataset of 730,190 occurrences of 3,752 tropical Asian butterfly species by aggregating records from GBIF (651,285 records), published literature (27,217), published databases (37,695), and unpublished data (13,993). Here, we present this dataset and single-species distribution maps of 1,576 species. Using these maps, along with records of the 2,176 remaining species, we identified areas of limited sampling (e.g., Myanmar and New Guinea) and predicted areas of high diversity (Peninsular Malaysia and Borneo). This dataset can be leveraged for a range of studies on Asian and tropical butterflies, including 1) species biogeography, 2) sampling prioritization to fill gaps, 3) biodiversity hotspot mapping, and 4) conservation evaluation and planning. We encourage the continued development of this dataset and the associated code as a tool for the conservation of tropical Asian insects.

Animal Biology Division Institute of Biological Sciences University of the Philippines Los Baños Laguna 4031 Philippines

Biodiversity Society 49 1 Babar Road Dhaka 1207 Bangladesh

bioSEA Pte Ltd 68 Chestnut Avenue Singapore 679521 Singapore

Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Mengla Yunnan China

Czech University of Life Sciences Prague Faculty of Environmental Sciences Prague Czech Republic

Department of Biology City College of New York City University of New York 160 Convent Avenue New York New York NY 10031 USA

Department of Life Sciences National Cheng Kung University Tainan City Taiwan

Entomology Section National Museum of Natural History Rizal Park Manila 1000 Philippines

Faculty of Sustainable Agriculture Universiti Malaysia Sabah Locked Bag No 3 90509 Sandakan Sabah Malaysia

Insect Ecology Group Department of Zoology University of Cambridge Cambridge CB2 3EJ UK

Leverhulme Centre for Anthropocene Biodiversity Department of Biology University of York York YO10 5DD UK

Moore Center for Science and Solutions Conservation International Arlington VA USA

National Centre for Biological Sciences GKVK Campus Bellary Road Bengaluru 560065 India

Nature Society Singapore 510 Geylang Road Singapore 389466 Singapore

PhD Program in Biology City University of New York 365 5th Avenue New York NY 10016 USA

Royal Botanic Gardens Royal Botanic Gardens Kew UK

School of Biological Sciences Monash University Clayton Victoria 3168 Australia

School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong China

School of Biosciences University of Melbourne Parkville Melbourne Australia

School of Ecology Shenzhen Campus of Sun Yat sen University Shenzhen 518107 China

Science Department Natural History Museum London SW7 5BD UK

Smithsonian Tropical Research Institute Apartado 0843 03092 Balboa Ancon Panama

The University of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada

Vietnam National Museum of Nature Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Cau Giay Ha Noi Vietnam

Yunnan Key Laboratory of Forest Ecosystem Stability and Global Change Response Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Mengla Yunnan China

Zobrazit více v PubMed

de Bruyn, M. PubMed

Verde Arregoitia, L. D. Biases, gaps, and opportunities in mammalian extinction risk research.

Cardoso, P., Erwin, T. L., Borges, P. A. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them.

Xing, S.

Pinkert, S., Barve, V., Guralnick, R. & Jetz, W. Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country‐level occurrence database.

Kawahara, A. Y. PubMed PMC

Pinkert, S., Sica, Y. V., Winner, K. & Jetz, W. The potential of ecoregional range maps for boosting taxonomic coverage in ecology and conservation.

Whittaker, R. J.

Earl, C. PubMed PMC

Wei, C.-H., Lohman, D. J., Peggie, D. & Yen, S.-H. An illustrated checklist of the genus Elymnias Hübner, 1818 (Nymphalidae, Satyrinae). PubMed PMC

Condamine, F. L. PubMed

Toussaint, E. F. PubMed

Scriven, S. A.

Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions.

Hughes, A. C.

Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. PubMed PMC

Peterson, A. T., Navarro‐Sigüenza, A. G. & Gordillo, A. Assumption‐versus data‐based approaches to summarizing species’ ranges. PubMed

Chowdhury, S. PubMed

Jetz, W., Sekercioglu, C. H. & Watson, J. E. Ecological correlates and conservation implications of overestimating species geographic ranges. PubMed

Sofaer, H. R.

Anderson, R. P.

Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. PubMed PMC

Kramer‐Schadt, S.

Guillera‐Arroita, G.

Smeraldo, S.

Guisan, A. PubMed PMC

Araújo, M. B. PubMed PMC

Maes, D.

Pacifici, M.

Attorre, F.

Sarr, A. C.

Hughes, A. C. Understanding the drivers of Southeast Asian biodiversity loss.

Corlett, R. T.

Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. PubMed

Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. PubMed

Orr, M. C. PubMed

None

Ball-Damerow, J. E. PubMed PMC

Gaiji, S.

Costello, M. J., Michener, W. K., Gahegan, M., Zhang, Z. Q. & Bourne, P. E. Biodiversity data should be published, cited, and peer reviewed. PubMed

Goodwin, Z. A., Harris, D. J., Filer, D., Wood, J. R. & Scotland, R. W. Widespread mistaken identity in tropical plant collections. PubMed

Chowdhury, S.

Yau, E. Y. H.*

Shields, O. World numbers of butterflies.

Robbins, R. K. & Opler, P. A. in

Thuiller, W.

Guisan, A., Thuiller, W. & Zimmermann, N. E.

Phillips, S. J. maxnet: Fitting ‘Maxent’ Species Distribution Models with ‘glmnet’. R package version 0.1.4. https://CRAN.R-project.org/package=maxnet (2021).

Porfirio, L. L. PubMed PMC

Elith, J. & Graham, C. H. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models.

Therneau, T., Atkinson, B. & Ripley, B. Rpart: Recursive Partitioning. R Package version 4.1-3. http://CRAN.R-project.org/package=rpart (2013).

Chen, T.

Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. PubMed PMC

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas.

Poggio, L.

None

Ågren, G. I., Wetterstedt, J. M. & Billberger, M. F. Nutrient limitation on terrestrial plant growth–modelling the interaction between nitrogen and phosphorus. PubMed

Lal, R. Soil health and carbon management.

Neina, D. The role of soil pH in plant nutrition and soil remediation.

Barbet‐Massin, M. & Jetz, W. A 40‐year, continent‐wide, multispecies assessment of relevant climate predictors for species distribution modelling.

Zeng, Y., Low, B. W. & Yeo, D. C. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish.

Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. PubMed PMC

Stockwell, D. R. & Peterson, A. T. Effects of sample size on accuracy of species distribution models.

van Proosdij, A. S., Sosef, M. S., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models.

Venables, W. N. & Ripley, B. D.

Phillips, S. J. PubMed

Ferrier, S., Watson, G., Pearce, J. & Drielsma, M. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling.

Barbet‐Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo‐absences for species distribution models: How, where and how many?

Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models.

Araújo, M. B. & New, M. Ensemble forecasting of species distributions. PubMed

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling.

Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. PubMed

Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS).

Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods.

Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences.

Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models.

Zhou, H. PubMed PMC

Dinerstein, E. PubMed PMC

R Core Team. R: A language and environment for statistical computing, version 4.1.2. R Foundation for Statistical Computing https://www.R-project.org/ (2021).

Capinha, C., Rocha, J. & Sousa, C. A. Macroclimate determines the global range limit of Aedes aegypti. PubMed

Jones, C. C., Acker, S. A. & Halpern, C. B. Combining local‐and large‐scale models to predict the distributions of invasive plant species. PubMed

Rupprecht, F., Oldeland, J. & Finckh, M. Modelling potential distribution of the threatened tree species Juniperus oxycedrus: how to evaluate the predictions of different modelling approaches?

Pomoim, N., Hughes, A. C., Trisurat, Y. & Corlett, R. T. Vulnerability to climate change of species in protected areas in Thailand. PubMed PMC

Zurell, D. A standard protocol for reporting species distribution models.

Sholihah, A. PubMed

Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations.

Monastyrskii, A. L. & Vane-Wright, R. I. Identity of

Boakes, E. H. PubMed PMC

Raes, N., Roos, M. C., Slik, J. F., Van Loon, E. E. & Steege, H. T. Botanical richness and endemicity patterns of Borneo derived from species distribution models.

Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?

Carvalho, A. P. S. PubMed PMC

Daru, B. H. A global database of butterfly species native distributions. PubMed

Vane-Wright, R. I. & de Jong, R. The butterflies of Sulawesi: annotated checklist for a critical island fauna.

Parsons, M. J.

Miller, D. G., Lane, J. & Senock, R. Butterflies as potential bioindicators of primary rainforest and oil palm plantation habitats on New Britain, Papua New Guinea.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...