Spatial occurrence records and distributions of tropical Asian butterflies
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, dataset
PubMed
40514354
PubMed Central
PMC12166064
DOI
10.1038/s41597-025-05333-w
PII: 10.1038/s41597-025-05333-w
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- motýli * MeSH
- rozšíření zvířat * MeSH
- tropické klima MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Geografické názvy
- Asie MeSH
- Malajsie MeSH
Insect biogeography is poorly documented globally, particularly in the tropics. Recent intensive research in tropical Asia, combined with increasingly available records from citizen science, provides an opportunity to map the distributions of tropical Asian butterflies. We compiled a dataset of 730,190 occurrences of 3,752 tropical Asian butterfly species by aggregating records from GBIF (651,285 records), published literature (27,217), published databases (37,695), and unpublished data (13,993). Here, we present this dataset and single-species distribution maps of 1,576 species. Using these maps, along with records of the 2,176 remaining species, we identified areas of limited sampling (e.g., Myanmar and New Guinea) and predicted areas of high diversity (Peninsular Malaysia and Borneo). This dataset can be leveraged for a range of studies on Asian and tropical butterflies, including 1) species biogeography, 2) sampling prioritization to fill gaps, 3) biodiversity hotspot mapping, and 4) conservation evaluation and planning. We encourage the continued development of this dataset and the associated code as a tool for the conservation of tropical Asian insects.
Biodiversity Society 49 1 Babar Road Dhaka 1207 Bangladesh
bioSEA Pte Ltd 68 Chestnut Avenue Singapore 679521 Singapore
Czech University of Life Sciences Prague Faculty of Environmental Sciences Prague Czech Republic
Department of Life Sciences National Cheng Kung University Tainan City Taiwan
Entomology Section National Museum of Natural History Rizal Park Manila 1000 Philippines
Insect Ecology Group Department of Zoology University of Cambridge Cambridge CB2 3EJ UK
Moore Center for Science and Solutions Conservation International Arlington VA USA
National Centre for Biological Sciences GKVK Campus Bellary Road Bengaluru 560065 India
Nature Society Singapore 510 Geylang Road Singapore 389466 Singapore
PhD Program in Biology City University of New York 365 5th Avenue New York NY 10016 USA
Royal Botanic Gardens Royal Botanic Gardens Kew UK
School of Biological Sciences Monash University Clayton Victoria 3168 Australia
School of Biological Sciences The University of Hong Kong Pokfulam Hong Kong China
School of Biosciences University of Melbourne Parkville Melbourne Australia
School of Ecology Shenzhen Campus of Sun Yat sen University Shenzhen 518107 China
Science Department Natural History Museum London SW7 5BD UK
Smithsonian Tropical Research Institute Apartado 0843 03092 Balboa Ancon Panama
The University of Toronto Scarborough 1265 Military Trail Scarborough ON M1C 1A4 Canada
Zobrazit více v PubMed
de Bruyn, M. PubMed
Verde Arregoitia, L. D. Biases, gaps, and opportunities in mammalian extinction risk research.
Cardoso, P., Erwin, T. L., Borges, P. A. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them.
Xing, S.
Pinkert, S., Barve, V., Guralnick, R. & Jetz, W. Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country‐level occurrence database.
Pinkert, S., Sica, Y. V., Winner, K. & Jetz, W. The potential of ecoregional range maps for boosting taxonomic coverage in ecology and conservation.
Whittaker, R. J.
Wei, C.-H., Lohman, D. J., Peggie, D. & Yen, S.-H. An illustrated checklist of the genus Elymnias Hübner, 1818 (Nymphalidae, Satyrinae). PubMed PMC
Condamine, F. L. PubMed
Toussaint, E. F. PubMed
Scriven, S. A.
Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions.
Hughes, A. C.
Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. PubMed PMC
Peterson, A. T., Navarro‐Sigüenza, A. G. & Gordillo, A. Assumption‐versus data‐based approaches to summarizing species’ ranges. PubMed
Chowdhury, S. PubMed
Jetz, W., Sekercioglu, C. H. & Watson, J. E. Ecological correlates and conservation implications of overestimating species geographic ranges. PubMed
Sofaer, H. R.
Anderson, R. P.
Troudet, J., Grandcolas, P., Blin, A., Vignes-Lebbe, R. & Legendre, F. Taxonomic bias in biodiversity data and societal preferences. PubMed PMC
Kramer‐Schadt, S.
Guillera‐Arroita, G.
Smeraldo, S.
Maes, D.
Pacifici, M.
Attorre, F.
Sarr, A. C.
Hughes, A. C. Understanding the drivers of Southeast Asian biodiversity loss.
Corlett, R. T.
Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. PubMed
Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. PubMed
Orr, M. C. PubMed
None
Ball-Damerow, J. E. PubMed PMC
Gaiji, S.
Costello, M. J., Michener, W. K., Gahegan, M., Zhang, Z. Q. & Bourne, P. E. Biodiversity data should be published, cited, and peer reviewed. PubMed
Goodwin, Z. A., Harris, D. J., Filer, D., Wood, J. R. & Scotland, R. W. Widespread mistaken identity in tropical plant collections. PubMed
Chowdhury, S.
Yau, E. Y. H.*
Shields, O. World numbers of butterflies.
Robbins, R. K. & Opler, P. A. in
Thuiller, W.
Guisan, A., Thuiller, W. & Zimmermann, N. E.
Phillips, S. J. maxnet: Fitting ‘Maxent’ Species Distribution Models with ‘glmnet’. R package version 0.1.4. https://CRAN.R-project.org/package=maxnet (2021).
Elith, J. & Graham, C. H. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models.
Therneau, T., Atkinson, B. & Ripley, B. Rpart: Recursive Partitioning. R Package version 4.1-3. http://CRAN.R-project.org/package=rpart (2013).
Chen, T.
Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. PubMed PMC
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas.
Poggio, L.
None
Ågren, G. I., Wetterstedt, J. M. & Billberger, M. F. Nutrient limitation on terrestrial plant growth–modelling the interaction between nitrogen and phosphorus. PubMed
Lal, R. Soil health and carbon management.
Neina, D. The role of soil pH in plant nutrition and soil remediation.
Barbet‐Massin, M. & Jetz, W. A 40‐year, continent‐wide, multispecies assessment of relevant climate predictors for species distribution modelling.
Zeng, Y., Low, B. W. & Yeo, D. C. Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish.
Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. PubMed PMC
Stockwell, D. R. & Peterson, A. T. Effects of sample size on accuracy of species distribution models.
van Proosdij, A. S., Sosef, M. S., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models.
Venables, W. N. & Ripley, B. D.
Phillips, S. J. PubMed
Ferrier, S., Watson, G., Pearce, J. & Drielsma, M. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling.
Barbet‐Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo‐absences for species distribution models: How, where and how many?
Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models.
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. PubMed
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling.
Landis, J. R. & Koch, G. G. The measurement of observer agreement for categorical data. PubMed
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS).
Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods.
Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences.
Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models.
R Core Team. R: A language and environment for statistical computing, version 4.1.2. R Foundation for Statistical Computing https://www.R-project.org/ (2021).
Capinha, C., Rocha, J. & Sousa, C. A. Macroclimate determines the global range limit of Aedes aegypti. PubMed
Jones, C. C., Acker, S. A. & Halpern, C. B. Combining local‐and large‐scale models to predict the distributions of invasive plant species. PubMed
Rupprecht, F., Oldeland, J. & Finckh, M. Modelling potential distribution of the threatened tree species Juniperus oxycedrus: how to evaluate the predictions of different modelling approaches?
Pomoim, N., Hughes, A. C., Trisurat, Y. & Corlett, R. T. Vulnerability to climate change of species in protected areas in Thailand. PubMed PMC
Zurell, D. A standard protocol for reporting species distribution models.
Sholihah, A. PubMed
Voris, H. K. Maps of Pleistocene sea levels in Southeast Asia: Shorelines, river systems and time durations.
Monastyrskii, A. L. & Vane-Wright, R. I. Identity of
Raes, N., Roos, M. C., Slik, J. F., Van Loon, E. E. & Steege, H. T. Botanical richness and endemicity patterns of Borneo derived from species distribution models.
Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?
Daru, B. H. A global database of butterfly species native distributions. PubMed
Vane-Wright, R. I. & de Jong, R. The butterflies of Sulawesi: annotated checklist for a critical island fauna.
Parsons, M. J.
Miller, D. G., Lane, J. & Senock, R. Butterflies as potential bioindicators of primary rainforest and oil palm plantation habitats on New Britain, Papua New Guinea.