Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
30965826
PubMed Central
PMC6418911
DOI
10.3390/polym9100519
PII: polym9100519
Knihovny.cz E-resources
- Keywords
- artificial neural networks, dynamic mechanical analysis, stiffness-temperature model, thermoplastic polyurethanes, visco-elastic properties,
- Publication type
- Journal Article MeSH
This paper presents one of the soft computing methods, specifically the artificial neural network technique, that has been used to model the temperature dependence of dynamic mechanical properties and visco-elastic behavior of widely exploited thermoplastic polyurethane over the wide range of temperatures. It is very complex and commonly a highly non-linear problem with no easy analytical methods to predict them directly and accurately in practice. Variations of the storage modulus, loss modulus, and the damping factor with temperature were obtained from the dynamic mechanical analysis tests across transition temperatures at constant single frequency of dynamic mechanical loading. Based on dynamic mechanical analysis experiments, temperature dependent values of both dynamic moduli and damping factor were calculated by three models of well-trained multi-layer feed-forward back-propagation artificial neural network. The excellent agreement between the modeled and experimental data has been found over the entire investigated temperature interval, including all of the observed relaxation transitions. The multi-layer feed-forward back-propagation artificial neural network has been confirmed to be a very effective artificial intelligence tool for the modeling of dynamic mechanical properties and for the prediction of visco-elastic behavior of tested thermoplastic polyurethane in the whole temperature range of its service life.
See more in PubMed
Drobny J.G. Handbook of Thermoplastic Elastomers. 2nd ed. Elsevier; Oxford, UK: 2014.
Krmela J., Krmelová V. Dynamic Experiment of Parts of Car Tyres. Procedia Eng. 2017;187:763–768. doi: 10.1016/j.proeng.2017.04.435. DOI
Patton S.T., Chen C., Hu J., Grazulis L., Schrand A.M., Roy A.K. Characterization of Thermoplastic Polyurethane (TPU) and Ag-Carbon Black TPU Nanocomposite for Potential Application in Additive Manufacturing. Polymers. 2017;9:6. doi: 10.3390/polym9010006. PubMed DOI PMC
Prisacariu C. Polyurethane Elastomers: From Morphology to Mechanical Aspects. Springer; Wien, Austria: 2011.
Ward I.M., Sweeney J. Mechanical Properties of Solid Polymers. 3rd ed. Wiley; Hoboken, NJ, USA: 2012.
Ramachandran V.S., Paroli R.M., Beaudoin J.J., Delgado A.H. Handbook of Thermal Analysis of Construction Materials. Noyes Publications/William Andrew Pub; Norwich, NY, USA: 2002.
Menczel J.D., Prime R.B. Thermal Analysis of Polymers: Fundamentals and Applications. Wiley; Hoboken, NJ, USA: 2008.
Huh D.S., Cooper S.L. Dynamic mechanical properties of polyurethane block polymers. Polym. Eng. Sci. 1971;11:369–376. doi: 10.1002/pen.760110504. DOI
Gabbott P. Principles and Applications of Thermal Analysis. Wiley; Hoboken, NJ, USA: 2007.
Ward I.M., Sweeney J. An Introduction to the Mechanical Properties of Solid Polymers. 2nd ed. Wiley; Chichester, UK: 2004.
Mahieux C.A., Reifsnider K.L. Property modeling across transition temperatures in polymers: A robust stiffness-temperature model. Polymer. 2001;42:3281–3291. doi: 10.1016/S0032-3861(00)00614-5. DOI
Richeton J., Schlatter G., Vecchio K.S., Rémond Y., Ahzi S. Unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer. 2005;46:8194–8201. doi: 10.1016/j.polymer.2005.06.103. DOI
Kopal I., Bakošová D., Koštial P., Jančíková Z., Valíček J., Harničárová M. Weibull distribution application on temperature dependence of polyurethane storage modulus. Int. J. Mater. Res. 2016;107:472–476. doi: 10.3139/146.111359. DOI
Rinne H. The Weibull Distribution: A Handbook. CRC Press; Boca Raton, FL, USA: 2009.
Brinson H.F., Brinson L.C. Polymer Engineering Science and Viscoelasticity. 2nd ed. Springer; Berlin, Germany: 2014.
Li Y., Tang S., Abberton B.C., Kröger M., Burkhart C., Jiang B., Papakonstantopoulos G.J., Poldneff M., Liu W.K. A predictive multiscale computational framework for viscoelastic properties of linear polymers. Polymer. 2012;53:5935–5952. doi: 10.1016/j.polymer.2012.09.055. DOI
Li Y., Abberton B.C., Kröger M., Liu W.K. Challenges in multiscale modeling of polymer dynamics. Polymers. 2013;5:751–832. doi: 10.3390/polym5020751. DOI
Fausett L.V. Fundamentals of Neural Networks. 1st ed. Prentice Hall; New York, NY, USA: 1994.
Zhang Z., Friedrich K. Artificial neural networks applied to polymer composites: A review. Compos. Sci. Technol. 2003;63:2029–2044. doi: 10.1016/S0266-3538(03)00106-4. DOI
Sifaoui A., Abdelkrim A., Benrejeb M. On the Use of Neural Network as a Universal Approximator. Int. J. Sci. Tech. Control Comput. Eng. 2008;2:386–399.
Bessa M.A., Bostanabad R., Liu Z., Hu A., Apley D.W., Brinson C., Chen W., Liu W.K. A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput. Methods Appl. Mech. Eng. 2017;320:633–667. doi: 10.1016/j.cma.2017.03.037. DOI
Le B.A., Yvonnet J., He Q.C. Computational homogenization of nonlinear elastic materials using neural networks. Int. J. Numer. Meth. Eng. 2015;104:1061–1084. doi: 10.1002/nme.4953. DOI
Norgaard M., Ravn O., Poulsen N.K., Hansen L.K. Neural Networks for Modeling and Control of Dynamic Systems. Springer; Berlin, Germany: 2002.
Jin D., Lin A. Advances in Computer Science, Intelligent System and Environment. Springer; Berlin, Germany: 2011.
Aliev R., Bonfig K., Aliew F. Soft Computing. Verlag Technic; Berlin, Germany: 2000.
Bhowmick A.K., Stephens H.L. Handbook of Elastomers. 2nd ed. CRC-Press; Boca Raton, FL, USA: 2000.
Qi Z.N., Wan Z.H., Chen Y.P. A comparative DSC method for physical aging measurement of polymers. Polym. Test. 1993;12:185–192. doi: 10.1016/0142-9418(93)90035-N. DOI
Freeman J.A., Skapura D.M. Neural Networks Algorithms, Applications, and Programming Techniques. Addison-Wesley Publishing Company; Boston, MA, USA: 1991.
Auer P., Burgsteiner H., Maass W.A. A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Netw. 2008;21:786–795. doi: 10.1016/j.neunet.2007.12.036. PubMed DOI
Shanmuganathan S., Samarasinghe S. Artificial Neural Network Modelling. Springer; Berlin, Germany: 2016.
Du K.L., Swamy M.N.S. Neural Networks and Statistical Learning. Springer; Berlin, Germany: 2014.
Beale M.H., Hagan M.T., Demuth H.B. Neural Network Toolbox™ User’s Guide. The MathWorks, Inc.; Natick, MA, USA: 2017.
Bowden G.J., Maier H.R., Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 2002;38:2-1–2-11. doi: 10.1029/2001WR000266. DOI
Trebar M., Susteric Z., Lotric U. Predicting mechanical properties of elastomers with neural networks. Polymer. 2007;48:5340–5347. doi: 10.1016/j.polymer.2007.07.030. DOI
Zhang Z., Klein P., Friedrich K. Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: Experiment and artificial neural network prediction. Compos. Sci. Technol. 2002;62:1001–1009. doi: 10.1016/S0266-3538(02)00036-2. DOI
Mohri M., Rostamizadeh A., Talwalkar A. Foundations of Machine Learning. MIT Press; Cambridge, MA, USA: 2012.
Hagan M.T., Menhaj M. Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1999;5:989–999. doi: 10.1109/72.329697. PubMed DOI
Croeze A., Pittman L., Reynolds W. Nonlinear Least-Squares Problems with the Gauss-Newton and Levenberg-Marquardt Methods. University of Mississippi; Oxford, UK: 2012.
Fairbank M., Alonso E. Efficient Calculation of the Gauss-Newton Approximation of the Hessian Matrix in Neural Networks. Neural Comput. 2012;24:607–610. doi: 10.1162/NECO_a_00248. PubMed DOI
Wackerly D., Mendenhall W., Scheaffer R.L. Mathematical Statistics with Applications. 7th ed. Thomson Higher Education; Belmont, TN, USA: 2008.
Barnes R.J. Matrix Differentiation. University of Minnesota; Minneapolis, MN, USA: 2017.
Madić M.J., Radovanović M.R. Optimal Selection of ANN Training and Architectural Parameters Using Taguchi Method: A Case Study. FME Trans. 2011;39:79–86.
Nocedal J., Wright S.J. Numerical Optimization. 2nd ed. Springer; Berlin, Germany: 2006.
Zhang T., Yu B. Boosting with Early Stopping: Convergence and Consistency. Ann. Stat. 2005;33:1538–1579. doi: 10.1214/009053605000000255. DOI
Syed A.H., Munir A. Distribution of Mean of Correlation Coefficients: Mean of Correlation Coefficients. LAP Lambert Academic Publishing; Saarbrücken, Germany: 2012.
Nematollahi M., Jalali-Arani A., Golzar K. Organoclay maleated natural rubber nanocomposite. Prediction of abrasion and mechanical properties by artificial neural network and adaptive neuro-fuzzy inference. Appl. Clay Sci. 2014;97–98:187–199. doi: 10.1016/j.clay.2014.05.027. DOI
Simon L. An Introduction to Multivariable Mathematics. Morgan & Claypool; St. Louis, CA, USA: 2008.
Shi F., Wang X.C., Yu L., Li Y. MATLAB 30 Case Analysis of MATLAB Neural Network. Beijing University Press; Beijing, China: 2009.
Wong S.S.M. Computational Methods in Physics and Engineering. 2nd ed. World Scientic Publishing; New York, NY, USA: 1977.
Suzuki K. Artificial Neural Networks—Industrial and Control Engineering Applications. InTech; Rijeka, Croatia: 2011.
Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network