Radial Basis Function Neural Network-Based Modeling of the Dynamic Thermo-Mechanical Response and Damping Behavior of Thermoplastic Elastomer Systems
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31234362
PubMed Central
PMC6631236
DOI
10.3390/polym11061074
PII: polym11061074
Knihovny.cz E-resources
- Keywords
- artificial neural networks, dynamic mechanical analysis, radial basis functions, thermoplastic polyurethanes, visco-elastic properties,
- Publication type
- Journal Article MeSH
The presented work deals with the creation of a new radial basis function artificial neural network-based model of dynamic thermo-mechanical response and damping behavior of thermoplastic elastomers in the whole temperature interval of their entire lifetime and a wide frequency range of dynamic mechanical loading. The created model is based on experimental results of dynamic mechanical analysis of the widely used thermoplastic polyurethane, which is one of the typical representatives of thermoplastic elastomers. Verification and testing of the well-trained radial basis function neural network for temperature and frequency dependence of dynamic storage modulus, loss modulus, as well as loss tangent prediction showed excellent correspondence between experimental and modeled data, including all relaxation events observed in the polymeric material under study throughout the monitored temperature and frequency interval. The radial basis function artificial neural network has been confirmed to be an exceptionally high-performance artificial intelligence tool of soft computing for the effective predicting of short-term viscoelastic behavior of thermoplastic elastomer systems based on experimental results of dynamic mechanical analysis.
See more in PubMed
Drobny J.G. Handbook of Thermoplastic Elastomers. 2nd ed. Elsevier; Oxford, UK: 2014.
Olagoke O., Kolapo A. Handbook of Thermoplastics. 2nd ed. CRC Press; Boca Raton, FL, USA: 2015.
Coveney V.A. Elastomers and Components. Elsevier; Oxforf, UK: 2006.
Prisacariu C. Polyurethane Elastomers: From Morphology to Mechanical Aspects. Springer; Wien, Austria: 2011.
Spontak R.J., Patel N.P. Thermoplastic elastomers: Fundamentals and applications. Curr. Opin. Colloid Interface Sci. 2000;5:333–340. doi: 10.1016/S1359-0294(00)00070-4. DOI
Kopal I., Vršková J., Labaj I., Ondrušová D., Hybler P., Harničárová M., Valíček J., Kušnerová M. The Effect of High-Energy Ionizing Radiation on the Mechanical Properties of a Melamine Resin, Phenol-Formaldehyde Resin, and Nitrile Rubber Blend. Procedia Eng. 2017;11:2405. doi: 10.3390/ma11122405. PubMed DOI PMC
Roylance D. Engineering Viscoelasticity. MIT; Cambridge, MA, USA: 2001.
Brinson H.F., Brinson L.C. Polymer Engineering Science and Viscoelasticity. 2nd ed. Springer; Berlin, Germany: 2014.
Randall D., Lee S. The Polyurethanes Book. Wiley; Hoboken, NJ, USA: 2003.
Koštial P., Bakošová D., Jančíková Z., Ružiak I., Valíček J. Thermo-Mechanical Analysis of Rubber Compounds Filled by Carbon Nanotubes. Defect Diffus. Forum. 2013;336:1–10. doi: 10.4028/www.scientific.net/DDF.336.1. DOI
Ward I.M., Sweeney J. An Introduction to the Mechanical Properties of Solid Polymers. 2nd ed. Wiley; Chichester, UK: 2004.
Ashby M.F., Jones H.R.D. Engineering Materials 2. An Introduction to Microstructures, Processing and Design. Elsevier/Butterworth-Heinemann; Amsterdam, The Netherlands: 2005.
Riande E., Diaz-Calleja R., Prolongo M.G., Masegosa R.M., Salom C. Polymer viscoelasticity: stress and strain in practice. Marcel Dekker, Inc.; New York, NY, USA: 2000.
Gabbott P. Principles and Applications of Thermal Analysis. Blackwell Publishing; Oxford, UK: 2008.
Menard K. Dynamic Mechanical Analysis: A Practical Introduction. 2nd ed. CRC Press; Boca Raton, FL, USA: 1999.
Fried J.R. Polymer Science and Technology. 3rd ed. Prentice Hall; Upper Saddle River, NJ, USA: 2014.
Kopal I., Harničárová M., Valíček J., Koštial P., Jančíková Z.K. Determination of activation energy of relaxation events in thermoplastic polyurethane by dynamic mechanical analysis. Materialwiss. Werkstofftech. 2018;49:627–634. doi: 10.1002/mawe.201700242. DOI
Mahieux C.A., Reifsnider K.L. Property modeling across transition temperatures in polymers: A robust stiffness-temperature model. Polymer. 2001;42:3281–3291. doi: 10.1016/S0032-3861(00)00614-5. DOI
Richeton J., Schlatter G., Vecchio K.S., Rémond Y., Ahzi S. Unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer. 2005;46:8194–8201. doi: 10.1016/j.polymer.2005.06.103. DOI
Kopal I., Bakošová D., Koštial P., Jančíková Z., Valíček J., Harničárová M. Weibull distribution application on temperature dependence of polyurethane storage modulus. Int. J. Mater. Res. 2016;107:472–476. doi: 10.3139/146.111359. DOI
Kopal I., Labaj I., Harničárová M., Valíček J., Hrubý D. Prediction of the Tensile Response of Carbon Black Filled Rubber Blends by Artificial Neural Network. Polymers. 2018;10:644. doi: 10.3390/polym10060644. PubMed DOI PMC
Aliev R., Bonfig K., Aliew F. Soft Computing. Verlag Technic; Berlin, Germany: 2000.
Zhang Z., Friedrich K. Artificial neural networks applied to polymer composites: A review. Compos. Sci. Technol. 2003;63:2029–2044. doi: 10.1016/S0266-3538(03)00106-4. DOI
Al-Haik M.S., Hussaini M.Y., Rogan C.S. Artificial Intelligence Techniques in Simulation of Viscoplasticity of Polymeric Composites. Polym. Compos. 2009;30:1701–1708. doi: 10.1002/pc.20745. DOI
Hagan M.T., Demuth H.B., Beale M.H., De Jesús O. Neural Network Design. 2nd ed. Martin Hagan; Jersey, NJ, USA: 2014.
Rao M.A. Neural Networks: Algorithms and Applications. Alpha Science International; Oxford, UK: 2003.
Livingstone D.J. Artificial Neural Networks Methods and Applications (Methods in Molecular Biology) Humana Press; Totowa, NJ, USA: 2013. PubMed
Kopal I., Harničárová M., Valíček J., Kušnerová M. Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network. Polymers. 2017;9:519. doi: 10.3390/polym9100519. PubMed DOI PMC
Seidl D., Jančíková Z., Koštial P., Ružiak I., Kopal I., Kreislova K. Exploitation of Artificial Intelligence Methods for Prediction of Atmospheric Corrosion. Defect Diffus. Forum. 2012;326:65–68. doi: 10.4028/www.scientific.net/DDF.326-328.65. DOI
Ružiak I., Koštial P., Jančíková Z., Gajtanska M., Krišťák Ľ., Kopal I., Polakovič P. Artificial Neural Networks Prediction of Rubber Mechanical Properties in Aged and Nonaged State. In: Öchsner A., Altenbach H., editors. Improved Performance of Materials. Volume 72. Springer; Berlin, Germany: 2018. pp. 27–35.
Nguyen L.T.K., Keip M.A. A data-driven approach to nonlinear elasticity. Comput. Struct. 2018;194:97–115. doi: 10.1016/j.compstruc.2017.07.031. DOI
Davydov O., Oanh D.T. On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation. Comput. Math. Appl. 2011;62:2143–2161. doi: 10.1016/j.camwa.2011.06.037. DOI
Pislaru C., Shebani A. Identification of Nonlinear Systems Using Radial Basis Function Neural Network. Int. J. Comput. Inf. Syst. Control Eng. 2014;8:1528–1533.
Xu X., Gupta N. Artificial neural network approach to predict the elastic modulus from dynamic mechanical analysis results. Adv. Theory Simul. 2019;2:1800131. doi: 10.1002/adts.201800131. DOI
Xu X., Gupta N. Application of radial basis neural network to transform viscoelastic to elastic properties for materials with multiple thermal transitions. J. Mater. Sci. 2019;54:8401–8413. doi: 10.1007/s10853-019-03481-0. DOI
Trebar M., Susteric Z., Lotric U. Predicting mechanical properties of elastomers with neural networks. Polymer. 2007;48:5340–5347. doi: 10.1016/j.polymer.2007.07.030. DOI
Bhowmick A.K., Stephens H.L. Handbook of Elastomers. 2nd ed. CRC-Press; Boca Raton, FL, USA: 2000.
Shi F., Wang X.C., Yu L., Li Y. MATLAB 30 Case Analysis of MATLAB Neural Network. Beijing University Press; Beijing, China: 2009.
Paliwal M., Kumar U.A. Neural networks and statistical techniques: A review of applications. Expert Syst. Appl. 2009;36:2–17. doi: 10.1016/j.eswa.2007.10.005. DOI
Wang H., Xu X. Applying RBF Neural Networks and Genetic Algorithms to Nonlinear System Optimization. Adv. Mater. Res. 2012;605:2457–2460. doi: 10.4028/www.scientific.net/AMR.605-607.2457. DOI