Artificial Neural Networks for Pyrolysis, Thermal Analysis, and Thermokinetic Studies: The Status Quo
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
AAAA-A18-118031490034-6
Russian Federal Ministry of Science and Higher Education
PubMed
34207246
PubMed Central
PMC8235697
DOI
10.3390/molecules26123727
PII: molecules26123727
Knihovny.cz E-resources
- Keywords
- artificial neural networks, conversion degree, kinetics, machine learning, pyrolysis, thermal analysis,
- Publication type
- Journal Article MeSH
- Review MeSH
Artificial neural networks (ANNs) are a method of machine learning (ML) that is now widely used in physics, chemistry, and material science. ANN can learn from data to identify nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already demonstrated their worth in solving various chemical engineering problems, but applications in pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The present article gives a critical overview and summary of the available literature on applying ANNs in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from these research areas are surveyed. Some approaches from the broad field of chemical engineering are discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve significantly to reach the capabilities of the existing isoconversional and model-fitting methods.
See more in PubMed
Wilbraham L., Mehr S.H.M., Cronin L. Digitizing Chemistry Using the Chemical Processing Unit: From Synthesis to Discovery. Acc. Chem. Res. 2021;54:253–262. doi: 10.1021/acs.accounts.0c00674. PubMed DOI
Walters W.P., Barzilay R. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction. Acc. Chem. Res. 2021;54:263–270. doi: 10.1021/acs.accounts.0c00699. PubMed DOI
Tkatchenko A. Machine learning for chemical discovery. Nat. Commun. 2020;11:4125. doi: 10.1038/s41467-020-17844-8. PubMed DOI PMC
Yamada H., Liu C., Wu S., Koyama Y., Ju S., Shiomi J., Morikawa J., Yoshida R. Predicting Materials Properties with Little Data Using Shotgun Transfer Learning. ACS Cent. Sci. 2019;5:1717–1730. doi: 10.1021/acscentsci.9b00804. PubMed DOI PMC
Sieniutycz S., Szwast Z. Optimizing Thermal, Chemical, and Environmental Systems. Elsevier; Amsterdam, The Netherlands: 2018. Neural Networks—A Review of Applications; pp. 109–120.
Xu A., Chang H., Xu Y., Li R., Li X., Zhao Y. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review. Waste Manag. 2021;124:385–402. doi: 10.1016/j.wasman.2021.02.029. PubMed DOI
McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1943;5:115–133. doi: 10.1007/BF02478259. PubMed DOI
Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989;2:303–314. doi: 10.1007/BF02551274. DOI
Sbirrazzuoli N., Brunel D. Computational neural networks for mapping calorimetric data: Application of feed-forward neural networks to kinetic parameters determination and signals filtering. Neural Comput. Appl. 1997;5:20–32. doi: 10.1007/BF01414100. DOI
Egmont-Petersen M., de Ridder D., Handels H. Image processing with neural networks—A review. Pattern Recognit. 2002;35:2279–2301. doi: 10.1016/S0031-3203(01)00178-9. DOI
Cammarata L., Fichera A., Pagano A. Neural prediction of combustion instability. Appl. Energy. 2002;72:513–528. doi: 10.1016/S0306-2619(02)00024-7. DOI
Cho S., No K., Goh E., Kim J., Shin J., Joo Y., Seong S. Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Molecules. Bull. Korean Chem. Soc. 2005;26:399–408. doi: 10.5012/bkcs.2005.26.3.399. DOI
Darsey J.A., Noid D.W., Wunderlich B., Tsoukalas L. Neural-net extrapolations of heat capacities of polymers to low temperatures. Die Makromol. Chem. Rapid Commun. 1991;12:325–330. doi: 10.1002/marc.1991.030120605. DOI
Ventura S., Silva M., Perez-Bendito D., Hervas C. Multicomponent Kinetic Determinations Using Artificial Neural Networks. Anal. Chem. 1995;67:4458–4461. doi: 10.1021/ac00120a004. PubMed DOI
Bandyopadhyay J.K., Annamalai S., Gauri K.L. Application of artificial neural networks in modeling limestone–SO2 reaction. AIChE J. 1996;42:2295–2302. doi: 10.1002/aic.690420818. DOI
Sbirrazzuoli N., Brunel D., Elegant L. Neural networks for kinetic parameters determination, signal filtering and deconvolution in thermal analysis. J. Therm. Anal. Calorim. 1997;49:1553–1564. doi: 10.1007/BF01983715. DOI
Sebastião R.C.O., Braga J.P., Yoshida M.I. Competition between kinetic models in thermal decomposition: Analysis by artificial neural network. Thermochim. Acta. 2004;412:107–111. doi: 10.1016/j.tca.2003.09.009. DOI
Sebastiao R.C.O., Braga J.P., Yoshida M.I. Artificial neural network applied to solid state thermal decomposition. J. Therm. Anal. Calorim. 2003;74:811–818. doi: 10.1023/B:JTAN.0000011013.80148.46. DOI
Wiltowski T., Piotrowski K., Lorethova H., Stonawski L., Mondal K., Lalvani S.B. Neural network approximation of iron oxide reduction process. Chem. Eng. Process. Process Intensif. 2005;44:775–783. doi: 10.1016/j.cep.2004.08.007. DOI
Bezerra E.M., Bento M.S., Rocco J.A.F.F., Iha K., Lourenço V.L., Pardini L.C. Artificial neural network (ANN) prediction of kinetic parameters of (CRFC) composites. Comput. Mater. Sci. 2008;44:656–663. doi: 10.1016/j.commatsci.2008.05.002. DOI
Muravyev N.V., Pivkina A.N. New concept of thermokinetic analysis with artificial neural networks. Thermochim. Acta. 2016;637:69–73. doi: 10.1016/j.tca.2016.05.018. DOI
Cavalheiro É.T.G. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier; Amsterdam, The Netherlands: 2018. Thermal Analysis.
Sun Y., Liu L., Wang Q., Yang X., Tu X. Pyrolysis products from industrial waste biomass based on a neural network model. J. Anal. Appl. Pyrolysis. 2016;120:94–102. doi: 10.1016/j.jaap.2016.04.013. DOI
Hough B.R., Beck D.A., Schwartz D.T., Pfaendtner J. Application of machine learning to pyrolysis reaction networks: Reducing model solution time to enable process optimization. Comput. Chem. Eng. 2017;104:56–63. doi: 10.1016/j.compchemeng.2017.04.012. DOI
Hua F., Fang Z., Qiu T. Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling. Chin. J. Chem. Eng. 2018;26:2562–2572. doi: 10.1016/j.cjche.2018.09.021. DOI
Šesták J. Ignoring heat inertia impairs accuracy of determination of activation energy in thermal analysis. Int. J. Chem. Kinet. 2019;51:74–80. doi: 10.1002/kin.21230. DOI
Vyazovkin S. How much is the accuracy of activation energy affected by ignoring thermal inertia? Int. J. Chem. Kinet. 2020;52:23–28. doi: 10.1002/kin.21326. DOI
Vyazovkin S., Burnham A.K., Criado J.M., Perez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta. 2011;520:1–19. doi: 10.1016/j.tca.2011.03.034. DOI
Burnham A.K., Dinh L.N. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J. Therm. Anal. Calorim. 2007;89:479–490. doi: 10.1007/s10973-006-8486-1. DOI
Muravyev N.V., Melnikov I.N., Monogarov K.A., Kuchurov I.V., Pivkina A.N. The power of model-fitting kinetic analysis applied to complex thermal decomposition of explosives: Reconciling the kinetics of bicyclo-HMX thermolysis in solid state and solution. J. Therm. Anal. Calorim. 2021 doi: 10.1007/s10973-021-10686-6. DOI
Vyazovkin S. Handbook of Thermal Analysis and Calorimetry. Volume 6. Elsevier; Amsterdam, The Netherlands: 2018. Modern Isoconversional Kinetics: From Misconceptions to Advances; pp. 131–172.
Sbirrazzuoli N. Model-free isothermal and nonisothermal predictions using advanced isoconversional methods. Thermochim. Acta. 2021;697:178855. doi: 10.1016/j.tca.2020.178855. DOI
Kiselev V.G., Muravyev N.V., Monogarov K.A., Gribanov P.S., Asachenko A.F., Fomenkov I.V., Goldsmith C.F., Pivkina A.N., Gritsan N.P., Asachenko A.F. Toward reliable characterization of energetic materials: Interplay of theory and thermal analysis in the study of the thermal stability of tetranitroacetimidic acid (TNAA) Phys. Chem. Chem. Phys. 2018;20:29285–29298. doi: 10.1039/C8CP05619F. PubMed DOI
Koga N. Handbook of Thermal Analysis and Calorimetry. Volume 6. Elsevier; Amsterdam, The Netherlands: 2018. Physico-Geometric Approach to the Kinetics of Overlapping Solid-State Reactions; pp. 213–251.
Opfermann J., Hädrich W. Prediction of the thermal response of hazardous materials during storage using an improved technique. Thermochim. Acta. 1995;263:29–50. doi: 10.1016/0040-6031(94)02392-2. DOI
Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019;1:206–215. doi: 10.1038/s42256-019-0048-x. PubMed DOI PMC
Novak R., Bahri Y., Abolafia D.A., Pennington J., Sohl-Dickstein J. Sensitivity and Generalization in Neural Networks: An Empirical Study. arXiv. 20181802.08760
Psichogios D.C., Ungar L.H. A hybrid neural network-first principles approach to process modeling. AIChE J. 1992;38:1499–1511. doi: 10.1002/aic.690381003. DOI
Wolpert D.H. The Lack of a Priori Distinctions between Learning Algorithms. Neural Comput. 1996;8:1341–1390. doi: 10.1162/neco.1996.8.7.1341. DOI
Farah J.S., Cavalcanti R.N., Guimarães J.T., Balthazar C.F., Coimbra P.T., Pimentel T.C., Esmerino E.A., Duarte M.C.K., Freitas M.Q., Granato D., et al. Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity. Food Control. 2021;121:107585. doi: 10.1016/j.foodcont.2020.107585. DOI
Ali J.M., Hussain M., Tade M.O., Zhang J. Artificial Intelligence techniques applied as estimator in chemical process—A literature survey. Expert Syst. Appl. 2015;42:5915–5931. doi: 10.1016/j.eswa.2015.03.023. DOI
Da Silva I.N., Hernane Spatti D., Andrade Flauzino R., Liboni L.H.B., dos Reis Alves S.F. Artificial Neural Networks. A Practical Course. Springer; Cham, Switzerland: 2017.
Graupe D. Principles of Artificial Neural Networks: Basic Designs to Deep Learning. World Scientific; Singapore: 2019.
Çepelioğullar Ö., Mutlu I., Yaman S., Haykiri-Acma H. A study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application. J. Anal. Appl. Pyrolysis. 2016;122:84–94. doi: 10.1016/j.jaap.2016.10.013. DOI
Naqvi S.R., Hameed Z., Tariq R., Taqvi S.A., Ali I., Niazi M.B., Noor T., Hussain A., Iqbal N., Shahbaz M. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag. 2019;85:131–140. doi: 10.1016/j.wasman.2018.12.031. PubMed DOI
Ghiba L., Drăgoi E.N., Curteanu S. Neural network-based hybrid models developed for free radical polymerization of styrene. Polym. Eng. Sci. 2021;61:716–730. doi: 10.1002/pen.25611. DOI
Liu Y.-P., Wu M.-G., Qian J.-X. Evolving Neural Networks Using the Hybrid of Ant Colony Optimization and BP Algorithms. In: Wang J., Yi Z., Zurada J.M., Lu B.-L., Yin H., editors. Advances in Neural Networks—ISNN 2006. Volume 3971. Springer; Berlin/Heidelberg, Germany: 2006. pp. 714–722. Lecture Notes in Computer Science.
Liu Y., Wu M., Qian J. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network. Thermochim. Acta. 2007;454:64–68. doi: 10.1016/j.tca.2006.10.026. DOI
Shao R., Martin E., Zhang J., Morris A. Confidence bounds for neural network representations. Comput. Chem. Eng. 1997;21:S1173–S1178. doi: 10.1016/S0098-1354(97)00208-1. DOI
Sridhar D.V., Seagrave R.C., Bartlett E.B. Process modeling using stacked neural networks. AIChE J. 1996;42:2529–2539. doi: 10.1002/aic.690420913. DOI
Niaei A., Towfighi J., Khataee A.R., Rostamizadeh K. The Use of ANN and the Mathematical Model for Prediction of the Main Product Yields in the Thermal Cracking of Naphtha. Pet. Sci. Technol. 2007;25:967–982. doi: 10.1080/10916460500423304. DOI
Nielsen M. Neural Networks and Deep Learning. Determination Press; San Francisco, CA, USA: 2019. Chapter 1: Using Neural Nets to Recognize Handwritten Digits.
Vapnik V.N. The Nature of Statistical Learning Theory. Springer; New York, NY, USA: 2000.
Molga E. Neural network approach to support modelling of chemical reactors: Problems, resolutions, criteria of application. Chem. Eng. Process. Process Intensif. 2003;42:675–695. doi: 10.1016/S0255-2701(02)00205-2. DOI
Agnol L.D., Ornaghi H.L., Jr., Monticeli F., Dias F.T.G., Bianchi O. Polyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerization. Polym. Eng. Sci. 2021;61:1810–1818. doi: 10.1002/pen.25702. DOI
Conesa J.A., Caballero J., Labarta J.A. Artificial neural network for modelling thermal decompositions. J. Anal. Appl. Pyrolysis. 2004;71:343–352. doi: 10.1016/S0165-2370(03)00093-7. DOI
Ventura S., Silva M., Perez-Bendito D., Hervas C. Artificial Neural Networks for Estimation of Kinetic Analytical Parameters. Anal. Chem. 1995;67:1521–1525. doi: 10.1021/ac00105a007. PubMed DOI
Casier B., Carniato S., Miteva T., Capron N., Sisourat N. Using principal component analysis for neural network high-dimensional potential energy surface. J. Chem. Phys. 2020;152:234103. doi: 10.1063/5.0009264. PubMed DOI
Ravi Kumar G., Nagamani K., Anjan Babu G. A Framework of Dimensionality Reduction Utilizing PCA for Neural Net-work Prediction. In: Borah S., Emilia Balas V., Polkowski Z., editors. Advances in Data Science and Management. Volume 37. Springer; Singapore: 2020. pp. 173–180. Lecture Notes on Data Engineering and Communications Technologies.
Strange H., Zwiggelaar R. An Introduction to Distance Geometry applied to Molecular Geometry. Springer; Berlin/Heidelberg, Germany: 2014. Spectral Dimensionality Reduction; pp. 7–22.
Sunphorka S., Chalermsinsuwan B., Piumsomboon P. Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. Fuel. 2017;193:142–158. doi: 10.1016/j.fuel.2016.12.046. DOI
Zhu Q., Jones J., Williams A., Thomas K. The predictions of coal/char combustion rate using an artificial neural network approach. Fuel. 1999;78:1755–1762. doi: 10.1016/S0016-2361(99)00124-6. DOI
Bhuyan N., Narzari R., Baruah S.M.B., Kataki R. Comparative assessment of artificial neural network and response surface methodology for evaluation of the predictive capability on bio-oil yield of Tithonia diversifolia pyrolysis. Biomass Convers. Biorefinery. 2020 doi: 10.1007/s13399-020-00806-x. DOI
Dubdub I., Al-Yaari M. Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction. Polymers. 2020;12:891. doi: 10.3390/polym12040891. PubMed DOI PMC
Angın D., Tiryaki A.E. Application of response surface methodology and artificial neural network on pyrolysis of safflower seed press cake. Energy Sources Part A Recover. Util. Environ. Eff. 2016;38:1055–1061. doi: 10.1080/15567036.2013.862585. DOI
Karacı A., Caglar A., Aydinli B., Pekol S. The pyrolysis process verification of hydrogen rich gas (H–rG) production by artificial neural network (ANN) Int. J. Hydrogen Energy. 2016;41:4570–4578. doi: 10.1016/j.ijhydene.2016.01.094. DOI
Carsky M., Kuwornoo D.K. Neural network modelling of coal pyrolysis. Fuel. 2001;80:1021–1027. doi: 10.1016/S0016-2361(00)00191-5. DOI
Al-Yaari M., Dubdub I. Application of Artificial Neural Networks to Predict the Catalytic Pyrolysis of HDPE Using Non-Isothermal TGA Data. Polymers. 2020;12:1813. doi: 10.3390/polym12081813. PubMed DOI PMC
Arumugasamy S.K., Selvarajoo A. Feedforward Neural Network Modeling of Biomass Pyrolysis Process for Biochar Produc-tion. Chem. Eng. Trans. 2015;45:1681–1686. doi: 10.3303/CET1545281. DOI
Li X.H., Fan Y.S., Cai Y.X., Zhao W.D., Yin H.Y. Optimization of Biomass Vacuum Pyrolysis Process Based on GRNN. Appl. Mech. Mater. 2013;411–414:3016–3022. doi: 10.4028/www.scientific.net/AMM.411-414.3016. DOI
Bi H., Wang C., Lin Q., Jiang X., Jiang C., Bao L. Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR. Energy. 2020;213:118790. doi: 10.1016/j.energy.2020.118790. DOI
Sathiya Prabhakaran S.P., Swaminathan G., Joshi V.V. Thermogravimetric analysis of hazardous waste: Pet-coke, by kinetic models and Artificial neural network modeling. Fuel. 2021;287:119470. doi: 10.1016/j.fuel.2020.119470. DOI
Bi H., Wang C., Jiang X., Jiang C., Bao L., Lin Q. Prediction of mass loss for sewage sludge-peanut shell blends in thermogravimetric experiments using artificial neural networks. Energy Sources Part A Recover. Util. Environ. Eff. 2020:1–14. doi: 10.1080/15567036.2020.1841338. DOI
Chen J., Xie C., Liu J., He Y., Xie W., Zhang X., Chang K., Kuo J., Sun J., Zheng L., et al. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresour. Technol. 2018;250:230–238. doi: 10.1016/j.biortech.2017.11.031. PubMed DOI
Monticeli F.M., Neves R.M., Júnior H.L.O. Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers. Cellulose. 2021;28:1961–1971. doi: 10.1007/s10570-021-03684-2. DOI
Gu C., Wang X., Song Q., Li H., Qiao Y. Prediction of gas-liquid-solid product distribution after solid waste pyrolysis process based on artificial neural network model. Int. J. Energy Res. 2021:6707. doi: 10.1002/er.6707. DOI
Saleem M., Ali I. Machine Learning Based Prediction of Pyrolytic Conversion for Red Sea Seaweed; Proceedings of the 7th International Conference on Biological, Chemical & Environmental Sciences (BCES-2017); Budapest, Hungary. 6–7 September 2017.
Abdurakipov S.S., Butakov E.B., Burdukov A.P., Kuznetsov A.V., Chernova G.V. Using an Artificial Neural Network to Simulate the Complete Burnout of Mechanoactivated Coal. Combust. Explos. Shock. Waves. 2019;55:697–701. doi: 10.1134/S0010508219060108. DOI
Cao H., Xin Y., Yuan Q. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresour. Technol. 2016;202:158–164. doi: 10.1016/j.biortech.2015.12.024. PubMed DOI
Çepelioğullar Ö., Mutlu I., Yaman S., Haykiri-Acma H. Activation energy prediction of biomass wastes based on different neural network topologies. Fuel. 2018;220:535–545. doi: 10.1016/j.fuel.2018.02.045. DOI
Aydinli B., Caglar A., Pekol S., Karaci A. The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network. Energy Explor. Exploit. 2017;35:698–712. doi: 10.1177/0144598717716282. DOI
Burgaz E., Yazici M., Kapusuz M., Alisir S.H., Ozcan H. Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochim. Acta. 2014;575:159–166. doi: 10.1016/j.tca.2013.10.032. DOI
Himmelblau D.M. Applications of artificial neural networks in chemical engineering. Korean J. Chem. Eng. 2000;17:373–392. doi: 10.1007/BF02706848. DOI
Molga E.J., van Woezik B.A.A., Westerterp K.R. Neural networks for modelling of chemical reaction systems with complex kinetics: Oxidation of 2-octanol with nitric acid. Chem. Eng. Process. Process Intensif. 2000;39:323–334. doi: 10.1016/S0255-2701(99)00093-8. DOI
Von Stosch M., Oliveira R., Peres J., de Azevedo S.F. Hybrid semi-parametric modeling in process systems engineering: Past, present and future. Comput. Chem. Eng. 2014;60:86–101. doi: 10.1016/j.compchemeng.2013.08.008. DOI
Bing G. Modelling coal gasification with a hybrid neural network. Fuel. 1997;76:1159–1164. doi: 10.1016/S0016-2361(97)00122-1. DOI
Roduit B., Borgeat C., Berger B., Folly P., Alonso B., Aebischer J.N. The prediction of thermal stability of self-reactive chemicals: From milligrams to tons. J. Therm. Anal. Calorim. 2005;80:91–102. doi: 10.1007/s10973-005-0619-4. DOI
Agarwal M. Combining neural and conventional paradigms for modelling, prediction and control. Int. J. Syst. Sci. 1997;28:65–81. doi: 10.1080/00207729708929364. DOI
Rojek B., Suchacz B., Wesolowski M. Artificial neural networks as a supporting tool for compatibility study based on thermogravimetric data. Thermochim. Acta. 2018;659:222–231. doi: 10.1016/j.tca.2017.12.015. DOI
Kohonen T. Self-Organizing Maps. Volume 30. Springer; Berlin/Heidelberg, Germany: 2001. (Springer Series in Information Sciences).
Strzelczak A. The application of artificial neural networks (ANN) for the denaturation of meat proteins—The kinetic analysis method. Acta Sci. Pol. Technol. Aliment. 2015;18:87–96. doi: 10.17306/j.afs.2019.0623. PubMed DOI
Charde S.J. Degradation Kinetics of Polycarbonate Composites: Kinetic Parameters and Artificial Neural Network. Chem. Biochem. Eng. Q. 2018;32:151–165. doi: 10.15255/CABEQ.2017.1173. DOI
Ferreira B.D.L., Araujo B.C.R., Sebastião R.C.O., Yoshida M.I., Mussel W.N., Fialho S., Barbosa J. Kinetic study of anti-HIV drugs by thermal decomposition analysis: A multilayer artificial neural network propose. J. Therm. Anal. Calorim. 2017;127:577–585. doi: 10.1007/s10973-016-5855-2. DOI
Huang Y.W., Chen M.Q., Li Q.H. Artificial neural network model for the evaluation of chemical kinetics in thermally induced solid-state reaction. J. Therm. Anal. Calorim. 2019;138:451–460. doi: 10.1007/s10973-019-08232-6. DOI
Kuang D., Xu B. Predicting kinetic triplets using a 1d convolutional neural network. Thermochim. Acta. 2018;669:8–15. doi: 10.1016/j.tca.2018.08.024. DOI
Aghbashlo M., Almasi F., Jafari A., Nadian M.H., Soltanian S., Lam S.S., Tabatabaei M. Describing biomass pyrolysis kinetics using a generic hybrid intelligent model: A critical stage in sustainable waste-oriented biorefineries. Renew. Energy. 2021;170:81–91. doi: 10.1016/j.renene.2021.01.111. DOI
Aghbashlo M., Tabatabaei M., Nadian M.H., Davoodnia V., Soltanian S. Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm. Fuel. 2019;253:189–198. doi: 10.1016/j.fuel.2019.04.169. DOI
Jang J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993;23:665–685. doi: 10.1109/21.256541. DOI
Rouquerol J. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier; Amsterdam, The Netherlands: 2018. Sample-Controlled Thermal Analysis; p. 9780124095472144000.
Hu X., Lin Z., Yang K., Deng Z. Kinetic Analysis of One-Step Solid-State Reaction for Li4Ti5O12/C. J. Phys. Chem. A. 2011;115:13413–13419. doi: 10.1021/jp2075644. PubMed DOI
De Freitas-Marques M.B., Araujo B.C.R., Da Silva P.H.R., Fernandes C., Mussel W.D.N., Sebastião R.D.C.D.O., Yoshida M.I. Multilayer perceptron network and Vyazovkin method applied to the non-isothermal kinetic study of the interaction between lumefantrine and molecularly imprinted polymer. J. Therm. Anal. Calorim. 2020 doi: 10.1007/s10973-020-09818-1. DOI
Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Pérez-Maqueda L.A., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta. 2020;689:178597. doi: 10.1016/j.tca.2020.178597. DOI
Ferreira B.D.L., Araújo N.R.S., Ligório R.F., Pujatti F.J.P., Mussel W.N., Yoshida M.I., Sebastião R.C.O. Kinetic thermal decomposition studies of thalidomide under non-isothermal and isothermal conditions. J. Therm. Anal. Calorim. 2018;134:773–782. doi: 10.1007/s10973-018-7568-1. DOI
Ferreira B.D.D.L., Araújo N.R., Ligório R.F., Pujatti F.J., Yoshida M.I., Sebastião R.C. Comparative kinetic study of automotive polyurethane degradation in non-isothermal and isothermal conditions using artificial neural network. Thermochim. Acta. 2018;666:116–123. doi: 10.1016/j.tca.2018.06.014. DOI
Ferreira L.D.L., Medeiros F.S., Araujo B.C., Gomes M.S., Rocco M.L.M., Sebastião R.C., Calado H.D. Kinetic study of MWCNT and MWCNT@P3HT hybrid thermal decomposition under isothermal and non-isothermal conditions using the artificial neural network and isoconversional methods. Thermochim. Acta. 2019;676:145–154. doi: 10.1016/j.tca.2019.03.040. DOI
Vieira S.S., Paz G.M., Araujo B.C., Lago R.M., Sebastião R.C. Use of neural network to analyze the kinetics of CO2 absorption in Li4SiO4/MgO composites from TG experimental data. Thermochim. Acta. 2020;689:178628. doi: 10.1016/j.tca.2020.178628. DOI
Marques M.B.D.F., De Araujo B.C.R., Sebastião R.D.C.D.O., Mussel W.D.N., Yoshida M.I. Kinetics study and Hirshfeld surface analysis for atorvastatin calcium trihydrate and furosemide system. Thermochim. Acta. 2019;682:178408. doi: 10.1016/j.tca.2019.178408. DOI
Khawam A., Flanagan D.R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B. 2006;110:17315–17328. doi: 10.1021/jp062746a. PubMed DOI
Vyazovkin S., Wight C.A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta. 1999;340–341:53–68. doi: 10.1016/S0040-6031(99)00253-1. DOI
Rahman M.S., Rashid M., Hussain M. Thermal conductivity prediction of foods by Neural Network and Fuzzy (ANFIS) modeling techniques. Food Bioprod. Process. 2012;90:333–340. doi: 10.1016/j.fbp.2011.07.001. DOI
Ramezanizadeh M., Nazari M.A., Ahmadi M.H., Lorenzini G., Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J. Therm. Anal. Calorim. 2019;138:827–843. doi: 10.1007/s10973-019-08154-3. DOI
Lazzús J.A. Prediction of solid vapor pressures for organic and inorganic compounds using a neural network. Thermochim. Acta. 2009;489:53–62. doi: 10.1016/j.tca.2009.02.001. DOI
Asante-Okyere S., Xu Q., Mensah R.A., Jin C., Ziggah Y.Y. Generalized regression and feed forward back propagation neural networks in modelling flammability characteristics of polymethyl methacrylate (PMMA) Thermochim. Acta. 2018;667:79–92. doi: 10.1016/j.tca.2018.07.008. DOI
Shahbaz K., Baroutian S., Mjalli F.S., Hashim M.A., AlNashef I.M. Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochim. Acta. 2012;527:59–66. doi: 10.1016/j.tca.2011.10.010. DOI
Lisa G., Wilson D.A., Curteanu S., Lisa C., Piuleac C.-G., Bulacovschi V. Ferrocene derivatives thermostability prediction using neural networks and genetic algorithms. Thermochim. Acta. 2011;521:26–36. doi: 10.1016/j.tca.2011.03.037. DOI
Kopal I., Harničárová M., Valíček J., Kušnerová M. Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network. Polymers. 2017;9:519. doi: 10.3390/polym9100519. PubMed DOI PMC
Gao F., Wang F., Li M. Neural network-based optimal iterative controller for nonlinear processes. Can. J. Chem. Eng. 2000;78:363–370. doi: 10.1002/cjce.5450780211. DOI
Chen L., Ge B., de Almeida A.T. Self-tuning PID Temperature Controller Based on Flexible Neural Network. In: Liu D., Fei S., Hou Z.-G., Zhang H., Sun C., editors. Advances in Neural Networks—ISNN 2007. Volume 4491. Springer; Berlin/Heidelberg, Germany: 2007. pp. 138–147. Lecture Notes in Computer Science.
Khalid M., Omatu S. A neural network controller for a temperature control system. IEEE Control Syst. 1992;12:58–64. doi: 10.1109/37.165518. DOI
Townsend D.I., Tou J.C. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim. Acta. 1980;37:1–30. doi: 10.1016/0040-6031(80)85001-5. DOI
Voga G.P., Belchior J.C. An approach for interpreting thermogravimetric profiles using artificial intelligence. Thermochim. Acta. 2007;452:140–148. doi: 10.1016/j.tca.2006.10.017. DOI
Voga G.P., Coelho M.G., De Lima G.M., Belchior J.C. Experimental and Theoretical Studies of the Thermal Behavior of Titanium Dioxide−SnO2 Based Composites. J. Phys. Chem. A. 2011;115:2719–2726. doi: 10.1021/jp111369f. PubMed DOI
Lerkkasemsan N., Achenie L.E. Pyrolysis of biomass—Fuzzy modeling. Renew. Energy. 2014;66:747–758. doi: 10.1016/j.renene.2014.01.014. DOI
Fazilat H., Akhlaghi S., Shiri M.E., Sharif A. Predicting thermal degradation kinetics of nylon6/feather keratin blends using artificial intelligence techniques. Polymer. 2012;53:2255–2264. doi: 10.1016/j.polymer.2012.03.053. DOI
Pathy A., Meher S., Balasubramanian P. Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods. Algal Res. 2020;50:102006. doi: 10.1016/j.algal.2020.102006. DOI