• This record comes from PubMed

Artificial Neural Networks for Pyrolysis, Thermal Analysis, and Thermokinetic Studies: The Status Quo

. 2021 Jun 18 ; 26 (12) : . [epub] 20210618

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
AAAA-A18-118031490034-6 Russian Federal Ministry of Science and Higher Education

Links

PubMed 34207246
PubMed Central PMC8235697
DOI 10.3390/molecules26123727
PII: molecules26123727
Knihovny.cz E-resources

Artificial neural networks (ANNs) are a method of machine learning (ML) that is now widely used in physics, chemistry, and material science. ANN can learn from data to identify nonlinear trends and give accurate predictions. ML methods, and ANNs in particular, have already demonstrated their worth in solving various chemical engineering problems, but applications in pyrolysis, thermal analysis, and, especially, thermokinetic studies are still in an initiatory stage. The present article gives a critical overview and summary of the available literature on applying ANNs in the field of pyrolysis, thermal analysis, and thermokinetic studies. More than 100 papers from these research areas are surveyed. Some approaches from the broad field of chemical engineering are discussed as the venues for possible transfer to the field of pyrolysis and thermal analysis studies in general. It is stressed that the current thermokinetic applications of ANNs are yet to evolve significantly to reach the capabilities of the existing isoconversional and model-fitting methods.

See more in PubMed

Wilbraham L., Mehr S.H.M., Cronin L. Digitizing Chemistry Using the Chemical Processing Unit: From Synthesis to Discovery. Acc. Chem. Res. 2021;54:253–262. doi: 10.1021/acs.accounts.0c00674. PubMed DOI

Walters W.P., Barzilay R. Applications of Deep Learning in Molecule Generation and Molecular Property Prediction. Acc. Chem. Res. 2021;54:263–270. doi: 10.1021/acs.accounts.0c00699. PubMed DOI

Tkatchenko A. Machine learning for chemical discovery. Nat. Commun. 2020;11:4125. doi: 10.1038/s41467-020-17844-8. PubMed DOI PMC

Yamada H., Liu C., Wu S., Koyama Y., Ju S., Shiomi J., Morikawa J., Yoshida R. Predicting Materials Properties with Little Data Using Shotgun Transfer Learning. ACS Cent. Sci. 2019;5:1717–1730. doi: 10.1021/acscentsci.9b00804. PubMed DOI PMC

Sieniutycz S., Szwast Z. Optimizing Thermal, Chemical, and Environmental Systems. Elsevier; Amsterdam, The Netherlands: 2018. Neural Networks—A Review of Applications; pp. 109–120.

Xu A., Chang H., Xu Y., Li R., Li X., Zhao Y. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review. Waste Manag. 2021;124:385–402. doi: 10.1016/j.wasman.2021.02.029. PubMed DOI

McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 1943;5:115–133. doi: 10.1007/BF02478259. PubMed DOI

Cybenko G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989;2:303–314. doi: 10.1007/BF02551274. DOI

Sbirrazzuoli N., Brunel D. Computational neural networks for mapping calorimetric data: Application of feed-forward neural networks to kinetic parameters determination and signals filtering. Neural Comput. Appl. 1997;5:20–32. doi: 10.1007/BF01414100. DOI

Egmont-Petersen M., de Ridder D., Handels H. Image processing with neural networks—A review. Pattern Recognit. 2002;35:2279–2301. doi: 10.1016/S0031-3203(01)00178-9. DOI

Cammarata L., Fichera A., Pagano A. Neural prediction of combustion instability. Appl. Energy. 2002;72:513–528. doi: 10.1016/S0306-2619(02)00024-7. DOI

Cho S., No K., Goh E., Kim J., Shin J., Joo Y., Seong S. Optimization of Neural Networks Architecture for Impact Sensitivity of Energetic Molecules. Bull. Korean Chem. Soc. 2005;26:399–408. doi: 10.5012/bkcs.2005.26.3.399. DOI

Darsey J.A., Noid D.W., Wunderlich B., Tsoukalas L. Neural-net extrapolations of heat capacities of polymers to low temperatures. Die Makromol. Chem. Rapid Commun. 1991;12:325–330. doi: 10.1002/marc.1991.030120605. DOI

Ventura S., Silva M., Perez-Bendito D., Hervas C. Multicomponent Kinetic Determinations Using Artificial Neural Networks. Anal. Chem. 1995;67:4458–4461. doi: 10.1021/ac00120a004. PubMed DOI

Bandyopadhyay J.K., Annamalai S., Gauri K.L. Application of artificial neural networks in modeling limestone–SO2 reaction. AIChE J. 1996;42:2295–2302. doi: 10.1002/aic.690420818. DOI

Sbirrazzuoli N., Brunel D., Elegant L. Neural networks for kinetic parameters determination, signal filtering and deconvolution in thermal analysis. J. Therm. Anal. Calorim. 1997;49:1553–1564. doi: 10.1007/BF01983715. DOI

Sebastião R.C.O., Braga J.P., Yoshida M.I. Competition between kinetic models in thermal decomposition: Analysis by artificial neural network. Thermochim. Acta. 2004;412:107–111. doi: 10.1016/j.tca.2003.09.009. DOI

Sebastiao R.C.O., Braga J.P., Yoshida M.I. Artificial neural network applied to solid state thermal decomposition. J. Therm. Anal. Calorim. 2003;74:811–818. doi: 10.1023/B:JTAN.0000011013.80148.46. DOI

Wiltowski T., Piotrowski K., Lorethova H., Stonawski L., Mondal K., Lalvani S.B. Neural network approximation of iron oxide reduction process. Chem. Eng. Process. Process Intensif. 2005;44:775–783. doi: 10.1016/j.cep.2004.08.007. DOI

Bezerra E.M., Bento M.S., Rocco J.A.F.F., Iha K., Lourenço V.L., Pardini L.C. Artificial neural network (ANN) prediction of kinetic parameters of (CRFC) composites. Comput. Mater. Sci. 2008;44:656–663. doi: 10.1016/j.commatsci.2008.05.002. DOI

Muravyev N.V., Pivkina A.N. New concept of thermokinetic analysis with artificial neural networks. Thermochim. Acta. 2016;637:69–73. doi: 10.1016/j.tca.2016.05.018. DOI

Cavalheiro É.T.G. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier; Amsterdam, The Netherlands: 2018. Thermal Analysis.

Sun Y., Liu L., Wang Q., Yang X., Tu X. Pyrolysis products from industrial waste biomass based on a neural network model. J. Anal. Appl. Pyrolysis. 2016;120:94–102. doi: 10.1016/j.jaap.2016.04.013. DOI

Hough B.R., Beck D.A., Schwartz D.T., Pfaendtner J. Application of machine learning to pyrolysis reaction networks: Reducing model solution time to enable process optimization. Comput. Chem. Eng. 2017;104:56–63. doi: 10.1016/j.compchemeng.2017.04.012. DOI

Hua F., Fang Z., Qiu T. Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling. Chin. J. Chem. Eng. 2018;26:2562–2572. doi: 10.1016/j.cjche.2018.09.021. DOI

Šesták J. Ignoring heat inertia impairs accuracy of determination of activation energy in thermal analysis. Int. J. Chem. Kinet. 2019;51:74–80. doi: 10.1002/kin.21230. DOI

Vyazovkin S. How much is the accuracy of activation energy affected by ignoring thermal inertia? Int. J. Chem. Kinet. 2020;52:23–28. doi: 10.1002/kin.21326. DOI

Vyazovkin S., Burnham A.K., Criado J.M., Perez-Maqueda L.A., Popescu C., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta. 2011;520:1–19. doi: 10.1016/j.tca.2011.03.034. DOI

Burnham A.K., Dinh L.N. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J. Therm. Anal. Calorim. 2007;89:479–490. doi: 10.1007/s10973-006-8486-1. DOI

Muravyev N.V., Melnikov I.N., Monogarov K.A., Kuchurov I.V., Pivkina A.N. The power of model-fitting kinetic analysis applied to complex thermal decomposition of explosives: Reconciling the kinetics of bicyclo-HMX thermolysis in solid state and solution. J. Therm. Anal. Calorim. 2021 doi: 10.1007/s10973-021-10686-6. DOI

Vyazovkin S. Handbook of Thermal Analysis and Calorimetry. Volume 6. Elsevier; Amsterdam, The Netherlands: 2018. Modern Isoconversional Kinetics: From Misconceptions to Advances; pp. 131–172.

Sbirrazzuoli N. Model-free isothermal and nonisothermal predictions using advanced isoconversional methods. Thermochim. Acta. 2021;697:178855. doi: 10.1016/j.tca.2020.178855. DOI

Kiselev V.G., Muravyev N.V., Monogarov K.A., Gribanov P.S., Asachenko A.F., Fomenkov I.V., Goldsmith C.F., Pivkina A.N., Gritsan N.P., Asachenko A.F. Toward reliable characterization of energetic materials: Interplay of theory and thermal analysis in the study of the thermal stability of tetranitroacetimidic acid (TNAA) Phys. Chem. Chem. Phys. 2018;20:29285–29298. doi: 10.1039/C8CP05619F. PubMed DOI

Koga N. Handbook of Thermal Analysis and Calorimetry. Volume 6. Elsevier; Amsterdam, The Netherlands: 2018. Physico-Geometric Approach to the Kinetics of Overlapping Solid-State Reactions; pp. 213–251.

Opfermann J., Hädrich W. Prediction of the thermal response of hazardous materials during storage using an improved technique. Thermochim. Acta. 1995;263:29–50. doi: 10.1016/0040-6031(94)02392-2. DOI

Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019;1:206–215. doi: 10.1038/s42256-019-0048-x. PubMed DOI PMC

Novak R., Bahri Y., Abolafia D.A., Pennington J., Sohl-Dickstein J. Sensitivity and Generalization in Neural Networks: An Empirical Study. arXiv. 20181802.08760

Psichogios D.C., Ungar L.H. A hybrid neural network-first principles approach to process modeling. AIChE J. 1992;38:1499–1511. doi: 10.1002/aic.690381003. DOI

Wolpert D.H. The Lack of a Priori Distinctions between Learning Algorithms. Neural Comput. 1996;8:1341–1390. doi: 10.1162/neco.1996.8.7.1341. DOI

Farah J.S., Cavalcanti R.N., Guimarães J.T., Balthazar C.F., Coimbra P.T., Pimentel T.C., Esmerino E.A., Duarte M.C.K., Freitas M.Q., Granato D., et al. Differential scanning calorimetry coupled with machine learning technique: An effective approach to determine the milk authenticity. Food Control. 2021;121:107585. doi: 10.1016/j.foodcont.2020.107585. DOI

Ali J.M., Hussain M., Tade M.O., Zhang J. Artificial Intelligence techniques applied as estimator in chemical process—A literature survey. Expert Syst. Appl. 2015;42:5915–5931. doi: 10.1016/j.eswa.2015.03.023. DOI

Da Silva I.N., Hernane Spatti D., Andrade Flauzino R., Liboni L.H.B., dos Reis Alves S.F. Artificial Neural Networks. A Practical Course. Springer; Cham, Switzerland: 2017.

Graupe D. Principles of Artificial Neural Networks: Basic Designs to Deep Learning. World Scientific; Singapore: 2019.

Çepelioğullar Ö., Mutlu I., Yaman S., Haykiri-Acma H. A study to predict pyrolytic behaviors of refuse-derived fuel (RDF): Artificial neural network application. J. Anal. Appl. Pyrolysis. 2016;122:84–94. doi: 10.1016/j.jaap.2016.10.013. DOI

Naqvi S.R., Hameed Z., Tariq R., Taqvi S.A., Ali I., Niazi M.B., Noor T., Hussain A., Iqbal N., Shahbaz M. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag. 2019;85:131–140. doi: 10.1016/j.wasman.2018.12.031. PubMed DOI

Ghiba L., Drăgoi E.N., Curteanu S. Neural network-based hybrid models developed for free radical polymerization of styrene. Polym. Eng. Sci. 2021;61:716–730. doi: 10.1002/pen.25611. DOI

Liu Y.-P., Wu M.-G., Qian J.-X. Evolving Neural Networks Using the Hybrid of Ant Colony Optimization and BP Algorithms. In: Wang J., Yi Z., Zurada J.M., Lu B.-L., Yin H., editors. Advances in Neural Networks—ISNN 2006. Volume 3971. Springer; Berlin/Heidelberg, Germany: 2006. pp. 714–722. Lecture Notes in Computer Science.

Liu Y., Wu M., Qian J. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network. Thermochim. Acta. 2007;454:64–68. doi: 10.1016/j.tca.2006.10.026. DOI

Shao R., Martin E., Zhang J., Morris A. Confidence bounds for neural network representations. Comput. Chem. Eng. 1997;21:S1173–S1178. doi: 10.1016/S0098-1354(97)00208-1. DOI

Sridhar D.V., Seagrave R.C., Bartlett E.B. Process modeling using stacked neural networks. AIChE J. 1996;42:2529–2539. doi: 10.1002/aic.690420913. DOI

Niaei A., Towfighi J., Khataee A.R., Rostamizadeh K. The Use of ANN and the Mathematical Model for Prediction of the Main Product Yields in the Thermal Cracking of Naphtha. Pet. Sci. Technol. 2007;25:967–982. doi: 10.1080/10916460500423304. DOI

Nielsen M. Neural Networks and Deep Learning. Determination Press; San Francisco, CA, USA: 2019. Chapter 1: Using Neural Nets to Recognize Handwritten Digits.

Vapnik V.N. The Nature of Statistical Learning Theory. Springer; New York, NY, USA: 2000.

Molga E. Neural network approach to support modelling of chemical reactors: Problems, resolutions, criteria of application. Chem. Eng. Process. Process Intensif. 2003;42:675–695. doi: 10.1016/S0255-2701(02)00205-2. DOI

Agnol L.D., Ornaghi H.L., Jr., Monticeli F., Dias F.T.G., Bianchi O. Polyurethanes synthetized with polyols of distinct molar masses: Use of the artificial neural network for prediction of degree of polymerization. Polym. Eng. Sci. 2021;61:1810–1818. doi: 10.1002/pen.25702. DOI

Conesa J.A., Caballero J., Labarta J.A. Artificial neural network for modelling thermal decompositions. J. Anal. Appl. Pyrolysis. 2004;71:343–352. doi: 10.1016/S0165-2370(03)00093-7. DOI

Ventura S., Silva M., Perez-Bendito D., Hervas C. Artificial Neural Networks for Estimation of Kinetic Analytical Parameters. Anal. Chem. 1995;67:1521–1525. doi: 10.1021/ac00105a007. PubMed DOI

Casier B., Carniato S., Miteva T., Capron N., Sisourat N. Using principal component analysis for neural network high-dimensional potential energy surface. J. Chem. Phys. 2020;152:234103. doi: 10.1063/5.0009264. PubMed DOI

Ravi Kumar G., Nagamani K., Anjan Babu G. A Framework of Dimensionality Reduction Utilizing PCA for Neural Net-work Prediction. In: Borah S., Emilia Balas V., Polkowski Z., editors. Advances in Data Science and Management. Volume 37. Springer; Singapore: 2020. pp. 173–180. Lecture Notes on Data Engineering and Communications Technologies.

Strange H., Zwiggelaar R. An Introduction to Distance Geometry applied to Molecular Geometry. Springer; Berlin/Heidelberg, Germany: 2014. Spectral Dimensionality Reduction; pp. 7–22.

Sunphorka S., Chalermsinsuwan B., Piumsomboon P. Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents. Fuel. 2017;193:142–158. doi: 10.1016/j.fuel.2016.12.046. DOI

Zhu Q., Jones J., Williams A., Thomas K. The predictions of coal/char combustion rate using an artificial neural network approach. Fuel. 1999;78:1755–1762. doi: 10.1016/S0016-2361(99)00124-6. DOI

Bhuyan N., Narzari R., Baruah S.M.B., Kataki R. Comparative assessment of artificial neural network and response surface methodology for evaluation of the predictive capability on bio-oil yield of Tithonia diversifolia pyrolysis. Biomass Convers. Biorefinery. 2020 doi: 10.1007/s13399-020-00806-x. DOI

Dubdub I., Al-Yaari M. Pyrolysis of Low Density Polyethylene: Kinetic Study Using TGA Data and ANN Prediction. Polymers. 2020;12:891. doi: 10.3390/polym12040891. PubMed DOI PMC

Angın D., Tiryaki A.E. Application of response surface methodology and artificial neural network on pyrolysis of safflower seed press cake. Energy Sources Part A Recover. Util. Environ. Eff. 2016;38:1055–1061. doi: 10.1080/15567036.2013.862585. DOI

Karacı A., Caglar A., Aydinli B., Pekol S. The pyrolysis process verification of hydrogen rich gas (H–rG) production by artificial neural network (ANN) Int. J. Hydrogen Energy. 2016;41:4570–4578. doi: 10.1016/j.ijhydene.2016.01.094. DOI

Carsky M., Kuwornoo D.K. Neural network modelling of coal pyrolysis. Fuel. 2001;80:1021–1027. doi: 10.1016/S0016-2361(00)00191-5. DOI

Al-Yaari M., Dubdub I. Application of Artificial Neural Networks to Predict the Catalytic Pyrolysis of HDPE Using Non-Isothermal TGA Data. Polymers. 2020;12:1813. doi: 10.3390/polym12081813. PubMed DOI PMC

Arumugasamy S.K., Selvarajoo A. Feedforward Neural Network Modeling of Biomass Pyrolysis Process for Biochar Produc-tion. Chem. Eng. Trans. 2015;45:1681–1686. doi: 10.3303/CET1545281. DOI

Li X.H., Fan Y.S., Cai Y.X., Zhao W.D., Yin H.Y. Optimization of Biomass Vacuum Pyrolysis Process Based on GRNN. Appl. Mech. Mater. 2013;411–414:3016–3022. doi: 10.4028/www.scientific.net/AMM.411-414.3016. DOI

Bi H., Wang C., Lin Q., Jiang X., Jiang C., Bao L. Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR. Energy. 2020;213:118790. doi: 10.1016/j.energy.2020.118790. DOI

Sathiya Prabhakaran S.P., Swaminathan G., Joshi V.V. Thermogravimetric analysis of hazardous waste: Pet-coke, by kinetic models and Artificial neural network modeling. Fuel. 2021;287:119470. doi: 10.1016/j.fuel.2020.119470. DOI

Bi H., Wang C., Jiang X., Jiang C., Bao L., Lin Q. Prediction of mass loss for sewage sludge-peanut shell blends in thermogravimetric experiments using artificial neural networks. Energy Sources Part A Recover. Util. Environ. Eff. 2020:1–14. doi: 10.1080/15567036.2020.1841338. DOI

Chen J., Xie C., Liu J., He Y., Xie W., Zhang X., Chang K., Kuo J., Sun J., Zheng L., et al. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling. Bioresour. Technol. 2018;250:230–238. doi: 10.1016/j.biortech.2017.11.031. PubMed DOI

Monticeli F.M., Neves R.M., Júnior H.L.O. Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers. Cellulose. 2021;28:1961–1971. doi: 10.1007/s10570-021-03684-2. DOI

Gu C., Wang X., Song Q., Li H., Qiao Y. Prediction of gas-liquid-solid product distribution after solid waste pyrolysis process based on artificial neural network model. Int. J. Energy Res. 2021:6707. doi: 10.1002/er.6707. DOI

Saleem M., Ali I. Machine Learning Based Prediction of Pyrolytic Conversion for Red Sea Seaweed; Proceedings of the 7th International Conference on Biological, Chemical & Environmental Sciences (BCES-2017); Budapest, Hungary. 6–7 September 2017.

Abdurakipov S.S., Butakov E.B., Burdukov A.P., Kuznetsov A.V., Chernova G.V. Using an Artificial Neural Network to Simulate the Complete Burnout of Mechanoactivated Coal. Combust. Explos. Shock. Waves. 2019;55:697–701. doi: 10.1134/S0010508219060108. DOI

Cao H., Xin Y., Yuan Q. Prediction of biochar yield from cattle manure pyrolysis via least squares support vector machine intelligent approach. Bioresour. Technol. 2016;202:158–164. doi: 10.1016/j.biortech.2015.12.024. PubMed DOI

Çepelioğullar Ö., Mutlu I., Yaman S., Haykiri-Acma H. Activation energy prediction of biomass wastes based on different neural network topologies. Fuel. 2018;220:535–545. doi: 10.1016/j.fuel.2018.02.045. DOI

Aydinli B., Caglar A., Pekol S., Karaci A. The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network. Energy Explor. Exploit. 2017;35:698–712. doi: 10.1177/0144598717716282. DOI

Burgaz E., Yazici M., Kapusuz M., Alisir S.H., Ozcan H. Prediction of thermal stability, crystallinity and thermomechanical properties of poly(ethylene oxide)/clay nanocomposites with artificial neural networks. Thermochim. Acta. 2014;575:159–166. doi: 10.1016/j.tca.2013.10.032. DOI

Himmelblau D.M. Applications of artificial neural networks in chemical engineering. Korean J. Chem. Eng. 2000;17:373–392. doi: 10.1007/BF02706848. DOI

Molga E.J., van Woezik B.A.A., Westerterp K.R. Neural networks for modelling of chemical reaction systems with complex kinetics: Oxidation of 2-octanol with nitric acid. Chem. Eng. Process. Process Intensif. 2000;39:323–334. doi: 10.1016/S0255-2701(99)00093-8. DOI

Von Stosch M., Oliveira R., Peres J., de Azevedo S.F. Hybrid semi-parametric modeling in process systems engineering: Past, present and future. Comput. Chem. Eng. 2014;60:86–101. doi: 10.1016/j.compchemeng.2013.08.008. DOI

Bing G. Modelling coal gasification with a hybrid neural network. Fuel. 1997;76:1159–1164. doi: 10.1016/S0016-2361(97)00122-1. DOI

Roduit B., Borgeat C., Berger B., Folly P., Alonso B., Aebischer J.N. The prediction of thermal stability of self-reactive chemicals: From milligrams to tons. J. Therm. Anal. Calorim. 2005;80:91–102. doi: 10.1007/s10973-005-0619-4. DOI

Agarwal M. Combining neural and conventional paradigms for modelling, prediction and control. Int. J. Syst. Sci. 1997;28:65–81. doi: 10.1080/00207729708929364. DOI

Rojek B., Suchacz B., Wesolowski M. Artificial neural networks as a supporting tool for compatibility study based on thermogravimetric data. Thermochim. Acta. 2018;659:222–231. doi: 10.1016/j.tca.2017.12.015. DOI

Kohonen T. Self-Organizing Maps. Volume 30. Springer; Berlin/Heidelberg, Germany: 2001. (Springer Series in Information Sciences).

Strzelczak A. The application of artificial neural networks (ANN) for the denaturation of meat proteins—The kinetic analysis method. Acta Sci. Pol. Technol. Aliment. 2015;18:87–96. doi: 10.17306/j.afs.2019.0623. PubMed DOI

Charde S.J. Degradation Kinetics of Polycarbonate Composites: Kinetic Parameters and Artificial Neural Network. Chem. Biochem. Eng. Q. 2018;32:151–165. doi: 10.15255/CABEQ.2017.1173. DOI

Ferreira B.D.L., Araujo B.C.R., Sebastião R.C.O., Yoshida M.I., Mussel W.N., Fialho S., Barbosa J. Kinetic study of anti-HIV drugs by thermal decomposition analysis: A multilayer artificial neural network propose. J. Therm. Anal. Calorim. 2017;127:577–585. doi: 10.1007/s10973-016-5855-2. DOI

Huang Y.W., Chen M.Q., Li Q.H. Artificial neural network model for the evaluation of chemical kinetics in thermally induced solid-state reaction. J. Therm. Anal. Calorim. 2019;138:451–460. doi: 10.1007/s10973-019-08232-6. DOI

Kuang D., Xu B. Predicting kinetic triplets using a 1d convolutional neural network. Thermochim. Acta. 2018;669:8–15. doi: 10.1016/j.tca.2018.08.024. DOI

Aghbashlo M., Almasi F., Jafari A., Nadian M.H., Soltanian S., Lam S.S., Tabatabaei M. Describing biomass pyrolysis kinetics using a generic hybrid intelligent model: A critical stage in sustainable waste-oriented biorefineries. Renew. Energy. 2021;170:81–91. doi: 10.1016/j.renene.2021.01.111. DOI

Aghbashlo M., Tabatabaei M., Nadian M.H., Davoodnia V., Soltanian S. Prognostication of lignocellulosic biomass pyrolysis behavior using ANFIS model tuned by PSO algorithm. Fuel. 2019;253:189–198. doi: 10.1016/j.fuel.2019.04.169. DOI

Jang J.-S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993;23:665–685. doi: 10.1109/21.256541. DOI

Rouquerol J. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Elsevier; Amsterdam, The Netherlands: 2018. Sample-Controlled Thermal Analysis; p. 9780124095472144000.

Hu X., Lin Z., Yang K., Deng Z. Kinetic Analysis of One-Step Solid-State Reaction for Li4Ti5O12/C. J. Phys. Chem. A. 2011;115:13413–13419. doi: 10.1021/jp2075644. PubMed DOI

De Freitas-Marques M.B., Araujo B.C.R., Da Silva P.H.R., Fernandes C., Mussel W.D.N., Sebastião R.D.C.D.O., Yoshida M.I. Multilayer perceptron network and Vyazovkin method applied to the non-isothermal kinetic study of the interaction between lumefantrine and molecularly imprinted polymer. J. Therm. Anal. Calorim. 2020 doi: 10.1007/s10973-020-09818-1. DOI

Vyazovkin S., Burnham A.K., Favergeon L., Koga N., Moukhina E., Pérez-Maqueda L.A., Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for analysis of multi-step kinetics. Thermochim. Acta. 2020;689:178597. doi: 10.1016/j.tca.2020.178597. DOI

Ferreira B.D.L., Araújo N.R.S., Ligório R.F., Pujatti F.J.P., Mussel W.N., Yoshida M.I., Sebastião R.C.O. Kinetic thermal decomposition studies of thalidomide under non-isothermal and isothermal conditions. J. Therm. Anal. Calorim. 2018;134:773–782. doi: 10.1007/s10973-018-7568-1. DOI

Ferreira B.D.D.L., Araújo N.R., Ligório R.F., Pujatti F.J., Yoshida M.I., Sebastião R.C. Comparative kinetic study of automotive polyurethane degradation in non-isothermal and isothermal conditions using artificial neural network. Thermochim. Acta. 2018;666:116–123. doi: 10.1016/j.tca.2018.06.014. DOI

Ferreira L.D.L., Medeiros F.S., Araujo B.C., Gomes M.S., Rocco M.L.M., Sebastião R.C., Calado H.D. Kinetic study of MWCNT and MWCNT@P3HT hybrid thermal decomposition under isothermal and non-isothermal conditions using the artificial neural network and isoconversional methods. Thermochim. Acta. 2019;676:145–154. doi: 10.1016/j.tca.2019.03.040. DOI

Vieira S.S., Paz G.M., Araujo B.C., Lago R.M., Sebastião R.C. Use of neural network to analyze the kinetics of CO2 absorption in Li4SiO4/MgO composites from TG experimental data. Thermochim. Acta. 2020;689:178628. doi: 10.1016/j.tca.2020.178628. DOI

Marques M.B.D.F., De Araujo B.C.R., Sebastião R.D.C.D.O., Mussel W.D.N., Yoshida M.I. Kinetics study and Hirshfeld surface analysis for atorvastatin calcium trihydrate and furosemide system. Thermochim. Acta. 2019;682:178408. doi: 10.1016/j.tca.2019.178408. DOI

Khawam A., Flanagan D.R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B. 2006;110:17315–17328. doi: 10.1021/jp062746a. PubMed DOI

Vyazovkin S., Wight C.A. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta. 1999;340–341:53–68. doi: 10.1016/S0040-6031(99)00253-1. DOI

Rahman M.S., Rashid M., Hussain M. Thermal conductivity prediction of foods by Neural Network and Fuzzy (ANFIS) modeling techniques. Food Bioprod. Process. 2012;90:333–340. doi: 10.1016/j.fbp.2011.07.001. DOI

Ramezanizadeh M., Nazari M.A., Ahmadi M.H., Lorenzini G., Pop I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J. Therm. Anal. Calorim. 2019;138:827–843. doi: 10.1007/s10973-019-08154-3. DOI

Lazzús J.A. Prediction of solid vapor pressures for organic and inorganic compounds using a neural network. Thermochim. Acta. 2009;489:53–62. doi: 10.1016/j.tca.2009.02.001. DOI

Asante-Okyere S., Xu Q., Mensah R.A., Jin C., Ziggah Y.Y. Generalized regression and feed forward back propagation neural networks in modelling flammability characteristics of polymethyl methacrylate (PMMA) Thermochim. Acta. 2018;667:79–92. doi: 10.1016/j.tca.2018.07.008. DOI

Shahbaz K., Baroutian S., Mjalli F.S., Hashim M.A., AlNashef I.M. Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochim. Acta. 2012;527:59–66. doi: 10.1016/j.tca.2011.10.010. DOI

Lisa G., Wilson D.A., Curteanu S., Lisa C., Piuleac C.-G., Bulacovschi V. Ferrocene derivatives thermostability prediction using neural networks and genetic algorithms. Thermochim. Acta. 2011;521:26–36. doi: 10.1016/j.tca.2011.03.037. DOI

Kopal I., Harničárová M., Valíček J., Kušnerová M. Modeling the Temperature Dependence of Dynamic Mechanical Properties and Visco-Elastic Behavior of Thermoplastic Polyurethane Using Artificial Neural Network. Polymers. 2017;9:519. doi: 10.3390/polym9100519. PubMed DOI PMC

Gao F., Wang F., Li M. Neural network-based optimal iterative controller for nonlinear processes. Can. J. Chem. Eng. 2000;78:363–370. doi: 10.1002/cjce.5450780211. DOI

Chen L., Ge B., de Almeida A.T. Self-tuning PID Temperature Controller Based on Flexible Neural Network. In: Liu D., Fei S., Hou Z.-G., Zhang H., Sun C., editors. Advances in Neural Networks—ISNN 2007. Volume 4491. Springer; Berlin/Heidelberg, Germany: 2007. pp. 138–147. Lecture Notes in Computer Science.

Khalid M., Omatu S. A neural network controller for a temperature control system. IEEE Control Syst. 1992;12:58–64. doi: 10.1109/37.165518. DOI

Townsend D.I., Tou J.C. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim. Acta. 1980;37:1–30. doi: 10.1016/0040-6031(80)85001-5. DOI

Voga G.P., Belchior J.C. An approach for interpreting thermogravimetric profiles using artificial intelligence. Thermochim. Acta. 2007;452:140–148. doi: 10.1016/j.tca.2006.10.017. DOI

Voga G.P., Coelho M.G., De Lima G.M., Belchior J.C. Experimental and Theoretical Studies of the Thermal Behavior of Titanium Dioxide−SnO2 Based Composites. J. Phys. Chem. A. 2011;115:2719–2726. doi: 10.1021/jp111369f. PubMed DOI

Lerkkasemsan N., Achenie L.E. Pyrolysis of biomass—Fuzzy modeling. Renew. Energy. 2014;66:747–758. doi: 10.1016/j.renene.2014.01.014. DOI

Fazilat H., Akhlaghi S., Shiri M.E., Sharif A. Predicting thermal degradation kinetics of nylon6/feather keratin blends using artificial intelligence techniques. Polymer. 2012;53:2255–2264. doi: 10.1016/j.polymer.2012.03.053. DOI

Pathy A., Meher S., Balasubramanian P. Predicting algal biochar yield using eXtreme Gradient Boosting (XGB) algorithm of machine learning methods. Algal Res. 2020;50:102006. doi: 10.1016/j.algal.2020.102006. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...