Comparative Prey Spectra Analyses on the Endangered Aquatic Carnivorous Waterwheel Plant (Aldrovanda vesiculosa, Droseraceae) at Several Naturalized Microsites in the Czech Republic and Germany

. 2019 ; 1 (1) : oby012. [epub] 20190325

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33793692

The critically endangered carnivorous waterwheel plant (Aldrovanda vesiculosa, Droseraceae) possesses underwater snap traps for capturing small aquatic animals, but knowledge on the exact prey species is limited. Such information would be essential for continuing ecological research, drawing conclusions regarding trapping efficiency and trap evolution, and eventually, for conservation. Therefore, we performed comparative trap size measurements and snapshot prey analyses at seven Czech and one German naturalized microsites on plants originating from at least two different populations. One Czech site was sampled twice during 2017. We recorded seven main prey taxonomic groups, that is, Cladocera, Copepoda, Ostracoda, Ephemeroptera, Nematocera, Hydrachnidia, and Pulmonata. In total, we recorded 43 different prey taxa in 445 prey-filled traps, containing in sum 461 prey items. With one exception, prey spectra did not correlate with site conditions (e.g. water depth) or trap size. Our data indicate that A. vesiculosa shows no prey specificity but catches opportunistically, independent of prey species, prey mobility mode (swimming or substrate-bound), and speed of movement. Even in cases where the prey size exceeded trap size, successful capture was accomplished by clamping the animal between the traps' lobes. As we found a wide prey range that was attracted, it appears unlikely that the capture is enhanced by specialized chemical- or mimicry-based attraction mechanisms. However, for animals seeking shelter, a place to rest, or a substrate to graze on, A. vesiculosa may indirectly attract prey organisms in the vicinity, whereas other prey capture events (like that of comparably large notonectids) may also be purely coincidental.

Die stark gefährdete karnivore Wasserfalle (Aldrovanda vesiculosa, Droseraceae) bildet Unterwasser-Schnappfallen zum Fang von aquatischen Kleinstlebewesen aus, jedoch wurde das Beutespektrum bislang noch nicht ausreichend untersucht. Eine genaue Kenntnis der Zusammensetzung der Beutetiere ist jedoch sehr wichtig, um Fragestellungen bzgl. der Ökologie dieser fleischfressenden Pflanze, der Effizienz und Evolution ihrer komplexen Fallen, sowie hinsichtlich Naturschutzmaßnahmen beantworten zu können. Hierfür wurden bei künstlich wieder angesiedelten, etablierten Vorkommen in einem deutschen und in sieben tschechischen Kleinst-Habitaten die Fallengrößen gemessen und Falleninhalte vergleichend analysiert. Die untersuchten Pflanzen entstammen dabei aus mindestens zwei mitteleuropäischen Ursprungspopulationen. Ein tschechischer Standort wurde im Laufe des Jahres 2017 zweimal beprobt und hinsichtlich der Saisonalität ausgewertet. Es wurden sieben Hauptgruppen an Beutetieren erfasst: Cladocera, Copepoda, Ostracoda, Ephemeroptera, Nematocera, Hydrachnidia und Pulmonata. Insgesamt konnten in den 445 untersuchten Fallen, die insgesamt 461 gefangene Tiere enthielten, 43 Beutetaxa bestimmt werden. Die Beute-Spektren korrelierten dabei (mit einer Ausnahme) nicht mit den Standortbedingungen (z.B. Wassertiefe) oder der Größe der Fallen. Unsere Daten zeigen, dass A. vesiculosa keine Beutespezifität aufweist, sondern opportunistisch Beute fängt, unabhängig von Taxonomie, Fortbewegungsmodus (schwimmend oder kriechend) oder der Bewegungsgeschwindigkeit der Beute. Erfolgreiche Fänge durch Einklemmen des Tieres zwischen den Fallenhälften wurden auch bei Beutetieren mit Körpermaßen beobachtet, die die Größe der Falle deutlich überschritten. Durch die hohe Diversität an Beutetaxa erscheint es unwahrscheinlich, dass es spezielle chemische oder Mimikry-basierende Faktoren zur Anlockung gibt. Die Pflanze könnte jedoch als Ruhe- oder Ansitzplatz, sowie als Substrat zum Abweiden (z.B. von Algen) dienen und so indirekt Beuteorganismen in der Umgebung anlocken. Die Beutefangereignisse, wie z.B. die von vergleichsweise großen Notonectiden, könnten jedoch auch rein zufällig sein.

Zobrazit více v PubMed

Adamec L.  1995. Ecological requirements and recent European distribution of the aquatic carnivorous plant

Adamec L.  1999. Seasonal growth dynamics and overwintering of the aquatic carnivorous plant

Adamec L.  2005. Ten years after the introduction of

Adamec L.  2009. Photosynthetic CO

Adamec L.  2018a. Ecophysiology of aquatic carnivorous plants In: Ellison AM, Adamec L, editors. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press; p. 256–69.

Adamec L.  2018b. Biological flora of Central Europe:

Adamec L, Kovářová M.  2006. Field growth characteristics of two aquatic carnivorous plants,

Adamec L, Lev J.  1999. The introduction of the aquatic carnivorous plant

Adamec L, Sirová D, Vrba J.  2010. Contrasting growth effects of prey capture in two aquatic carnivorous plant species. Fundam Appl Limnol 176:153–60.

Akeret B.  1993. Ein neuer Fundort von

Alkhalaf IA, Hübener T, Porembski S.  2009. Prey spectra of aquatic

Ashida J.  1934. Studies on the leaf movement of

Brewer JS, Schlauer J.  2018. Biogeography and habitats of carnivorous plants In: Ellison AM, Adamec L, editors. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press; p. 7–21.

Brumpt E.  1925. Capture des larves de Culicides par les plantes du genre

Burrows M, Dorosenko M.  2014. Rapid swimming and escape movements in the aquatic larvae and pupae of the phantom midge PubMed

Cook JL, Newton J, Millett J.  2018. Environmental differences between sites control the diet and nutrition of the carnivorous plant PubMed PMC

Cooper SD, Smith DW, Bence JR.  1985. Prey selection by freshwater predators with different foraging strategies. Can J Fish Aquat Sci 42:1720–32.

Cross A.  2012.

Cross AT, Adamec L, Turner SR, Dixon KW, Merritt DJ.  2016. Seed reproductive biology of the rare aquatic carnivorous plant

Cross AT, Skates LM, Adamec L, Hammond CM, Sheridan PM, Dixon KW.  2015. Population ecology of the endangered aquatic carnivorous macrophyte

Darnowski D, Bauer U, Méndez M, Horner J, Płachno BJ.  2018. Prey selection and specialization by carnivorous plants In: Ellison AM, Adamec L, editors. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press; p. 285–93.

Darwin C.  1875. Insectivorous plants. London: John Murray.

Di Sabatino A, Smit H, Gerecke R, Goldschmidt T, Matsumoto N, Cicolani B.  2008. Global diversity of water mites (Acari, Hydrachnidia; Arachnida) in freshwater. Hydrobiologia 595:303–15.

Elansary HOM, Adamec L, Štorchová H.  2010. Uniformity of organellar DNA in

Ellwood N, Congestri R, Ceschin S.  2018. The role of phytoplankton in the diet of the bladderwort

Floyd RH, Ferrazzano S, Josey BW, Applegate JR.  2015.

Forró L, Korovchinsky NM, Kotov AA, Petrusek A.  2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595:177–84.

Forterre Y, Skotheim JM, Dumais J, Mahadevan L.  2005. How the Venus flytrap snaps. Nature 433:421–5. PubMed

Gibson TC, Waller DM.  2009. Evolving Darwin’s “most wonderful” plant: ecological steps to a snap-trap. New Phytol 183:575–87. PubMed

Gorissen I.  2015. Flora der Region Bonn (Stadt Bonn und Rhein-Sieg-Kreis). Decheniana, Beih. 40.

Hatcher CR, Hart AG.  2014. Venus flytrap seedlings show growth-related prey size specificity. Internat J Ecol 2014:135207.

Hayashi M, van der Kamp G.  2000. Simple equations to represent the volume-area-depth relations of shallow wetlands in small topographic depressions. J Hydrol 237:74–85.

Heuschele J, Ekvall MT, Bianco G, Hylander S, Hansson LA.  2017. Context‐dependent individual behavioral consistency in

Horner JD, Płachno BJ, Bauer U, Di Giusto B.  2018. Attraction of prey In: Ellison AM, Adamec L, editors. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press; p. 157–66.

Hodick D, Sievers A.  1988. The action potential of PubMed

Hutchens JJ, Luken JO.  2009. Prey capture in the Venus flytrap: collection or selection? Botany 87:1007–10.

Hutchens JJ, Luken JO.  2015. Prey capture success by established and introduced populations of the Venus flytrap (

Iijima T, Sibaoka T.  1983. Movements of K

Kassambara A.  2017. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.1.6. https://CRAN.R-project.org/package=ggpubr

Koller-Peroutka M, Lendl T, Watzka M, Adlassnig W.  2015. Capture of algae promotes growth and propagation in aquatic PubMed PMC

Lehtinen S.  2018. Understanding the Venus flytrap through mathematical modelling. J Theor Biol 444:1–10. PubMed

Lloyd FE.  1942. The carnivorous plants. Massachusetts: Waltham.

Lamont EE, Sivertsen R, Doyle C, Adamec L.  2013. Extant populations of

McCafferty PW, Provonsha A.  1998. Aquatic entomology: the Fisherman's and ecologist's illustrated guide to insects and their relatives. Burlington: Jone & Bartlett Learning.

Mette N, Wilbert N, Barthlott W.  2000. Food composition of aquatic bladderworts (

Meyers DG, Strickler JR.  1979. Capture enhancement in a carnivorous aquatic plant: Function of antennae and bristles in PubMed

Poppinga S, Joyeux M.  2011. Different mechanics of snap-trapping in the two closely related carnivorous plants PubMed

Poppinga S, Bauer U, Speck T, Volkov AG.  2018. Motile traps In: Ellison AM, Adamec L, editors. Carnivorous plants: physiology, ecology, and evolution. Oxford: Oxford University Press; p. 180–93.

Poppinga S, Kampowski T, Metzger A, Speck O, Speck T.  2016a. Comparative kinematical analyses of Venus flytrap ( PubMed PMC

Poppinga S, Weißkopf C, Westermeier AS, Masselter T, Speck T.  2016b. Fastest predators in the plant kingdom: Functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants. AoB PLANTS 8: plv140. PubMed PMC

Poppinga S, Daber LE, Westermeier AS, Kruppert S, Horstmann M, Tollrian R, Speck T.  2017. Biomechanical analysis of prey capture in the carnivorous Southern bladderwort ( PubMed PMC

Quiroga MV, Unrein F, Garraza GG, Küppers G, Lombardo R, Marinone MC, Marque SM, Vinocur A, Mataloni G.  2013. The plankton communities from peat bog pools: structure, temporal variation and environmental factors. J Plankton Res 35:1234–53.

R Development Core Team (2008). R: A language and environment for statistical computing

Riessen HP.  1982. Predatory behavior and prey selectivity of the pelagic water mite

Schaefer M.  2009. Brohmer - Fauna von Deutschland: Ein Bestimmungsbuch unserer heimischen Tierwelt. Wiebelsheim: Quelle & Meyer.

Schell C.  2003. A note on possible prey selectivity in the waterwheel plant (

Scourfield DJ, Harding JP.  1994. British freshwater Cladocera. A key. Vol. 5 Ambleside: FBA Scientific Publication, Freshwater Biological Association.

Simões NR, Ribeiro SMMS, Sonoda SL.  2011. Diversity and structure of microcrustacean assemblages (Cladocera and Copepoda) and limnological variability in perennial and intermittent pools in a semi-arid region, Bahia, Brazil. Iheringia 101:317–24.

Streble H, Krauter D.  2006. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süßwassers. Ein Bestimmungsbuch. Stuttgart: Kosmos.

Strickler JR.  1975. Swimming of planktonic

Taira M.  2015. Status of Hozoji pond through investigation of planktonic and attached organisms. In: Hanyu city Board of Education, editors, Report on investigation of Hozoji pond, a natural habitat of

Tessier AJ, Welser J.  1991. Cladoceran assemblages, seasonal succession and the importance of a hypolimnetic refuge. Freshwater Biol 25:85–93.

Vincent O, Weißkopf C, Poppinga S, Masselter T, Speck T, Joyeux M, Quilliet C, Marmottant P.  2011. Ultra-fast underwater suction traps. Proc Roy Soc B 278:2909–14. PubMed PMC

Westermeier A, Sachse R, Poppinga S, Vögele P, Adamec L, Speck T, Bischoff M.  2018. How the carnivorous waterwheel plant ( PubMed PMC

Wickham H.  2009. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.

Williams SE, Bennett AB.  1982. Leaf closure in the Venus flytrap. Science 218:1120–2. PubMed

Wickramarathna LN, Noss C, Lorke A.  2014. Hydrodynamic trails produced by PubMed PMC

Wise EJ.  1980. Seasonal distribution and life histories of Ephemeroptera in a Northumbrian river. Freshwater Biol 10:101–11. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Chemometry of Aldrovanda vesiculosa L. (Waterwheel, Droseraceae) Populations

. 2020 Dec 25 ; 26 (1) : . [epub] 20201225

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...