Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-009735
Grantová Agentura České Republiky
15-10527J
Grantová Agentura České Republiky
Pa771/17-1
Deutsche Forschungsgemeinschaft
UNCE 204025/2012
Grantová Agentura, Univerzita Karlova
LTC17065
Ministry of Education, Youth and Sports of the Czech Republic
POLYMAT LO1507
Ministry of Education, Youth and Sports of CR
17-13283S
Grantová Agentura České Republiky
PubMed
32013056
PubMed Central
PMC7076460
DOI
10.3390/pharmaceutics12020106
PII: pharmaceutics12020106
Knihovny.cz E-zdroje
- Klíčová slova
- drug delivery, pHPMA, plasma proteins, polymeric nanoparticles, stealth effect,
- Publikační typ
- časopisecké články MeSH
The binding of plasma proteins to a drug carrier alters the circulation of nanoparticles (NPs) in the bloodstream, and, as a consequence, the anticancer efficiency of the entire nanoparticle drug delivery system. We investigate the possible interaction and the interaction mechanism of a polymeric drug delivery system based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) with the most abundant proteins in human blood plasma-namely, human serum albumin (HSA), immunoglobulin G (IgG), fibrinogen (Fbg), and apolipoprotein (Apo) E4 and A1-using a combination of small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), and nuclear magnetic resonance (NMR). Through rigorous investigation, we present evidence of weak interactions between proteins and polymeric nanomedicine. Such interactions do not result in the formation of the protein corona and do not affect the efficiency of the drug delivery.
Zobrazit více v PubMed
Spicer C.D., Jumeaux C., Gupta B., Stevens M.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem. Soc. Rev. 2018;47:3574–3620. doi: 10.1039/C7CS00877E. PubMed DOI PMC
Liu Z.H., Jiao Y.P., Wang T., Zhang Y.M., Xue W. Interactions between solubilized polymer molecules and blood components. J. Controlled Release. 2012;160:14–24. doi: 10.1016/j.jconrel.2012.02.005. PubMed DOI
Aggarwal P., Hall J.B., McLeland C.B., Dobrovolskaia M.A., McNeil S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Delivery Rev. 2009;61:428–437. doi: 10.1016/j.addr.2009.03.009. PubMed DOI PMC
Kim J.A., Aberg C., Salvati A., Dawson K.A. Role of cell cycle on the cellular uptake and dilution of nanoparticles in a cell population. Nat. Nanothech. 2012;7:62–68. doi: 10.1038/nnano.2011.191. PubMed DOI
Cai R., Chen C. The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine. Adv. Mater. 2019;31:1805740–1805752. doi: 10.1002/adma.201805740. PubMed DOI
Bertrand N., Grenier P., Mahmoudi M., Lima E.M., Appel E.A., Dormont F., Lim J.M., Karnik R., Langer R., Farokhzad O.C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun. 2017;8:777. doi: 10.1038/s41467-017-00600-w. PubMed DOI PMC
Zhao Z., Ukidve A., Krishnan V., Mitragotri S. Effect of Physicochemical and Surface Properties on In Vivo Fate of Drug Nanocarriers. Adv. Drug Delivery Rev. 2019;143:3–21. doi: 10.1016/j.addr.2019.01.002. PubMed DOI
Thiele L., Diederichs J.E., Reszka R., Merkle H.P., Walter E. Competitive adsorption of serum proteins at microparticles affects phagocytosis by dendritic cells. Biomaterials. 2003;24:1409–1418. doi: 10.1016/S0142-9612(02)00525-2. PubMed DOI
Xiao W., Xiong J., Zhang S., Xiong Y., Zhang H., Gao H. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. Int. J. Pharm. 2018;538:105–111. doi: 10.1016/j.ijpharm.2018.01.011. PubMed DOI
Barriga H.M.G., Holme M.N., Stevens M.M. Cubosomes: The Next Generation of Smart Lipid Nanoparticles? Angew. Chem. Int. Ed. 2019;58:2958–2978. doi: 10.1002/anie.201804067. PubMed DOI PMC
Lu X., Xu P.P., Ding H.M., Yu Y.S., Huo D., Ma Y.Q. Tailoring the component of protein corona via simple chemistry. Nat. Commun. 2019;10:4520. doi: 10.1038/s41467-019-12470-5. PubMed DOI PMC
Rabanel J.M., Adibnia V., Tehrani S.F., Sanche S., Hildgen P., Banquy X., Ramassamy C. Nanoparticle Heterogeneity: An Emerging Structural Parameter Influencing Particle Fate in Biological Media? Nanoscale. 2019;11:383–406. doi: 10.1039/C8NR04916E. PubMed DOI
Zhdanov V.P. Nanoparticles without and with protein corona: Van der Waals and hydration interaction. J. Biol. Phys. 2019;45:307–316. doi: 10.1007/s10867-019-09530-8. PubMed DOI PMC
Fisher K.D., Seymour L.W. HPMA copolymers for masking and retargeting of therapeutic viruses. Adv. Drug Delivery Rev. 2010;62:240–245. doi: 10.1016/j.addr.2009.12.003. PubMed DOI
Chytil P., Etrych T., Koňák Č., Šírová M., Mrkvan T., Bouček J., Říhová B., Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J. Controlled Release. 2008;127:121–130. doi: 10.1016/j.jconrel.2008.01.007. PubMed DOI
Chytil P., Etrych T., Jaroslav K., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)Methacrylamide-Based Polymer Conjugates with pH-Controlled Activation of Doxorubicin for Cell-Specific or Passive Tumour Targeting. Synthesis By Raft Polymerisation and Physicochemical Characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Target. 2004;12:477–489. doi: 10.1080/10611860400011869. PubMed DOI
Zhang X., Chytil P., Etrych T., Kiu W., Rodrigue L., Winter G., Filippov S.K., Papadakis C.M. Binding of HSA to Macromolecular pHPMA Based Nanoparticles for Drug Delivery: An Investigation Using Fluorescence Methods. Langmuir. 2018;34:7998–8006. doi: 10.1021/acs.langmuir.8b01015. PubMed DOI
Filippov S.K., Franklin J.M., Konarev P.V., Chytil P., Etrych T., Bogomolova A., Dyakonova M., Papadakis C., Radulescu A., Ulbrich K., et al. Hydrolytically Degradable Polymer Micelles for Drug Delivery: A SAXS/SANS Kinetic Study. Biomacromolecules. 2013;14:4061–4070. doi: 10.1021/bm401186z. PubMed DOI
Filippov S.K., Chytil P., Konarev P.V., Dyakonova M., Papadakis C., Zhigunov A., Plestil J., Stepanek P., Etrych T., Ulbrich K., et al. Macromolecular HPMA-Based Nanoparticles with Cholesterol for Solid-Tumor Targeting: Detailed Study of the Inner Structure of a Highly Efficient Drug Delivery System. Biomacromolecules. 2012;13:2594–2604. doi: 10.1021/bm3008555. PubMed DOI
Zhang X., Niebuur B.-J., Chytil P., Etrych T., Filippov S.K., Kikhney A., Wieland F., Svergun D.I., Papadakis C.M. Macromolecular pHPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment. Biomacromolecules. 2018;19:470–480. doi: 10.1021/acs.biomac.7b01579. PubMed DOI
Zaborova O.V., Filippov S.K., Chytil P., Kovačik L., Yaroslavov A.A., Etrych T. A novel approach to increase the stability of liposomal containers via in prep coating by poly[N-(2-hydroxypropyl)methacrylamide] with covalently attached cholesterol groups. Macromol. Chem. Phys. 2018;219:1700508. doi: 10.1002/macp.201700508. DOI
Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins-the introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI
Calzolai L., Franchini F., Gilliland D., Rossi F. Protein–Nanoparticle Interaction: Identification of the Ubiquitin-Gold Nanoparticle Interaction Site. Nano Lett. 2010;10:3101–3105. doi: 10.1021/nl101746v. PubMed DOI
Lundqvist M., Sethson I., Jonsson B.H. Protein adsorption onto silica nanoparticles: Conformational changes depend on the particles’ curvature and the protein stability. Langmuir. 2004;20:10639–10647. doi: 10.1021/la0484725. PubMed DOI
Franke D., Kikhney A.G., Svergun D.I. Automated acquisition and analysis of small angle X-ray scattering data. Nucl. Instrum. Methods Phys. Res. Sect. A. 2012;689:52–59. doi: 10.1016/j.nima.2012.06.008. DOI
Volkov V., Svergun D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2003;36:860–864. doi: 10.1107/S0021889803000268. PubMed DOI PMC
Franke D., Petoukhov M.V., Konarev P.V., Panjkovich A., Tuukkanen A., Mertens H.D.T., Kikhney A.G., Hajizadeh N.R., Franklin J.M., Jeffries C.M., et al. ATSAS 2.8: A comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Crystallogr. 2017;50:1212–1225. doi: 10.1107/S1600576717007786. PubMed DOI PMC
Planken K.L., Cölfen H. Analytical ultracentrifugation of colloids. Nanoscale. 2010;2:1849–1869. doi: 10.1039/c0nr00215a. PubMed DOI
Brown P.H., Schuck P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 2006;90:4651–4661. doi: 10.1529/biophysj.106.081372. PubMed DOI PMC
Konarev P.V., Volkov V.V., Sokolova A.V., Koch M.H.J., Svergun D.I. PRIMUS: A Windows PC-based system for small-angle scattering data analysis. J. Appl. Cryst. 2003;36:1277–1282. doi: 10.1107/S0021889803012779. DOI
Franke D., Svergun D.I. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J. Appl. Crystallogr. 2009;42:342–346. doi: 10.1107/S0021889809000338. PubMed DOI PMC
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys. J. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Mayer M., Meyer B. Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J. Am. Chem. Soc. 2001;123:6108–6117. doi: 10.1021/ja0100120. PubMed DOI
Reddy R.R., Shanmugam G., Madhan B. Kumar BVNP Selective binding and dynamics of imidazole alkyl sulfate ionic liquids with human serum albumin and collagen—A detailed NMR investigation. Phys. Chem. Chem. Phys. 2018;20:9256–9268. doi: 10.1039/C7CP08298C. PubMed DOI
Salvi N., Abyzov A., Blackledge M. Analytical Description of NMR Relaxation Highlights Correlated Dynamics in Intrinsically Disordered Proteins. Angew. Chem. Int. Ed. 2017;56:14020–14024. doi: 10.1002/anie.201706740. PubMed DOI
Hofmann C., Schönhoff M. Do additives shift the LCST of poly(N-isopropylacrylamide) by solvent quality changes or by direct interactions? Colloid Polym. Sci. 2009;290:689–698. doi: 10.1007/s00396-009-2103-3. DOI