Structure-to-Efficacy Relationship of HPMA-Based Nanomedicines: The Tumor Spheroid Penetration Study

. 2020 Dec 20 ; 12 (12) : . [epub] 20201220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33419291

Grantová podpora
LTAUSA18083 Ministerstvo Školství, Mládeže a Tělovýchovy
19-01417S Grantová Agentura České Republiky

Odkazy

PubMed 33419291
PubMed Central PMC7766879
DOI 10.3390/pharmaceutics12121242
PII: pharmaceutics12121242
Knihovny.cz E-zdroje

Nanomedicines are a novel class of therapeutics that benefit from the nano dimensions of the drug carrier. These nanosystems are highly advantageous mainly within cancer treatment due to their enhanced tumor accumulation. Monolayer tumor cells frequently used in routine preclinical assessment of nanotherapeutics do not have a spatial structural architecture that allows the investigation of the penetration of nanomedicines to predict their behavior in real tumor tissue. Therefore, tumor spheroids from colon carcinoma C26 cells and glioblastoma U87-MG cells were used as 3D in vitro models to analyze the effect of the inner structure, hydrodynamic size, dispersity, and biodegradability of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based nanomedicines carrying anticancer drug pirarubicin (THP) on the penetration within spheroids. While almost identical penetration through spheroids of linear and star-like copolymers and also their conjugates with THP was observed, THP penetration after nanomedicines application was considerably deeper than for the free THP, thus proving the benefit of polymer carriers. The cytotoxicity of THP-polymer nanomedicines against tumor cell spheroids was almost identical as for the free THP, whereas the 2D cell cytotoxicity of these nanomedicines is usually lower. The nanomedicines thus proved the enhanced efficacy within the more realistic 3D tumor cell spheroid system.

Zobrazit více v PubMed

Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. doi: 10.1124/pr.56.2.6. PubMed DOI

Mizutani H., Hotta S., Nishimoto A., Ikemura K., Miyazawa D., Ikeda Y., Maeda T., Yoshikawa M., Hiraku Y., Kawanishi S. Pirarubicin, an Anthracycline Anticancer Agent, Induces Apoptosis Through Generation of Hydrogen Peroxide. Anticancer Res. 2017;37:6063–6069. doi: 10.21873/anticanres.12054. PubMed DOI

Sugiyama T., Sadzuka Y., Nagasawa K., Ohnishi N., Yokoyama T., Sonobe T. Membrane Transport and Antitumor Activity of Pirarubicin, and Comparison with Those of Doxorubicin. Jpn. J. Cancer Res. 1999;90:775–780. doi: 10.1111/j.1349-7006.1999.tb00814.x. PubMed DOI PMC

Zhou J., Zhang X., Li M., Wu W., Sun X., Zhang L., Gong T. Novel Lipid Hybrid Albumin Nanoparticle Greatly Lowered Toxicity of Pirarubicin. Mol. Pharm. 2013;10:3832–3841. doi: 10.1021/mp400303w. PubMed DOI

Sadatmousavi P., Chen P. Self/Co-Assembling Peptide, EAR8-II, as a Potential Carrier for a Hydrophobic Anticancer Drug Pirarubicin (THP)—Characterization and in-Vitro Delivery. Int. J. Mol. Sci. 2013;14:23315–23329. doi: 10.3390/ijms141223315. PubMed DOI PMC

Tsukigawa K., Liao L., Nakamura H., Fang J., Greish K., Otagiri M., Maeda H. Synthesis and therapeutic effect of styrene-maleic acid copolymer-conjugated pirarubicin. Cancer Sci. 2015;106:270–278. doi: 10.1111/cas.12592. PubMed DOI PMC

Yang J., Kopeček J. The light at the end of the tunnel—Second generation HPMA conjugates for cancer treatment. Curr. Opin. Colloid Interface Sci. 2017;31:30–42. doi: 10.1016/j.cocis.2017.07.003. PubMed DOI PMC

Islam W., Fang J., Etrych T., Chytil P., Ulbrich K., Sakoguchi A., Kusakabe K., Maeda H. HPMA copolymer conjugate with pirarubicin: In vitro and ex vivo stability and drug release study. Int. J. Pharm. 2018;536:108–115. doi: 10.1016/j.ijpharm.2017.11.011. PubMed DOI

Nakamura H., Etrych T., Chytil P., Ohkubo M., Fang J., Ulbrich K., Maeda H. Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. J. Control. Release. 2014;174:81–87. doi: 10.1016/j.jconrel.2013.11.011. PubMed DOI

Nakamura H., Koziolová E., Etrych T., Chytil P., Fang J., Ulbrich K., Maeda H. Comparison between linear and star-like HPMA conjugated pirarubicin (THP) in pharmacokinetics and antitumor activity in tumor bearing mice. Eur. J. Pharm. Biopharm. 2015;90:90–96. doi: 10.1016/j.ejpb.2014.10.007. PubMed DOI

Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018;18:1700209. doi: 10.1002/mabi.201700209. PubMed DOI

Etrych T., Strohalm J., Chytil P., Říhová B., Ulbrich K. Novel star HPMA-based polymer conjugates for passive targeting to solid tumors. J. Drug Target. 2011;19:874–889. doi: 10.3109/1061186X.2011.622402. PubMed DOI

Kostková H., Schindler L., Kotrchová L., Kovář M., Šírová M., Kostka L., Etrych T. Star Polymer-Drug Conjugates with pH-Controlled Drug Release and Carrier Degradation. J. Nanomater. 2017;2017:8675435. doi: 10.1155/2017/8675435. DOI

Kostka L., Kotrchová L., Šubr V., Libánská A., Ferreira C.A., Malátová I., Lee H.J., Barnhart T.E., Engle J.W., Cai W., et al. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials. 2020;235:119728. doi: 10.1016/j.biomaterials.2019.119728. PubMed DOI PMC

Nakamura H., Koziolová E., Chytil P., Etrych T., Haratake M., Maeda H. Superior Penetration and Cytotoxicity of HPMA Copolymer Conjugates of Pirarubicin in Tumor Cell Spheroid. Mol. Pharm. 2019;16:3452–3459. doi: 10.1021/acs.molpharmaceut.9b00248. PubMed DOI

Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. Antibody-targeted Polymer–doxorubicin Conjugates with pH-controlled Activation. J. Drug Target. 2004;12:477–489. doi: 10.1080/10611860400011869. PubMed DOI

Tannenbaum J., Bennett T. Russell and Burch’s 3Rs Then and Now: The Need for Clarity in Definition and Purpose. J. Am. Assoc. Lab. Anim. Sci. 2015;54:120–132. PubMed PMC

Lazzari G., Couvreur P., Mura S. Multicellular tumor spheroids: A relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym. Chem. 2017;8:4947–4969. doi: 10.1039/C7PY00559H. DOI

Lovitt C., Shelper T., Avery V. Advanced Cell Culture Techniques for Cancer Drug Discovery. Biology. 2014;3:345–367. doi: 10.3390/biology3020345. PubMed DOI PMC

Randárová E., Nakamura H., Islam R., Studenovský M., Mamoru H., Fang J., Chytil P., Etrych T. Highly effective anti-tumor nanomedicines based on HPMA copolymer conjugates with pirarubicin prepared by controlled RAFT polymerization. Acta Biomater. 2020;106:256–266. doi: 10.1016/j.actbio.2020.02.011. PubMed DOI

Lidický O., Klener P., Machová D., Vočková P., Pokorná E., Helman K., Mavis C., Janoušková O., Etrych T. Overcoming resistance to rituximab in relapsed non-Hodgkin lymphomas by antibody-polymer drug conjugates actively targeted by anti-CD38 daratumumab. J. Control. Release. 2020;328:160–170. doi: 10.1016/j.jconrel.2020.08.042. PubMed DOI

Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI

Etrych T., Mrkvan T., Chytil P., Koňák Č., Říhová B., Ulbrich K. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Tomalova B., Sirova M., Rossmann P., Pola R., Strohalm J., Chytil P., Cerny V., Tomala J., Kabesova M., Říhová B., et al. The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia. J. Control. Release. 2016;223:1–10. doi: 10.1016/j.jconrel.2015.12.023. PubMed DOI

Goodman T.T., Olive P.L., Pun S.H. Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int. J. Nanomed. 2007;2:265–274. PubMed PMC

Bugno J., Poellmann M.J., Sokolowski K., Hsu H., Kim D.-H., Hong S. Tumor penetration of Sub-10 nm nanoparticles: Effect of dendrimer properties on their penetration in multicellular tumor spheroids. Nanomed. Nanotechnol. Biol. Med. 2019;21:1–11. doi: 10.1016/j.nano.2019.102059. PubMed DOI

Janisova L., Gruzinov A., Zaborova O.V., Velychkivska N., Vaněk O., Chytil P., Etrych T., Janoušková O., Zhang X., Blanchet C., et al. Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins. Pharmaceutics. 2020;12:106. doi: 10.3390/pharmaceutics12020106. PubMed DOI PMC

Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins—The introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI

Tchoryk A., Taresco V., Argent R.H., Ashford M., Gellert P.R., Stolnik S., Grabowska A., Garnett M.C. Penetration and Uptake of Nanoparticles in 3D Tumor Spheroids. Bioconjug. Chem. 2019;30:1371–1384. doi: 10.1021/acs.bioconjchem.9b00136. PubMed DOI

Kostka L., Etrych T. High-Molecular-Weight HPMA-Based Polymer Drug Carriers for Delivery to Tumor. Physiol. Res. 2016;65:S179–S190. doi: 10.33549/physiolres.933420. PubMed DOI

Anderson M., Moshnikova A., Engelman D.M., Reshetnyak Y.K., Andreev O.A. Probe for the measurement of cell surface pH in vivo and ex vivo. Proc. Natl. Acad. Sci. USA. 2016;113:8177–8181. doi: 10.1073/pnas.1608247113. PubMed DOI PMC

Gunár K., Kotrchová L., Filipová M., Krunclová T., Pola R., Randárová E., Etrych T., Janoušková O. The transmission and toxicity of pHPMA copolymer-bound doxorubicin containing exosomes derived from adherent two-dimensional human breast adenocarcinoma cell line and three-dimensional spheroids. Nanomed. Nanotechnol. Biol. Med. 2020 Under Review.

Chun S., Ahn S., Yeom C.-H., Park S. Exosome Proteome of U-87MG Glioblastoma Cells. Biology. 2016;5:50. doi: 10.3390/biology5040050. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace