Structure-to-Efficacy Relationship of HPMA-Based Nanomedicines: The Tumor Spheroid Penetration Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18083
Ministerstvo Školství, Mládeže a Tělovýchovy
19-01417S
Grantová Agentura České Republiky
PubMed
33419291
PubMed Central
PMC7766879
DOI
10.3390/pharmaceutics12121242
PII: pharmaceutics12121242
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA polymers, cytotoxicity, penetration, pirarubicin, tumor spheroids,
- Publikační typ
- časopisecké články MeSH
Nanomedicines are a novel class of therapeutics that benefit from the nano dimensions of the drug carrier. These nanosystems are highly advantageous mainly within cancer treatment due to their enhanced tumor accumulation. Monolayer tumor cells frequently used in routine preclinical assessment of nanotherapeutics do not have a spatial structural architecture that allows the investigation of the penetration of nanomedicines to predict their behavior in real tumor tissue. Therefore, tumor spheroids from colon carcinoma C26 cells and glioblastoma U87-MG cells were used as 3D in vitro models to analyze the effect of the inner structure, hydrodynamic size, dispersity, and biodegradability of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based nanomedicines carrying anticancer drug pirarubicin (THP) on the penetration within spheroids. While almost identical penetration through spheroids of linear and star-like copolymers and also their conjugates with THP was observed, THP penetration after nanomedicines application was considerably deeper than for the free THP, thus proving the benefit of polymer carriers. The cytotoxicity of THP-polymer nanomedicines against tumor cell spheroids was almost identical as for the free THP, whereas the 2D cell cytotoxicity of these nanomedicines is usually lower. The nanomedicines thus proved the enhanced efficacy within the more realistic 3D tumor cell spheroid system.
Zobrazit více v PubMed
Minotti G., Menna P., Salvatorelli E., Cairo G., Gianni L. Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity. Pharmacol. Rev. 2004;56:185–229. doi: 10.1124/pr.56.2.6. PubMed DOI
Mizutani H., Hotta S., Nishimoto A., Ikemura K., Miyazawa D., Ikeda Y., Maeda T., Yoshikawa M., Hiraku Y., Kawanishi S. Pirarubicin, an Anthracycline Anticancer Agent, Induces Apoptosis Through Generation of Hydrogen Peroxide. Anticancer Res. 2017;37:6063–6069. doi: 10.21873/anticanres.12054. PubMed DOI
Sugiyama T., Sadzuka Y., Nagasawa K., Ohnishi N., Yokoyama T., Sonobe T. Membrane Transport and Antitumor Activity of Pirarubicin, and Comparison with Those of Doxorubicin. Jpn. J. Cancer Res. 1999;90:775–780. doi: 10.1111/j.1349-7006.1999.tb00814.x. PubMed DOI PMC
Zhou J., Zhang X., Li M., Wu W., Sun X., Zhang L., Gong T. Novel Lipid Hybrid Albumin Nanoparticle Greatly Lowered Toxicity of Pirarubicin. Mol. Pharm. 2013;10:3832–3841. doi: 10.1021/mp400303w. PubMed DOI
Sadatmousavi P., Chen P. Self/Co-Assembling Peptide, EAR8-II, as a Potential Carrier for a Hydrophobic Anticancer Drug Pirarubicin (THP)—Characterization and in-Vitro Delivery. Int. J. Mol. Sci. 2013;14:23315–23329. doi: 10.3390/ijms141223315. PubMed DOI PMC
Tsukigawa K., Liao L., Nakamura H., Fang J., Greish K., Otagiri M., Maeda H. Synthesis and therapeutic effect of styrene-maleic acid copolymer-conjugated pirarubicin. Cancer Sci. 2015;106:270–278. doi: 10.1111/cas.12592. PubMed DOI PMC
Yang J., Kopeček J. The light at the end of the tunnel—Second generation HPMA conjugates for cancer treatment. Curr. Opin. Colloid Interface Sci. 2017;31:30–42. doi: 10.1016/j.cocis.2017.07.003. PubMed DOI PMC
Islam W., Fang J., Etrych T., Chytil P., Ulbrich K., Sakoguchi A., Kusakabe K., Maeda H. HPMA copolymer conjugate with pirarubicin: In vitro and ex vivo stability and drug release study. Int. J. Pharm. 2018;536:108–115. doi: 10.1016/j.ijpharm.2017.11.011. PubMed DOI
Nakamura H., Etrych T., Chytil P., Ohkubo M., Fang J., Ulbrich K., Maeda H. Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. J. Control. Release. 2014;174:81–87. doi: 10.1016/j.jconrel.2013.11.011. PubMed DOI
Nakamura H., Koziolová E., Etrych T., Chytil P., Fang J., Ulbrich K., Maeda H. Comparison between linear and star-like HPMA conjugated pirarubicin (THP) in pharmacokinetics and antitumor activity in tumor bearing mice. Eur. J. Pharm. Biopharm. 2015;90:90–96. doi: 10.1016/j.ejpb.2014.10.007. PubMed DOI
Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018;18:1700209. doi: 10.1002/mabi.201700209. PubMed DOI
Etrych T., Strohalm J., Chytil P., Říhová B., Ulbrich K. Novel star HPMA-based polymer conjugates for passive targeting to solid tumors. J. Drug Target. 2011;19:874–889. doi: 10.3109/1061186X.2011.622402. PubMed DOI
Kostková H., Schindler L., Kotrchová L., Kovář M., Šírová M., Kostka L., Etrych T. Star Polymer-Drug Conjugates with pH-Controlled Drug Release and Carrier Degradation. J. Nanomater. 2017;2017:8675435. doi: 10.1155/2017/8675435. DOI
Kostka L., Kotrchová L., Šubr V., Libánská A., Ferreira C.A., Malátová I., Lee H.J., Barnhart T.E., Engle J.W., Cai W., et al. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials. 2020;235:119728. doi: 10.1016/j.biomaterials.2019.119728. PubMed DOI PMC
Nakamura H., Koziolová E., Chytil P., Etrych T., Haratake M., Maeda H. Superior Penetration and Cytotoxicity of HPMA Copolymer Conjugates of Pirarubicin in Tumor Cell Spheroid. Mol. Pharm. 2019;16:3452–3459. doi: 10.1021/acs.molpharmaceut.9b00248. PubMed DOI
Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. Antibody-targeted Polymer–doxorubicin Conjugates with pH-controlled Activation. J. Drug Target. 2004;12:477–489. doi: 10.1080/10611860400011869. PubMed DOI
Tannenbaum J., Bennett T. Russell and Burch’s 3Rs Then and Now: The Need for Clarity in Definition and Purpose. J. Am. Assoc. Lab. Anim. Sci. 2015;54:120–132. PubMed PMC
Lazzari G., Couvreur P., Mura S. Multicellular tumor spheroids: A relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polym. Chem. 2017;8:4947–4969. doi: 10.1039/C7PY00559H. DOI
Lovitt C., Shelper T., Avery V. Advanced Cell Culture Techniques for Cancer Drug Discovery. Biology. 2014;3:345–367. doi: 10.3390/biology3020345. PubMed DOI PMC
Randárová E., Nakamura H., Islam R., Studenovský M., Mamoru H., Fang J., Chytil P., Etrych T. Highly effective anti-tumor nanomedicines based on HPMA copolymer conjugates with pirarubicin prepared by controlled RAFT polymerization. Acta Biomater. 2020;106:256–266. doi: 10.1016/j.actbio.2020.02.011. PubMed DOI
Lidický O., Klener P., Machová D., Vočková P., Pokorná E., Helman K., Mavis C., Janoušková O., Etrych T. Overcoming resistance to rituximab in relapsed non-Hodgkin lymphomas by antibody-polymer drug conjugates actively targeted by anti-CD38 daratumumab. J. Control. Release. 2020;328:160–170. doi: 10.1016/j.jconrel.2020.08.042. PubMed DOI
Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI
Etrych T., Mrkvan T., Chytil P., Koňák Č., Říhová B., Ulbrich K. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Tomalova B., Sirova M., Rossmann P., Pola R., Strohalm J., Chytil P., Cerny V., Tomala J., Kabesova M., Říhová B., et al. The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia. J. Control. Release. 2016;223:1–10. doi: 10.1016/j.jconrel.2015.12.023. PubMed DOI
Goodman T.T., Olive P.L., Pun S.H. Increased nanoparticle penetration in collagenase-treated multicellular spheroids. Int. J. Nanomed. 2007;2:265–274. PubMed PMC
Bugno J., Poellmann M.J., Sokolowski K., Hsu H., Kim D.-H., Hong S. Tumor penetration of Sub-10 nm nanoparticles: Effect of dendrimer properties on their penetration in multicellular tumor spheroids. Nanomed. Nanotechnol. Biol. Med. 2019;21:1–11. doi: 10.1016/j.nano.2019.102059. PubMed DOI
Janisova L., Gruzinov A., Zaborova O.V., Velychkivska N., Vaněk O., Chytil P., Etrych T., Janoušková O., Zhang X., Blanchet C., et al. Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins. Pharmaceutics. 2020;12:106. doi: 10.3390/pharmaceutics12020106. PubMed DOI PMC
Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins—The introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI
Tchoryk A., Taresco V., Argent R.H., Ashford M., Gellert P.R., Stolnik S., Grabowska A., Garnett M.C. Penetration and Uptake of Nanoparticles in 3D Tumor Spheroids. Bioconjug. Chem. 2019;30:1371–1384. doi: 10.1021/acs.bioconjchem.9b00136. PubMed DOI
Kostka L., Etrych T. High-Molecular-Weight HPMA-Based Polymer Drug Carriers for Delivery to Tumor. Physiol. Res. 2016;65:S179–S190. doi: 10.33549/physiolres.933420. PubMed DOI
Anderson M., Moshnikova A., Engelman D.M., Reshetnyak Y.K., Andreev O.A. Probe for the measurement of cell surface pH in vivo and ex vivo. Proc. Natl. Acad. Sci. USA. 2016;113:8177–8181. doi: 10.1073/pnas.1608247113. PubMed DOI PMC
Gunár K., Kotrchová L., Filipová M., Krunclová T., Pola R., Randárová E., Etrych T., Janoušková O. The transmission and toxicity of pHPMA copolymer-bound doxorubicin containing exosomes derived from adherent two-dimensional human breast adenocarcinoma cell line and three-dimensional spheroids. Nanomed. Nanotechnol. Biol. Med. 2020 Under Review.
Chun S., Ahn S., Yeom C.-H., Park S. Exosome Proteome of U-87MG Glioblastoma Cells. Biology. 2016;5:50. doi: 10.3390/biology5040050. PubMed DOI PMC
Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models
HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery