Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
P30 CA014520
NCI NIH HHS - United States
PubMed
36470330
PubMed Central
PMC9892306
DOI
10.1016/j.jconrel.2022.11.060
PII: S0168-3659(22)00814-8
Knihovny.cz E-zdroje
- Klíčová slova
- Biodistribution, Cancer, Drug delivery, HPMA, Polymeric carriers, Positron emission tomography,
- MeSH
- doxorubicin farmakokinetika MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nanomedicína MeSH
- nosiče léků * chemie MeSH
- polymery * chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- doxorubicin MeSH
- nosiče léků * MeSH
- polymery * MeSH
Nanomedicines are considered next generation therapeutics with advanced therapeutic properties and reduced side effects. Herein, we introduce tailored linear and star-like water-soluble nanosystems as stimuli-sensitive nanomedicines for the treatment of solid tumors or hematological malignancies. The polymer carrier and drug pharmacokinetics were independently evaluated to elucidate the relationship between the nanosystem structure and its distribution in the body. Positron emission tomography and optical imaging demonstrated enhanced tumor accumulation of the polymer carriers in 4T1-bearing mice with increased tumor-to-blood and tumor-to-muscle ratios. Additionally, there was a significant accumulation of doxorubicin bound to various polymer carriers in EL4 tumors, as well as excellent in vivo therapeutic activity in EL4 lymphoma and moderate efficacy in 4T1 breast carcinoma. The linear nanomedicine showed at least comparable pharmacologic properties to the star-like nanomedicines regarding doxorubicin transport. Therefore, if multiple parameters are considered such as its optimized structure and simple and reproducible synthesis, this polymer carrier system is the most promising for further preclinical and clinical investigations.
Department of Biomedical Engineering University of Wisconsin Madison Madison WI United States
Department of Pharmaceutical Sciences University of Wisconsin Madison Madison WI United States
Zobrazit více v PubMed
Shi J, Kantoff PW, Wooster R, Farokhzad OC, Cancer nanomedicine: progress, challenges and opportunities, Nat. Rev. Cancer 17 (2017) 20–37. PubMed PMC
Hernandez-Camarero P, Amezcua-Hernandez V, Jimenez G, Garcia MA, Marchal JA, Peran M, Clinical failure of nanoparticles in cancer: mimicking nature’s solutions, Nanomedicine (London) 15 (2020) 2311–2324. PubMed
Fang J, Islam W, Maeda H, Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers, Adv. Drug Deliv. Rev 157 (2020) 142–160. PubMed
Metselaar JM, Lammers T, Challenges in nanomedicine clinical translation, Drug Deliv. Transl. Res 10 (2020) 721–725. PubMed PMC
He H, Liu L, Morin EE, Liu M, Schwendeman A, Survey of clinical translation of Cancer nanomedicines-lessons learned from successes and failures, Acc. Chem. Res 52 (2019) 2445–2461. PubMed
Yang J, Zhang R, Pan H, Li Y, Fang Y, Zhang L, Kopecek J, Backbone degradable N-(2-Hydroxypropyl)methacrylamide copolymer conjugates with gemcitabine and paclitaxel: impact of molecular weight on activity toward human ovarian carcinoma xenografts, Mol. Pharm 14 (2017) 1384–1394. PubMed PMC
Bobde Y, Biswas S, Ghosh B, Current trends in the development of HPMA-based block copolymeric nanoparticles for their application in drug delivery, Eur. Polym. J 139 (2020), 110018.
Kopecek J, Yang J, Polymer nanomedicines, Adv. Drug Deliv. Rev 156 (2020) 40–64. PubMed PMC
Duncan R, The dawning era of polymer therapeutics, Nat. Rev. Drug Discov 2 (2003) 347–360. PubMed
Maeda H, Nakamura H, Fang J, The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo, Adv. Drug Deliv. Rev 65 (2013) 71–79. PubMed
Etrych T, Strohalm J, Chytil P, Rihova B, Ulbrich K, Novel star HPMA-based polymer conjugates for passive targeting to solid tumors, J. Drug Target 19 (2011) 874–889. PubMed
Vicent MJ, Ringsdorf H, Duncan R, Polymer therapeutics: clinical applications and challenges for development preface, Adv. Drug Deliv. Rev 61 (2009) 1117–1120. PubMed
Kudlacova J, Kotrchova L, Kostka L, Randarova E, Filipova M, Janouskova O, Fang J, Etrych T, Structure-to-efficacy relationship of HPMA-based nanomedicines: the tumor spheroid penetration study, Pharmaceutics 12 (2020) 1242. PubMed PMC
Cai Hao, Tan Ping, Chen Xiaoting, Kopytynski Michal, Pan Dayi, Zheng Xiuli, Gu Lei, Gong Qiyong, Tian Xiaohe, Gu Zhongwei, Zhang Hu, Chen Rongjun, Luo Kui, Stimuli-Sensitive Linear–Dendritic Block Copolymer–Drug Prodrug as a Nanoplatform for Tumor Combination Therapy, Advanced Mater. 34 (2022) 2108049. PubMed
Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG, Star polymers, Chem. Rev 116 (2016) 6743–6836. PubMed
Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S, Bioapplications of RAFT polymerization, Chem. Rev 109 (2009) 5402–5436. PubMed
Boyer C, Stenzel MH, Davis TP, Building nanostructures using RAFT polymerization, J. Polym. Sci. A Polym. Chem 49 (2011) 551–595.
Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R, Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies, Chem. Rev 116 (2016) 5338–5431. PubMed
Moad G, Rizzardo E, Thang SH, Radical addition-fragmentation chemistry in polymer synthesis, Polymer 49 (2008) 1079–1131.
Koziolová E, Kostka L, Kotrchová L, Šubr V, Konefal R, Nottelet B, Etrych T, N-(2-Hydroxypropyl)methacrylamide-based linear, Diblock, and Starlike polymer drug carriers: advanced process for their simple production, Biomacromolecules 19 (2018) 4003–4013. PubMed
Kostka L, Kotrchova L, Subr V, Libanska A, Ferreira CA, Malatova I, Lee HJ, Barnhart TE, Engle JW, Cai W, Sirova M, Etrych T, HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours, Biomaterials 235 (2020), 119728. PubMed PMC
Etrych T, Mrkvan T, Chytil P, Koňák Č, Říhová B, Ulbrich K, N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation, J. Appl. Polym. Sci 109 (2008) 3050–3061.
Etrych T, Subr V, Strohalm J, Sirova M, Rihova B, Ulbrich K, HPMA copolymer-doxorubicin conjugates: the effects of molecular weight and architecture on biodistribution and in vivo activity, J. Control. Release 164 (2012) 346–354. PubMed
Kotrchova L, Kostka L, Etrych T, Drug carriers with star polymer structures, Physiol. Res. / Acad. Sci. Bohemosl 67 (2018) S293–S303. PubMed
Kostka L, Etrych T, High-molecular-weight HPMA-based polymer drug carriers for delivery to tumor, Physiol. Res 65 (2016) S179–S190. PubMed
Tomalova B, Sirova M, Rossmann P, Pola R, Strohalm J, Chytil P, Cerny V, Tomala J, Kabesova M, Rihova B, Ulbrich K, Etrych T, Kovar M, The structure-dependent toxicity, pharmacokinetics and anti-tumour activity of HPMA copolymer conjugates in the treatment of solid tumours and leukaemia, J. Control. Release 223 (2016) 1–10. PubMed
Koziolova E, Goel S, Chytil P, Janouskova O, Barnhart TE, Cai W, Etrych T, A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging, Nanoscale 9 (2017) 10906–10918. PubMed PMC
Mrkvan T, Sirova M, Etrych T, Chytil P, Strohalm J, Plocova D, Ulbrich K, Rihova B, Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity, J. Control. Release 110 (2005) 119–129. PubMed
ŠSírová M, Strohalm J, Šubr V, Plocová D, Mrkvan T, Ulbrich K, Říhová B, Treatment with HPMA copolymer-based doxorubicin conjugate containing human immunoglobulin induces systemic and long-lasting anti-tumor immunity in mice, Cancer Immunol. Immunother 56 (2007) 35–47. PubMed PMC
Rihova B, Kovar M, Immunogenicity and immunomodulatory properties of HPMA-based polymers, Adv. Drug Deliv. Rev 62 (2010) 184–191. PubMed
McRae Page S, Henchey E, Chen X, Schneider S, Emrick T, Efficacy of polyMPC-DOX prodrugs in 4T1 tumor-bearing mice, Mol. Pharm 11 (2014) 1715–1720. PubMed PMC
Song X, Ren Y, Zhang J, Wang G, Han X, Zheng W, Zhen L, Targeted delivery of doxorubicin to breast cancer cells by aptamer functionalized DOTAP/DOPE liposomes, Oncol. Rep 34 (2015) 1953–1960. PubMed
Buczek E, Denslow A, Mateuszuk L, Proniewski B, Wojcik T, Sitek B, Fedorowicz A, Jasztal A, Kus E, Chmura-Skirlinska A, Gurbiel R, Wietrzyk J, Chlopicki S, Alterations in NO- and PGI2- dependent function in aorta in the orthotopic murine model of metastatic 4T1 breast cancer: relationship with pulmonary endothelial dysfunction and systemic inflammation, BMC Cancer 18 (2018) 582. PubMed PMC
DuPre SA, Hunter KW Jr., Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors, Exp. Mol. Pathol 82 (2007) 12–24. PubMed