Polymer-based antibody mimetics (iBodies) target human PD-L1 and function as a potent immune checkpoint blocker

. 2024 Jun ; 300 (6) : 107325. [epub] 20240427

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38685532
Odkazy

PubMed 38685532
PubMed Central PMC11154707
DOI 10.1016/j.jbc.2024.107325
PII: S0021-9258(24)01826-X
Knihovny.cz E-zdroje

Immune checkpoint blockade (ICB) using monoclonal antibodies against programmed cell death protein 1 (PD-1) or programmed death-ligand 1 (PD-L1) is the treatment of choice for cancer immunotherapy. However, low tissue permeability, immunogenicity, immune-related adverse effects, and high cost could be possibly improved using alternative approaches. On the other hand, synthetic low-molecular-weight (LMW) PD-1/PD-L1 blockers have failed to progress beyond in vitro studies, mostly due to low binding affinity or poor pharmacological characteristics resulting from their limited solubility and/or stability. Here, we report the development of polymer-based anti-human PD-L1 antibody mimetics (α-hPD-L1 iBodies) by attaching the macrocyclic peptide WL12 to a N-(2-hydroxypropyl)methacrylamide copolymer. We characterized the binding properties of iBodies using surface plasmon resonance, enzyme-linked immunosorbent assay, flow cytometry, confocal microscopy, and a cellular ICB model. We found that the α-hPD-L1 iBodies specifically target human PD-L1 (hPD-L1) and block the PD-1/PD-L1 interaction in vitro, comparable to the atezolizumab, durvalumab, and avelumab licensed monoclonal antibodies targeting PD-L1. Our findings suggest that iBodies can be used as experimental tools to target hPD-L1 and could serve as a platform to potentiate the therapeutic effect of hPD-L1-targeting small molecules by improving their affinity and pharmacokinetic properties.

Zobrazit více v PubMed

Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. PubMed PMC

Huang Q., Zheng Y., Gao Z., Yuan L., Sun Y., Chen H. Comparative efficacy and safety of PD-1/PD-L1 inhibitors for patients with solid tumors: a systematic review and Bayesian network meta-analysis. J. Cancer. 2021;12:1133–1143. PubMed PMC

Alsaab H.O., Sau S., Alzhrani R., Tatiparti K., Bhise K., Kashaw S.K., et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561. PubMed PMC

Shen X., Zhang L., Li J., Li Y., Wang Y., Xu Z.X. Recent findings in the regulation of programmed death ligand 1 expression. Front. Immunol. 2019;10:1337. PubMed PMC

Latchman Y.E., Liang S.C., Wu Y., Chernova T., Sobel R.A., Klemm M., et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl. Acad. Sci. U. S. A. 2004;101:10691–10696. PubMed PMC

Patel S.P., Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 2015;14:847–856. PubMed

Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J.M., Robert L., et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. PubMed PMC

Vaddepally R.K., Kharel P., Pandey R., Garje R., Chandra A.B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers (Basel) 2020;12:738. PubMed PMC

Liu C., Zhou F., Yan Z., Shen L., Zhang X., He F., et al. Discovery of a novel, potent and selective small-molecule inhibitor of PD-1/PD-L1 interaction with robust in vivo anti-tumour efficacy. Br. J. Pharmacol. 2021;178:2651–2670. PubMed

Davda J., Declerck P., Hu-Lieskovan S., Hickling T.P., Jacobs I.A., Chou J., et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J. Immunother. Cancer. 2019;7:105. PubMed PMC

Deveuve Q., Lajoie L., Barrault B., Thibault G. The proteolytic cleavage of therapeutic monoclonal antibody hinge region: more than a matter of subclass. Front. Immunol. 2020;11:168. PubMed PMC

Sasikumar P.G., Ramachandra M. Small-molecule antagonists of the immune checkpoint pathways: concept to clinic. Future Med. Chem. 2017;9:1305–1308. PubMed

Park J.A., Cheung N.V. Limitations and opportunities for immune checkpoint inhibitors in pediatric malignancies. Cancer Treat Rev. 2017;58:22–33. PubMed PMC

Andrews A. Treating with checkpoint inhibitors-figure $1 million per patient. Am. Health Drug Benefits. 2015;8:9. PubMed PMC

Herbst R.S., Soria J.C., Kowanetz M., Fine G.D., Hamid O., Gordon M.S., et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–567. PubMed PMC

Dahan R., Sega E., Engelhardt J., Selby M., Korman A.J., Ravetch J.V. FcγRs modulate the anti-tumor activity of antibodies targeting the PD-1/PD-L1 Axis. Cancer Cell. 2015;28:285–295. PubMed

Shaabani S., Huizinga H.P.S., Butera R., Kouchi A., Guzik K., Magiera-Mularz K., et al. A patent review on PD-1/PD-L1 antagonists: small molecules, peptides, and macrocycles (2015-2018) Expert Opin. Ther. Pat. 2018;28:665–678. PubMed PMC

Skalniak L., Zak K.M., Guzik K., Magiera K., Musielak B., Pachota M., et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget. 2017;8:72167–72181. PubMed PMC

Ganesan A., Ahmed M., Okoye I., Arutyunova E., Babu D., Turnbull W.L., et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors. Sci. Rep. 2019;9 PubMed PMC

Magiera-Mularz K., Skalniak L., Zak K.M., Musielak B., Rudzinska-Szostak E., Berlicki Ł., et al. Bioactive macrocyclic inhibitors of the PD-1/PD-L1 immune checkpoint. Angew. Chem. Int. Ed. Engl. 2017;56:13732–13735. PubMed PMC

Yu X., Yang Y.P., Dikici E., Deo S.K., Daunert S. Beyond antibodies as binding partners: the role of antibody mimetics in bioanalysis. Annu. Rev. Anal Chem. (Palo Alto Calif) 2017;10:293–320. PubMed PMC

Grindel B.J., Engel B.J., Ong J.N., Srinivasamani A., Liang X., Zacharias N.M., et al. Directed evolution of PD-L1-targeted affibodies by mRNA display. ACS Chem. Biol. 2022;17:1543–1555. PubMed PMC

Yu S., Xiong G., Zhao S., Tang Y., Tang H., Wang K., et al. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review) Int. J. Mol. Med. 2021;47:444–454. PubMed PMC

Blažková K., Beranová J., Hradilek M., Kostka L., Šubr V., Etrych T., et al. The development of a high-affinity conformation-sensitive antibody mimetic using a biocompatible copolymer carrier (iBody) J. Biol. Chem. 2021;297 PubMed PMC

Šácha P., Knedlík T., Schimer J., Tykvart J., Parolek J., Navrátil V., et al. iBodies: modular synthetic antibody mimetics based on hydrophilic polymers decorated with functional moieties. Angew. Chem. Int. Ed. 2016;55:2356–2360. PubMed PMC

Pospíšilová K., Knedlík T., Šácha P., Kostka L., Schimer J., Brynda J., et al. Inhibitor–polymer conjugates as a versatile tool for detection and visualization of cancer-associated carbonic anhydrase isoforms. ACS Omega. 2019;4:6746–6756.

Li L., Li Y., Yang C.H., Radford D.C., Wang J., Janát-Amsbury M., et al. Inhibition of immunosuppressive tumors by polymer-assisted inductions of immunogenic cell death and multivalent PD-L1 crosslinking. Adv. Funct. Mater. 2020;30 PubMed PMC

Zhou X., Jiang J., Yang X., Liu T., Ding J., Nimmagadda S., et al. First-in-Humans evaluation of a PD-L1-binding peptide PET radiotracer in non-small cell lung cancer patients. J. Nucl. Med. 2022;63:536–542. PubMed PMC

Vinogradov A.A., Yin Y., Suga H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 2019;141:4167–4181. PubMed

Li M., Zhao R., Chen J., Tian W., Xia C., Liu X., et al. Next generation of anti-PD-L1 Atezolizumab with enhanced anti-tumor efficacy in vivo. Sci. Rep. 2021;11:5774. PubMed PMC

Tan S., Liu K., Chai Y., Zhang C.W.H., Gao S., Gao G.F., et al. Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab. Protein Cell. 2018;9:135–139. PubMed PMC

Jiang J., Li D., Liu T., Xia L., Guo X., Meng X., et al. Noninvasive evaluation of PD-L1 expression using Copper 64 labeled peptide WL12 by micro-PET imaging in Chinese hamster ovary cell tumor model. Bioorg. Med. Chem. Lett. 2021;40 PubMed

Zhai W., Zhou X., Du J., Gao Y. In vitro assay for the development of small molecule inhibitors targeting PD-1/PD-L1. Methods Enzymol. 2019;629:361–381. PubMed

Doronin A.N., Gordeev A.A., Kozlov A.E., Smirnova Y.A., Puchkova M.Y., Ekimova V.M., et al. T-cell engagers based bioassay for evaluation of PD-1/PD-L1 inhibitors activity. Biochemistry (Mosc) 2019;84:711–719. PubMed

Celis-Gutierrez J., Blattmann P., Zhai Y., Jarmuzynski N., Ruminski K., Grégoire C., et al. Quantitative interactomics in primary T cells provides a rationale for concomitant PD-1 and BTLA coinhibitor blockade in cancer immunotherapy. Cell Rep. 2019;27:3315–3330.e7. PubMed PMC

Mitchell L.A., Yagiz K., Hofacre A., Viaud S., Munday A.W., Espinoza F.L., et al. PD-L1 checkpoint blockade delivered by retroviral replicating vector confers anti-tumor efficacy in murine tumor models. Oncotarget. 2019;10:2252–2269. PubMed PMC

Xu Y., Wan B., Chen X., Zhan P., Zhao Y., Zhang T., et al. The association of PD-L1 expression with the efficacy of anti-PD-1/PD-L1 immunotherapy and survival of non-small cell lung cancer patients: a meta-analysis of randomized controlled trials. Transl. Lung Cancer Res. 2019;8:413–428. PubMed PMC

Kelly P.N. The cancer immunotherapy revolution. Science. 2018;359:1344–1345. PubMed

Wu Y., Chen W., Xu Z.P., Gu W. PD-L1 distribution and perspective for cancer immunotherapy-blockade, knockdown, or inhibition. Front Immunol. 2019;10:2022. PubMed PMC

Peters S., Galle P.R., Bernaards C.A., Ballinger M., Bruno R., Quarmby V., et al. Evaluation of atezolizumab immunogenicity: efficacy and safety (Part 2) Clin. Transl Sci. 2022;15:141–157. PubMed PMC

Marrone K.A., Ying W., Naidoo J. Immune-related adverse events from immune checkpoint inhibitors. Clin. Pharmacol. Ther. 2016;100:242–251. PubMed

Beranová J., Knedlík T., Šimková A., Šubr V., Kostka L., Etrych T., et al. Tris-(Nitrilotriacetic acid)-decorated polymer conjugates as tools for immobilization and visualization of his-tagged proteins. Catalysts. 2019;9:1011.

Butte M.J., Keir M.E., Phamduy T.B., Sharpe A.H., Freeman G.J. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity. 2007;27:111–122. PubMed PMC

Chang H.-N., Liu B.Y., Qi Y.K., Zhou Y., Chen Y.P., Pan K.M., et al. Blocking of the PD-1/PD-L1 interaction by a D-peptide antagonist for cancer immunotherapy. Angew. Chem. Int. Ed. 2015;54:11760–11764. PubMed

Zhu W., Bai Y., Zhang N., Yan J., Chen J., He Z., et al. A tumor extracellular pH-sensitive PD-L1 binding peptide nanoparticle for chemo-immunotherapy of cancer. J. Mater. Chem. B. 2021;9:4201–4210. PubMed

Lee H.T., Lee J.Y., Lim H., Lee S.H., Moon Y.J., Pyo H.J., et al. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep. 2017;7:5532. PubMed PMC

Yang Q., Li L., Zhu X., Sun W., Zhou Z., Huang Y. The impact of the HPMA polymer structure on the targeting performance of the conjugated hydrophobic ligand. RSC Adv. 2015;5:14858–14870.

Chu T.W., Yang J., Kopeček J. Anti-CD20 multivalent HPMA copolymer-Fab' conjugates for the direct induction of apoptosis. Biomaterials. 2012;33:7174–7181. PubMed PMC

Bu J., Nair A., Iida M., Jeong W.J., Poellmann M.J., Mudd K., et al. An avidity-based PD-L1 antagonist using nanoparticle-antibody conjugates for enhanced immunotherapy. Nano Lett. 2020;20:4901–4909. PubMed PMC

Kostka L., Kotrchová L., Randárová E., Ferreira C.A., Malátová I., Lee H.J., et al. Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models. J. Control Release. 2023;353:549–562. PubMed PMC

Hrochová M., Kotrchová L., Frejková M., Konefał R., Gao S., Fang J., et al. Adaptable polymerization platform for therapeutics with tunable biodegradability. Acta Biomater. 2023;171:417–427. PubMed

Kopeček J., Yang J. Polymer nanomedicines. Adv. Drug Deliv. Rev. 2020;156:40–64. PubMed PMC

Zaman R., Islam R.A., Ibnat N., Othman I., Zaini A., Lee C.Y., et al. Current strategies in extending half-lives of therapeutic proteins. J. Control Release. 2019;301:176–189. PubMed

Kang H., Rho S., Stiles W.R., Hu S., Baek Y., Hwang D.W., et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv. Healthc. Mater. 2020;9:e1901223. PubMed PMC

Wu J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J. Pers Med. 2021;11 PubMed PMC

Miller M.M., Mapelli C., Allen M.P., Bowsher M.S., Boy K.M., Gillis E.P., et al. 2016. Macrocyclic Inhibitors of the PD-1/pd-L1 and CD80 (B7-1)/pd-L1 Protein/protein Interactions. Alexandria, VA, WO2016039749A1.

Chytil P., Etrych T., Kříž J., Subr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour-targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. PubMed

Šubr V., Ulbrich K. Synthesis and properties of new N-(2-hydroxypropyl)methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React. Funct. Polym. 2006;66:1525–1538.

Ishitake K., Satoh K., Kamigaito M., Okamoto Y. Stereogradient polymers formed by controlled/living radical polymerization of bulky methacrylate monomers. Angew. Chem. Int. Edition. 2009;48:1991–1994. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...