Wave breaking field of relativistically intense electrostatic waves in electronegative plasma with super-thermal electrons
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
35851137
PubMed Central
PMC9293939
DOI
10.1038/s41598-022-16481-z
PII: 10.1038/s41598-022-16481-z
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The wave breaking limit of relativistically intense electrostatic waves in an unmagnetised electronegative plasma, where electrons are alleged to attach onto neutral atoms or molecules and thus forming a significant amount of negative ions, has been studied analytically. A nonlinear theory has been developed, using one-dimensional (1D) relativistic multi-fluid model in order to study the roles of super-thermal electrons, negative ion species and the Lorentz factor, on the dynamics of the wave. A generalised kappa-type distribution function has been chosen for the velocities of the electrons, to couple the densities of the fluids. By assuming the travelling wave solution, the equation of motion for the evolution of the wave in a stationary wave frame has been derived and numerical solutions have been presented. Studies have been further extended, using standard Sagdeev pseudopotential method, to discover the maximum electric field amplitude sustained by these waves. The dependence of wave breaking limit on the different input parameters such as the Lorentz factor, electron temperature, spectral index of the electron velocity distribution and on the fraction and the mass ratio of the negative to positive ion species has been shown explicitly. The wavelength of these waves has been calculated for a wide range of input parameters and its dependence on aforementioned plasma parameters have been studied in detail. These results are relevant to understand particle acceleration and relativistic wave breaking phenomena in high intensity laser plasma experiments and space environments where the secondary ion species and super-thermal electrons exist.
See more in PubMed
Gibbon P. Short Pulse Laser Interactions with Matter: An Introduction. World Scientific; 2005.
Borovsky AV, Galkin AL, Shiryaev OB, Auguste T. Laser Physics at Relativistic Intensities. Springer; 2003.
Mourou GA, Tajima T, Bulanov SV. Optics in the relativistic regime. Rev. Mod. Phys. 2006;78:309–371. doi: 10.1103/RevModPhys.78.309. DOI
Zhang P, Bulanov SS, Seipt D, Arefiev AV, Thomas AG. Relativistic plasma physics in supercritical fields. Phys. Plasmas. 2020;27:050601. doi: 10.1063/1.5144449. DOI
Strickland D, Mourou G. Compression of amplified chirped optical pulses. Opt. Commun. 1985;55:447–449. doi: 10.1016/0030-4018(85)90151-8. DOI
Maine P, Strickland D, Bado P, Pessot M, Mourou G. Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 1988;24:398–403. doi: 10.1109/3.137. DOI
Perry MD, Mourou G. Terawatt to petawatt subpicosecond lasers. Science. 1994;264:917–924. doi: 10.1126/science.264.5161.917. PubMed DOI
Mourou GA, Barty CPJ, Perry MD. Ultrahigh-intensity lasers: Physics of the extreme on a tabletop. Phys. Today. 1998;51:22–28. doi: 10.1063/1.882131. DOI
Umstadter R. Relativistic laser-plasma interactions. J. Phys. D Appl. Phys. 2003;36:R151–R165. doi: 10.1088/0022-3727/36/8/202. DOI
Tajima T, Dawson JM. Laser electron accelerator. Phys. Rev. Lett. 1979;43:267–270. doi: 10.1103/PhysRevLett.43.267. DOI
Esarey E, Schroeder CB, Leemans WP. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 2009;81:1229–1285. doi: 10.1103/RevModPhys.81.1229. DOI
Rosenzweig JB. Nonlinear plasma dynamics in the plasma wake-field accelerator. Phys. Rev. Lett. 1987;58:555–558. doi: 10.1103/PhysRevLett.58.555. PubMed DOI
Rosenzweig JB, et al. Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 1988;61:98–101. doi: 10.1103/PhysRevLett.61.98. PubMed DOI
Malka V, et al. Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science. 2002;298:1596–1600. doi: 10.1126/science.1076782. PubMed DOI
Mangles SPD, et al. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature. 2004;431:535–538. doi: 10.1038/nature02939. PubMed DOI
Geddes CGR, et al. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature. 2004;431:538–541. doi: 10.1038/nature02900. PubMed DOI
Faure J, et al. A laser-plasma accelerator producing monoenergetic electron beams. Nature. 2004;431:541–544. doi: 10.1038/nature02963. PubMed DOI
Hussein AE, et al. Laser-wakefield accelerators for high-resolution x-ray imaging of complex microstructures. Sci. Rep. 2019;9:3249. doi: 10.1038/s41598-019-39845-4. PubMed DOI PMC
Adli E, et al. Acceleration of electrons in the plasma wakefield of a proton bunch. Nature. 2018;561:363–367. doi: 10.1038/s41586-018-0485-4. PubMed DOI PMC
Sengupta S, Sandhu A, Kumar G, Das A, Kaw P. Short laser pulse induced generation of hot electrons and their anomalous stopping in overdense plasmas. Nucl. Fusion. 2005;45:1377–1385. doi: 10.1088/0029-5515/45/11/019. DOI
Pickwell E, Wallace VP. Biomedical applications of terahertz technology. J. Phys. D Appl. Phys. 2006;39:R301–R310. doi: 10.1088/0022-3727/39/17/r01. DOI
Modena A, et al. Electron acceleration from the breaking of relativistic plasma waves. Nature. 1995;377:606–608. doi: 10.1038/377606a0. DOI
Dawson JM. Nonlinear electron oscillations in a cold plasma. Phys. Rev. 1959;113:383–387. doi: 10.1103/PhysRev.113.383. DOI
Akhiezer, A. I. & Polovin, R. V. Theory of wave motion of an electron plasma. Soviet Phys. JETP3 (1956).
Coffey TP. Breaking of large amplitude plasma oscillations. Phys. Fluids. 1971;14:1402–1406. doi: 10.1063/1.1693620. DOI
Katsouleas T, Mori WB. Wave-breaking amplitude of relativistic oscillations in a thermal plasma. Phys. Rev. Lett. 1988;61:90–93. doi: 10.1103/PhysRevLett.61.90. PubMed DOI
Schroeder CB, Esarey E, Shadwick BA. Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities. Phys. Rev. E. 2005;72:055401. doi: 10.1103/PhysRevE.72.055401. PubMed DOI
Trines RMGM, Norreys PA. Wave-breaking limits for relativistic electrostatic waves in a one-dimensional warm plasma. Phys. Plasmas. 2006;13:123102. doi: 10.1063/1.2398927. DOI
Bulanov SV, et al. On the breaking of a plasma wave in a thermal plasma. I. The structure of the density singularity. Phys. Plasmas. 2012;19:113102. doi: 10.1063/1.4764052. DOI
Drake JF, Lee YC, Nishikawa K, Tsintsadze NL. Breaking of large-amplitude waves as a result of relativistic electron-mass variation. Phys. Rev. Lett. 1976;36:196–200. doi: 10.1103/PhysRevLett.36.196. DOI
Khachatryan AG. Ion motion and finite temperature effect on relativistic strong plasma waves. Phys. Rev. E. 1998;58:7799–7804. doi: 10.1103/PhysRevE.58.7799. DOI
Liu B, Meyer-ter Vehn J, Ruhl H. Self-trapping and acceleration of ions in laser-driven relativistically transparent plasma. Phys. Plasmas. 2018;25:103117. doi: 10.1063/1.5051317. DOI
Karmakar M, Maity C, Chakrabarti N, Sengupta S. Relativistic wave-breaking limit of electrostatic waves in cold electron-positron-ion plasmas. Eur. Phys. J. D. 2016;70:144. doi: 10.1140/epjd/e2016-70094-8. DOI
Liu B, et al. Ion wave breaking acceleration. Phys. Rev. Accel. Beams. 2016;19:073401. doi: 10.1103/PhysRevAccelBeams.19.073401. DOI
Shorokov O, Pukhov A. Ion acceleration in overdense plasma by short laser pulse. Laser Part. Beams. 2004;22:175–181. doi: 10.1017/S0263034604222133. DOI
Esirkepov T, Bulanov SV, Yamagiwa M, Tajima T. Electron, positron, and photon wakefield acceleration: Trapping, wake overtaking, and ponderomotive acceleration. Phys. Rev. Lett. 2006;96:014803. doi: 10.1103/PhysRevLett.96.014803. PubMed DOI
Shen B, Li Y, Yu MY, Cary J. Bubble regime for ion acceleration in a laser-driven plasma. Phys. Rev. E. 2007;76:055402. doi: 10.1103/PhysRevE.76.055402. PubMed DOI
Livadiotis G, McComas DJ. Understanding kappa distributions: A toolbox for space science and astrophysics. Space Sci. Rev. 2013;175:183–214. doi: 10.1007/s11214-013-9982-9. DOI
Elkamash IS, Kourakis I. Electrostatic wave breaking limit in a cold electronegative plasma with non-Maxwellian electrons. Sci. Rep. 2021;11:6174. doi: 10.1038/s41598-021-85228-z. PubMed DOI PMC
Chen H, et al. Relativistic positron creation using ultraintense short pulse lasers. Phys. Rev. Lett. 2009;102:105001. doi: 10.1103/PhysRevLett.102.105001. PubMed DOI
Vasyliunas VM. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 1968;1896–1977(73):2839–2884. doi: 10.1029/JA073i009p02839. DOI
Berezhiani VI, Mahajan SM. Large amplitude localized structures in a relativistic electron-positron ion plasma. Phys. Rev. Lett. 1994;73:1110–1113. doi: 10.1103/PhysRevLett.73.1110. PubMed DOI
Berezhiani VI, Mahajan SM. Large relativistic density pulses in electron-positron-ion plasmas. Phys. Rev. E. 1995;52:1968–1979. doi: 10.1103/PhysRevE.52.1968. PubMed DOI
Sadiq S, Mahmood S, ul Haque Q. Nonlinear periodic ion acoustic waves in a relativistic plasma with isothermal electrons and cold ions. J. Phys. Soc. Jpn. 2021;90:034503. doi: 10.7566/JPSJ.90.034503. DOI
Hadjisolomou P, Jeong TM, Valenta P, Korn G, Bulanov SV. Gamma-ray flash generation in irradiating a thin foil target by a single-cycle tightly focused extreme power laser pulse. Phys. Rev. E. 2021;104:015203. doi: 10.1103/PhysRevE.104.015203. PubMed DOI
Bhardwaj VR, Mathur D, Rajgara FA. Formation of negative ions upon irradiation of molecules by intense laser fields. Phys. Rev. Lett. 1998;80:3220–3223. doi: 10.1103/PhysRevLett.80.3220. DOI
Roth M, et al. Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 2001;86:436–439. doi: 10.1103/PhysRevLett.86.436. PubMed DOI
Ter-Avetisyan S, Schnürer M, Busch S, Nickles PV. Negative ions from liquid microdroplets irradiated with ultrashort and intense laser pulses. J. Phys. B Atom. Mol. Opt. Phys. 2004;37:3633–3640. doi: 10.1088/0953-4075/37/18/006. DOI
Nakamura T, et al. High energy negative ion generation by coulomb implosion mechanism. Phys. Plasmas. 2009;16:113106. doi: 10.1063/1.3263685. DOI
Nakamura T, et al. Coulomb implosion mechanism of negative ion acceleration in laser plasmas. Phys. Lett. A. 2009;373:2584–2587. doi: 10.1016/j.physleta.2009.05.043. DOI
Ter-Avetisyan S, et al. Mev negative ion generation from ultra-intense laser interaction with a water spray. Appl. Phys. Lett. 2011;99:051501. doi: 10.1063/1.3622664. DOI
Nishiuchi M, et al. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser. Physics of Plasmas. 2015;22:033107. doi: 10.1063/1.4913434. DOI
Elkamash IS, Kourakis I. Multispecies plasma expansion into vacuum: The role of secondary ions and suprathermal electrons. Phys. Rev. E. 2016;94:053202. doi: 10.1103/PhysRevE.94.053202. PubMed DOI
Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover; 1964.
Lotekar A, Kakad A, Kakad B. Generation of ion acoustic solitary waves through wave breaking in superthermal plasmas. Phys. Plasmas. 2017;24:102127. doi: 10.1063/1.4991467. DOI
Bulanov S, Naumova N, Pegoraro F, Sakai J. Particle injection into the wave acceleration phase due to nonlinear wake wave breaking. Phys. Rev. E. 1998;58:R5257–R5260. doi: 10.1103/PhysRevE.58.R5257. DOI
Gorbunov LM, Mora P, Ramazashvili RR. Steady ion momentum in nonlinear plasma waves. Phys. Rev. E. 2002;65:036401. doi: 10.1103/PhysRevE.65.036401. PubMed DOI