Anti-Lymphoma Efficacy Comparison of Anti-Cd20 Monoclonal Antibody-Targeted and Non-Targeted Star-Shaped Polymer-Prodrug Conjugates

. 2015 Nov 04 ; 20 (11) : 19849-64. [epub] 20151104

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26556320

Here we describe the synthesis and biological properties of two types of star-shaped polymer-doxorubicin conjugates: non-targeted conjugate prepared as long-circulating high-molecular-weight (HMW) polymer prodrugs with a dendrimer core and a targeted conjugate with the anti-CD20 monoclonal antibody (mAb) rituximab (RTX). The copolymers were linked to the dendrimer core or to the reduced mAb via one-point attachment forming a star-shaped structure with a central antibody or dendrimer surrounded by hydrophilic polymer chains. The anticancer drug doxorubicin (DOX) was attached to the N-(2-hydroxypropyl)methacrylamide (HPMA)-based copolymer chain in star polymer systems via a pH-labile hydrazone linkage. Such polymer-DOX conjugates were fairly stable in aqueous solutions at pH 7.4, and the drug was readily released in mildly acidic environments at pH 5-5.5 by hydrolysis of the hydrazone bonds. The cytotoxicity of the polymer conjugates was tested on several CD20-positive or negative human cell lines. Similar levels of in vitro cytotoxicity were observed for all tested polymer conjugates regardless of type or structure. In vivo experiments using primary cell-based murine xenograft models of human diffuse large B-cell lymphoma confirmed the superior anti-lymphoma efficacy of the polymer-bound DOX conjugate when compared with the original drug. Targeting with RTX did not further enhance the anti-lymphoma efficacy relative to the non-targeted star polymer conjugate. Two mechanisms could play roles in these findings: changes in the binding ability to the CD-20 receptor and a significant loss of the immunological properties of RTX in the polymer conjugates.

Zobrazit více v PubMed

Wicki A., Witzigmann D., Balasubramanian V., Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release. 2015;200:138–157. doi: 10.1016/j.jconrel.2014.12.030. PubMed DOI

Kopeček J. Polymer-drug conjugates: Origins, progress to date and future directions. Adv. Drug Deliv. Rev. 2013;65:49–59. doi: 10.1016/j.addr.2012.10.014. PubMed DOI PMC

Ulbrich K., Šubr V. Structural and chemical aspects of HPMA copolymers as drug carriers. Adv. Drug Deliv. Rev. 2010;62:150–166. doi: 10.1016/j.addr.2009.10.007. PubMed DOI

Kopeček J., Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC

Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B. Polymeric drugs based on conjugates of synthetic and natural macromolecules. I. Synthesis and physico-chemical characterisation. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI

Etrych T., Jelínková M., Říhová B., Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: Synthesis and preliminary in vitro and in vivo biological properties. J. Control. Release. 2001;73:89–102. doi: 10.1016/S0168-3659(01)00281-4. PubMed DOI

Ulbrich K., Etrych T., Chytil P., Jelínková M., Říhová B. HPMA copolymers with pH-controlled release of doxorubicin: In vitro cytotoxicity and in vivo antitumor activity. J. Control. Release. 2003;87:33–47. doi: 10.1016/S0168-3659(02)00348-6. PubMed DOI

Fang J., Nakamura H., Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011;63:136–151. doi: 10.1016/j.addr.2010.04.009. PubMed DOI

Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cnacer chemotherapy: Mechanism of tumoritropic accumulatio of proteins and the antitumor agents Smancs. Cancer Res. 1986;46:6387–6392. PubMed

Seymour L.W., Miyamoto Y., Maeda H., Brereton M., Strohalm J., Ulbrich K., Duncan R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer. 1995;31A:766–770. doi: 10.1016/0959-8049(94)00514-6. PubMed DOI

Chytil P., Etrych T., Konák C., Sírová M., Mrkvan T., Boucek J., Ríhová B., Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J. Control. Release. 2008;127:121–130. doi: 10.1016/j.jconrel.2008.01.007. PubMed DOI

Etrych T., Strohalm J., Chytil P., Černoch P., Starovoytova L., Pechar M., Ulbrich K. Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur. J. Pharm. Sci. 2011;42:527–539. doi: 10.1016/j.ejps.2011.03.001. PubMed DOI

Steyger P.S., Baban D.F., Brereton M., Ulbrich K., Seymour L.W. Intratumoural distribution as a determinant of tumour responsiveness to therapy using polymer-based macromolecular prodrugs. J. Control. Release. 1996;39:35–46. doi: 10.1016/0168-3659(95)00131-X. DOI

Duncan R., Kopeček J., Rejmanová P., Lloyd J.B. Targeting of N-(2-hydroxypropyl)methacrylamide copolymers to liver by incorporation of galactose residues. Biochim. Biophys. Acta Gen. Subj. 1983;755:518–521. doi: 10.1016/0304-4165(83)90258-1. PubMed DOI

Ulbrich K., Etrych T., Chytil P., Jelínková M., Ríhová B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. J. Drug Target. 2004;12:477–489. doi: 10.1080/10611860400011869. PubMed DOI

Rihova B., Strohalm J., Kovar M., Mrkvan T., Subr V., Hovorka O., Sirova M., Rozprimova L., Kubackova K., Ulbrich K. Induction of systemic antitumour resistance with targeted polymers. Scand. J. Immunol. 2005;62(Suppl 1):100–105. doi: 10.1111/j.1365-3083.2005.01617.x. PubMed DOI

Etrych T., Mrkvan T., Říhová B., Ulbrich K. Star-shaped immunoglobulin-containing HPMA-based conjugates with doxorubicin for cancer therapy. J. Control. Release. 2007;122:31–38. doi: 10.1016/j.jconrel.2007.06.007. PubMed DOI

Etrych T., Strohalm J., Kovář L., Kabešová M., Říhová B., Ulbrich K. HPMA copolymer conjugates with reduced anti-CD20 antibody for cell-specific drug targeting. I. Synthesis and in vitro evaluation of binding efficacy and cytostatic activity. J. Control. Release. 2009;140:18–26. doi: 10.1016/j.jconrel.2009.07.011. PubMed DOI

Gürcan H.M., Keskin D.B., Stern J.N.H., Nitzberg M.A., Shekhani H., Ahmed A.R. A review of the current use of rituximab in autoimmune diseases. Int. Immunopharmacol. 2009;9:10–25. doi: 10.1016/j.intimp.2008.10.004. PubMed DOI

Stolz C., Hess G., Hähnel P.S., Grabellus F., Hoffarth S., Schmid K.W., Schuler M. Targeting Bcl-2 family proteins modulates the sensitivity of B-cell lymphoma to rituximab-induced apoptosis. Blood. 2008;112:3312–3321. doi: 10.1182/blood-2007-11-124487. PubMed DOI

Smith M.R. Rituximab (monoclonal anti-CD20 antibody): Mechanisms of action and resistance. Oncogene. 2003;22:7359–7368. doi: 10.1038/sj.onc.1206939. PubMed DOI

Wu K., Liu J., Johnson R.N., Yang J., Kopeček J. Drug-free macromolecular therapeutics: Induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface. Angew. Chem. Int. Ed. 2010;49:1451–1455. doi: 10.1002/anie.200906232. PubMed DOI PMC

Pérez-Callejo D., González-Rincón J., Sánchez A., Provencio M., Sánchez-Beato M. Action and resistance of monoclonal CD20 antibodies therapy in B-cell Non-Hodgkin Lymphomas. Cancer Treat. Rev. 2015;41:680–689. doi: 10.1016/j.ctrv.2015.05.007. PubMed DOI

Jelínková M., Strohalm J., Etrych T., Ulbrich K., Říhová B. Starlike vs. Classic Macromolecular Prodrugs: Two Different Antibody-Targeted HPMA Copolymers of Doxorubicin Studied in Vitro and in Vivo as Potential Anticancer Drugs. Pharm. Res. 2003;20:1558–1564. doi: 10.1023/A:1026170830782. PubMed DOI

Shaunak S., Godwin A., Choi J.W., Balan S., Pedone E., Vijayarangam D., Heidelberger S., Teo I., Zloh M., Brocchini S. Site-specific PEGylation of native disulfide bonds in therapeutic proteins. Nat. Chem. Biol. 2006;2:312–313. doi: 10.1038/nchembio786. PubMed DOI

Subr V., Kostka L., Selby-Milic T., Fisher K., Ulbrich K., Seymour L.W., Carlisle R.C. Coating of adenovirus type 5 with polymers containing quaternary amines prevents binding to blood components. J. Control. Release. 2009;135:152–158. doi: 10.1016/j.jconrel.2008.12.009. PubMed DOI

Chytil P., Etrych T., Kříž J., Subr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Etrych T., Chytil P., Jelínková M., Říhová B., Ulbrich K. Synthesis of HPMA copolymers containing doxorubicin bound via a hydrazone linkage. Effect of spacer on drug release and in vitro cytotoxicity. Macromol. Biosci. 2002;2:43–52. doi: 10.1002/1616-5195(20020101)2:1<43::AID-MABI43>3.0.CO;2-8. DOI

Subr V., Strohalm J., Ulbrich K., Duncan R., Hume I.C. Polymers containing enzymatically degradable bonds, XII. Effect of spacer structure on the rate of release of daunomycin and adriamycin from poly [N-(2-hydroxypropyl)-methacrylamide] copolymer drag carriers in vitro and antitumour activity measured in vivo. J. Control. Release. 1992;18:123–132. doi: 10.1016/0168-3659(92)90181-P. DOI

Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959;82:70–77. doi: 10.1016/0003-9861(59)90090-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace