Fluorescence Imaging as a Tool in Preclinical Evaluation of Polymer-Based Nano-DDS Systems Intended for Cancer Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
POLYMAT LO1507
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31547308
PubMed Central
PMC6781319
DOI
10.3390/pharmaceutics11090471
PII: pharmaceutics11090471
Knihovny.cz E-zdroje
- Klíčová slova
- drug delivery, fluorescence imaging, noninvasive imaging, polymers, theranostics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Targeted drug delivery using nano-sized carrier systems with targeting functions to malignant and inflammatory tissue and tailored controlled drug release inside targeted tissues or cells has been and is still intensively studied. A detailed understanding of the correlation between the pharmacokinetic properties and structure of the nano-sized carrier is crucial for the successful transition of targeted drug delivery nanomedicines into clinical practice. In preclinical research in particular, fluorescence imaging has become one of the most commonly used powerful imaging tools. Increasing numbers of suitable fluorescent dyes that are excitable in the visible to near-infrared (NIR) wavelengths of the spectrum and the non-invasive nature of the method have significantly expanded the applicability of fluorescence imaging. This chapter summarizes non-invasive fluorescence-based imaging methods and discusses their potential advantages and limitations in the field of drug delivery, especially in anticancer therapy. This chapter focuses on fluorescent imaging from the cellular level up to the highly sophisticated three-dimensional imaging modality at a systemic level. Moreover, we describe the possibility for simultaneous treatment and imaging using fluorescence theranostics and the combination of different imaging techniques, e.g., fluorescence imaging with computed tomography.
Zobrazit více v PubMed
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Boas D.A., Brooks D.H., Miller E.L., DiMarzio C.A., Kilmer M., Gaudette R.J., Zhang Q. Imaging the body with diffuse optical tomography. IEEE Signal. Proc. Mag. 2001;18:57–75. doi: 10.1109/79.962278. DOI
Gibson A.P., Hebden J.C., Arridge S.R. Recent advances in diffuse optical imaging. Phys. Med. Biol. 2005;50:R1–R43. doi: 10.1088/0031-9155/50/4/R01. PubMed DOI
Leblond F., Davis S.C., Valdes P.A., Pogue B.W. Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J. Photochem. Photobiol. B. 2010;98:77–94. doi: 10.1016/j.jphotobiol.2009.11.007. PubMed DOI PMC
Etrych T., Lucas H., Janoušková O., Chytil P., Mueller T., Mäder K. Fluorescence optical imaging in anticancer drug delivery. J. Control. Release. 2016;226:168–181. doi: 10.1016/j.jconrel.2016.02.022. PubMed DOI
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.d.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018;16:71. doi: 10.1186/s12951-018-0392-8. PubMed DOI PMC
Ganta S., Devalapally H., Shahiwala A., Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release. 2008;126:187–204. doi: 10.1016/j.jconrel.2007.12.017. PubMed DOI
Dozono H., Yanazume S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H., et al. HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Target. Oncol. 2016;11:101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI
Duncan R., Gaspar R. Nanomedicine(s) under the Microscope. Mol. Pharm. 2011;8:2101–2141. doi: 10.1021/mp200394t. PubMed DOI
Jain R.K., Stylianopoulos T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010;7:653–664. doi: 10.1038/nrclinonc.2010.139. PubMed DOI PMC
Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI
Matsumura Y., Maeda H. A New Concept for Macromolecular Therapeutics in Cancer-Chemotherapy - Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Res. 1986;46:6387–6392. PubMed
Hoffman A.S. The origins and evolution of “controlled” drug delivery systems. J. Control. Release. 2008;132:153–163. doi: 10.1016/j.jconrel.2008.08.012. PubMed DOI
Mulder W.J.M., Strijkers G.J., Van Tilborg G.A.F., Cormode D.P., Fayad Z.A., Nicolay K. Nanoparticulate Assemblies of Amphiphiles and Diagnostically Active Materials for Multimodality Imaging. Acc. Chem. Res. 2009;42:904–914. doi: 10.1021/ar800223c. PubMed DOI PMC
Ulbrich K., Šubr V. Structural and chemical aspects of HPMA copolymers as drug carriers. Adv. Drug Deliv. Rev. 2010;62:150–166. doi: 10.1016/j.addr.2009.10.007. PubMed DOI
Venditto V.J., Szoka F.C. Cancer nanomedicines: So many papers and so few drugs! Adv. Drug Deliv. Rev. 2013;65:80–88. doi: 10.1016/j.addr.2012.09.038. PubMed DOI PMC
Kunjachan S., Jayapaul J., Mertens M.E., Storm G., Kiessling F., Lammers T. Theranostic Systems and Strategies for Monitoring Nanomedicine-Mediated Drug Targeting. Curr. Pharm. Biotechnol. 2012;13:609–622. doi: 10.2174/138920112799436302. PubMed DOI
Lammers T., Aime S., Hennink W.E., Storm G., Kiessling F. Theranostic Nanomedicine. Acc. Chem. Res. 2011;44:1029–1038. doi: 10.1021/ar200019c. PubMed DOI
Phillips M.A., Gran M.L., Peppas N.A. Targeted nanodelivery of drugs and diagnostics. Nano. Today. 2010;5:143–159. doi: 10.1016/j.nantod.2010.03.003. PubMed DOI PMC
Allmeroth M., Moderegger D., Biesalski B., Koynov K., Rosch F., Thews O., Zentel R. Modifying the Body Distribution of HPMA-Based Copolymers by Molecular Weight and Aggregate Formation. Biomacromolecules. 2011;12:2841–2849. doi: 10.1021/bm2005774. PubMed DOI
Lammers T., Kuhnlein R., Kissel M., Šubr V., Etrych T., Pola R., Pechar M., Ulbrich K., Storm G., Huber P., et al. Effect of physicochemical modification on the biodistribution and tumor accumulation of HPMA copolymers. J. Control. Release. 2005;110:103–118. doi: 10.1016/j.jconrel.2005.09.010. PubMed DOI
Lu Z.R. Molecular imaging of HPMA copolymers: Visualizing drug delivery in cell, mouse and man. Adv. Drug Deliv. Rev. 2010;62:246–257. doi: 10.1016/j.addr.2009.12.007. PubMed DOI
Licha K., Olbrich C. Optical imaging in drug discovery and diagnostic applications. Adv. Drug Deliv. Rev. 2005;57:1087–1108. doi: 10.1016/j.addr.2005.01.021. PubMed DOI
Ntziachristos V. Fluorescence molecular imaging. Annu. Rev. Biomed. Eng. 2006;8:1–33. doi: 10.1146/annurev.bioeng.8.061505.095831. PubMed DOI
Ke S., Wen X.X., Gurfinkel M., Charnsangavej C., Wallace S., Sevick-Muraca E.M., Li C. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 2003;63:7870–7875. PubMed
Wunder A., Tung C.H., Muller-Ladner U., Weissleder R., Mahmood U. In vivo imaging of protease activity in arthritis—A novel approach for monitoring treatment response. Arthritis Rheum. 2004;50:2459–2465. doi: 10.1002/art.20379. PubMed DOI
Zaheer A., Lenkinski R.E., Mahmood A., Jones A.G., Cantley L.C., Frangioni J.V. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat. Biotechnol. 2001;19:1148–1154. doi: 10.1038/nbt1201-1148. PubMed DOI
Ntziachristos V., Ripoll J., Wang L.H.V., Weissleder R. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol. 2005;23:313–320. doi: 10.1038/nbt1074. PubMed DOI
Hebden J.C., Arridge S.R., Delpy D.T. Optical imaging in medicine.1. Experimental techniques. Phys. Med. Biol. 1997;42:825–840. doi: 10.1088/0031-9155/42/5/007. PubMed DOI
Mahmood U., Weissleder R. Near-infrared optical imaging of proteases in cancer. Mol. Cancer Ther. 2003;2:489–496. PubMed
Hoffmann S., Vystrčilová L., Ulbrich K., Etrych T., Caysa H., Mueller T., Mäder K. Dual Fluorescent HPMA Copolymers for Passive Tumor Targeting with pH-Sensitive Drug Release: Synthesis and Characterization of Distribution and Tumor Accumulation in Mice by Noninvasive Multispectral Optical Imaging. Biomacromolecules. 2012;13:652–663. doi: 10.1021/bm2015027. PubMed DOI
Chytil P., Hoffmann S., Schindler L., Kostka L., Ulbrich K., Caysa H., Mueller T., Mäder K., Etrych T. Dual fluorescent HPMA copolymers for passive tumor targeting with pH- sensitive drug release II: Impact of release rate on biodistribution. J. Control. Release. 2013;172:504–512. doi: 10.1016/j.jconrel.2013.05.008. PubMed DOI
Pu Y., Tang R., Xue J., Wang W.B., Xu B., Achilefu S. Synthesis of dye conjugates to visualize the cancer cells using fluorescence microscopy. Appl. Opt. 2014;53:2345–2351. doi: 10.1364/AO.53.002345. PubMed DOI PMC
Rodríguez-Rodríguez H., Acebrón M., Iborra F.J., Arias-Gonzalez J.R., Juárez B.H. Photoluminescence Activation of Organic Dyes via Optically Trapped Quantum Dots. ACS Nano. 2019;13:7223–7230. doi: 10.1021/acsnano.9b02835. PubMed DOI
Xiong J., Cao X., Yang S., Mo Z., Wang W., Zeng W. Fluorescent Probes for Detection of Protein: From Bench to Bed. Protein Pept. Lett. 2018;25:548–559. doi: 10.2174/0929866525666180531080624. PubMed DOI
Kumar S., Richards-Kortum R. Optical molecular imaging agents for cancer diagnostics and therapeutics. Nanomedicine-Uk. 2006;1:23–30. doi: 10.2217/17435889.1.1.23. PubMed DOI
Freidus L.G., Pradeep P., Kumar P., Choonara Y.E., Pillay V. Alternative fluorophores designed for advanced molecular imaging. Drug Discov. Today. 2018;23:115–133. doi: 10.1016/j.drudis.2017.09.008. PubMed DOI
Gao X.H., Nie S.M. Molecular profiling of single cells and tissue specimens with quantum dots. Trends Biotechnol. 2003;21:371–373. doi: 10.1016/S0167-7799(03)00209-9. PubMed DOI
Xue J.P., Shan L.L., Chen H.Y., Li Y., Zhu H.Y., Deng D.W., Qian Z.Y., Achilefu S., Gu Y.Q. Visual detection of STAT5B gene expression in living cell using the hairpin DNA modified gold nanoparticle beacon. Biosens. Bioelectron. 2013;41:71–77. doi: 10.1016/j.bios.2012.06.062. PubMed DOI
Hoffman R.M. Application of GFP imaging in cancer. Lab. Investig. 2015;95:432–452. doi: 10.1038/labinvest.2014.154. PubMed DOI PMC
McCann T., Kosaka N., Choyke P., Kobayashi H. The Use of Fluorescent Proteins for Developing Cancer-Specific Target Imaging Probes. In: Hoffman R.M., editor. In Vivo Cellular Imaging Using Fluorescent Proteins. Volume 872. Humana Press; Totowa, NJ, USA: 2012. pp. 191–204. PubMed PMC
Karasev M.M., Stepanenko O.V., Rumyantsev K.A., Turoverov K.K., Verkhusha V.V. Near-Infrared Fluorescent Proteins and Their Applications. Biochem-Moscow. 2019;84:32–50. doi: 10.1134/S0006297919140037. PubMed DOI
Heinrich A.K., Lucas H., Schindler L., Chytil P., Etrych T., Mäder K., Mueller T. Improved Tumor-Specific Drug Accumulation by Polymer Therapeutics with pH-Sensitive Drug Release Overcomes Chemotherapy Resistance. Mol. Cancer Ther. 2016;15:998–1007. doi: 10.1158/1535-7163.MCT-15-0824. PubMed DOI
Dolloff N.G., Ma X.H., Dicker D.T., Humphreys R.C., Li L.Z., El-Deiry W.S. Spectral imaging-based methods for quantifying autophagy and apoptosis. Cancer Biol. Ther. 2011;12:349–356. doi: 10.4161/cbt.12.4.17175. PubMed DOI PMC
Galateanu B., Hudita A., Negrei C., Ion R.M., Costache M., Stan M., Nikitovic D., Hayes A.W., Spandidos D.A., Tsatsakis A.M., et al. Impact of multicellular tumor spheroids as an in vivo-like tumor model on anticancer drug response. Int. J. Oncol. 2016;48:2295–2302. doi: 10.3892/ijo.2016.3467. PubMed DOI PMC
Ballou B., Fisher G.W., Hakala T.R., Farkas D.L. Tumor detection and visualization using cyanine fluorochrome-labeled antibodies. Biotechnol. Progr. 1997;13:649–658. doi: 10.1021/bp970088t. PubMed DOI
Lidický O., Janoušková O., Strohalm J., Alam M., Klener P., Etrych T. Anti-Lymphoma Efficacy Comparison of Anti-Cd20 Monoclonal Antibody-Targeted and Non-Targeted Star-Shaped Polymer-Prodrug Conjugates. Molecules. 2015;20:19849–19864. doi: 10.3390/molecules201119664. PubMed DOI PMC
Folli S., Westermann P., Braichotte D., Pelegrin A., Wagnieres G., van den Bergh H., Mach J.P. Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res. 1994;54:2643–2649. PubMed
Pechar M., Pola R., Janoušková O., Sieglová I., Král V., Fábry M., Tomalová B., Kovář M. Polymer Cancerostatics Targeted with an Antibody Fragment Bound via a Coiled Coil Motif: In Vivo Therapeutic Efficacy against Murine BCL1 Leukemia. Macromol. Biosci. 2018;18:1700173. doi: 10.1002/mabi.201700173. PubMed DOI
Pola R., Studenovsky M., Pechar M., Ulbrich K., Hovorka O., Vetvicka D., Rihova B. HPMA-copolymer conjugates targeted to tumor endothelium using synthetic oligopeptides. J. Drug Target. 2009;17:763–776. doi: 10.3109/10611860903115282. PubMed DOI
Studenovsky M., Pola R., Pechar M., Etrych T., Ulbrich K., Kovar L., Kabesova M., Rihova B. Polymer carriers for anticancer drugs targeted to EGF receptor. Macromol. Biosci. 2012;12:1714–1720. doi: 10.1002/mabi.201200270. PubMed DOI
Song Y., Zhu Z., An Y., Zhang W., Zhang H., Liu D., Yu C., Duan W., Yang C.J. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 2013;85:4141–4149. doi: 10.1021/ac400366b. PubMed DOI
Tung C.H. Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers. 2004;76:391–403. doi: 10.1002/bip.20139. PubMed DOI
Weissleder R. Molecular imaging: Exploring the next frontier. Radiology. 1999;212:609–614. doi: 10.1148/radiology.212.3.r99se18609. PubMed DOI
Shi H., Lei Y., Ge J., He X., Cui W., Ye X., Liu J., Wang K. A Simple, pH-Activatable Fluorescent Aptamer Probe with Ultralow Background for Bispecific Tumor Imaging. Anal. Chem. 2019;91:9154–9160. doi: 10.1021/acs.analchem.9b01828. PubMed DOI
Muller-Taubenberger A., Anderson K.I. Recent advances using green and red fluorescent protein variants. Appl. Microbiol. Biotechnol. 2007;77:1–12. doi: 10.1007/s00253-007-1131-5. PubMed DOI
Hoffman R.M. The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat. Rev. Cancer. 2005;5:796–806. doi: 10.1038/nrc1717. PubMed DOI
Chudakov D.M., Matz M.V., Lukyanov S., Lukyanov K.A. Fluorescent Proteins and Their Applications in Imaging Living Cells and Tissues. Physiol. Rev. 2010;90:1103–1163. doi: 10.1152/physrev.00038.2009. PubMed DOI
Choy G., Choyke P., Libutti S.K. Current Advances in Molecular Imaging: Noninvasive in Vivo Bioluminescent and Fluorescent Optical Imaging in Cancer Research. Mol. Imaging. 2003;2:15353500200303142. doi: 10.1162/15353500200303142. PubMed DOI
Barua S., Yoo J.W., Kolhar P., Wakankar A., Gokarn Y.R., Mitragotri S. Particle shape enhances specificity of antibody-displaying nanoparticles. PNAS. 2013;110:3270–3275. doi: 10.1073/pnas.1216893110. PubMed DOI PMC
Gratton S.E., Ropp P.A., Pohlhaus P.D., Luft J.C., Madden V.J., Napier M.E., DeSimone J.M. The effect of particle design on cellular internalization pathways. PNAS. 2008;105:11613–11618. doi: 10.1073/pnas.0801763105. PubMed DOI PMC
Huang X., Teng X., Chen D., Tang F., He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010;31:438–448. doi: 10.1016/j.biomaterials.2009.09.060. PubMed DOI
Shi J., Choi J.L., Chou B., Johnson R.N., Schellinger J.G., Pun S.H. Effect of polyplex morphology on cellular uptake, intracellular trafficking, and transgene expression. ACS nano. 2013;7:10612–10620. doi: 10.1021/nn403069n. PubMed DOI PMC
Koziolová E., Goel S., Chytil P., Janoušková O., Barnhart T.E., Cai W., Etrych T. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale. 2017;9:10906–10918. doi: 10.1039/C7NR03306K. PubMed DOI PMC
Pola R., Laga R., Ulbrich K., Sieglová I., Král V., Fábry M., Kabešová M., Kovář M., Pechar M. Polymer Therapeutics with a Coiled Coil Motif Targeted against Murine BCL1 Leukemia. Biomacromolecules. 2013;14:881–889. doi: 10.1021/bm3019592. PubMed DOI
Pola R., Král V., Filippov S.K., Kaberov L., Etrych T., Sieglová I., Sedláček J., Fábry M., Pechar M. Polymer Cancerostatics Targeted by Recombinant Antibody Fragments to GD2-Positive Tumor Cells. Biomacromolecules. 2019;20:412–421. doi: 10.1021/acs.biomac.8b01616. PubMed DOI
Jiang S., Gnanasammandhan M.K., Zhang Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J. R. Soc. Interface. 2010;7:3–18. doi: 10.1098/rsif.2009.0243. PubMed DOI PMC
Koziolová E., Machová D., Pola R., Janoušková O., Chytil P., Laga R., Filippov S.K., Šubr V., Etrych T., Pechar M. Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. J. Mater. Chem. B. 2016;4:7620–7629. doi: 10.1039/C6TB02225A. PubMed DOI
Hovorka O., Etrych T., Šubr V., Strohalm J., Ulbrich K., Říhová B. HPMA based macromolecular therapeutics: Internalization, intracellular pathway and cell death depend on the character of covalent bond between the drug and the peptidic spacer and also on spacer composition. J. Drug Target. 2006;14:391–403. doi: 10.1080/10611860600833591. PubMed DOI
Machová D., Koziolová E., Chytil P., Venclíková K., Etrych T., Janoušková O. Nanotherapeutics with suitable properties for advanced anticancer therapy based on HPMA copolymer-bound ritonavir via pH-sensitive spacers. Eur. J. Pharm. Biopharm. 2018;131:141–150. doi: 10.1016/j.ejpb.2018.07.023. PubMed DOI
Chen Y., Walsh R.J., Arriaga E.A. Selective determination of the doxorubicin content of individual acidic organelles in impure subcellular fractions. Anal. Chem. 2005;77:2281–2287. doi: 10.1021/ac0480996. PubMed DOI
Shen F., Chu S., Bence A.K., Bailey B., Xue X., Erickson P.A., Montrose M.H., Beck W.T., Erickson L.C. Quantitation of doxorubicin uptake, efflux, and modulation of multidrug resistance (MDR) in MDR human cancer cells. J. Pharmacol. Exp. Ther. 2008;324:95–102. doi: 10.1124/jpet.107.127704. PubMed DOI
Priem B., Tian C., Tang J., Zhao Y., Mulder W.J.M. Fluorescent nanoparticles for the accurate detection of drug delivery. Expert Opin. Drug Deliv. 2015;12:1881–1894. doi: 10.1517/17425247.2015.1074567. PubMed DOI
Nori A., Kopecek J. Intracellular targeting of polymer-bound drugs for cancer chemotherapy. Adv. Drug Deliv. Rev. 2005;57:609–636. doi: 10.1016/j.addr.2004.10.006. PubMed DOI
Chytil P., Koziolová E., Janoušková O., Kostka L., Ulbrich K., Etrych T. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging. Macromol. Biosci. 2015;15:839–850. doi: 10.1002/mabi.201400510. PubMed DOI
Laga R., Janoušková O., Ulbrich K., Pola R., Blažková J., Filippov S.K., Etrych T., Pechar M. Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics. Biomacromolecules. 2015;16:2493–2505. doi: 10.1021/acs.biomac.5b00764. PubMed DOI
Braunová A., Kostka L., Sivák L., Cuchalová L., Hvězdová Z., Laga R., Filippov S., Černoch P., Pechar M., Janoušková O., et al. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J. Control. Release. 2017;245:41–51. doi: 10.1016/j.jconrel.2016.11.020. PubMed DOI
Zhang R., Yang J., Radford D.C., Fang Y., Kopeček J. FRET Imaging of Enzyme-Responsive HPMA Copolymer Conjugate. Macromol. Biosci. 2017;17:1600125. doi: 10.1002/mabi.201600125. PubMed DOI
Yang J.Y., Zhang R., Radford D.C., Kopecek J. FRET-trackable biodegradable HPMA copolymer-epirubicin conjugates for ovarian carcinoma therapy. J. Control. Release. 2015;218:36–44. doi: 10.1016/j.jconrel.2015.09.045. PubMed DOI PMC
Fan W., Shi W., Zhang W., Jia Y., Zhou Z., Brusnahan S.K., Garrison J.C. Cathepsin S-cleavable, multi-block HPMA copolymers for improved SPECT/CT imaging of pancreatic cancer. Biomaterials. 2016;103:101–115. doi: 10.1016/j.biomaterials.2016.05.036. PubMed DOI PMC
Bhuckory S., Kays J.C., Dennis A.M. In Vivo Biosensing Using Resonance Energy Transfer. Biosensors. 2019;9:76. doi: 10.3390/bios9020076. PubMed DOI PMC
Basuki J.S., Duong H.T.T., Macmillan A., Erlich R.B., Esser L., Akerfeldt M.C., Whan R.M., Kavallaris M., Boyer C., Davis T.P. Using Fluorescence Lifetime Imaging Microscopy to Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin Release. ACS Nano. 2013;7:10175–10189. doi: 10.1021/nn404407g. PubMed DOI
Dai X.W., Yue Z.L., Eccleston M.E., Swartling J., Slater N.K.H., Kaminski C.F. Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells. Nanomed-Nanotechnol. 2008;4:49–56. doi: 10.1016/j.nano.2007.12.002. PubMed DOI
Mansfield J.R., Gossage K.W., Hoyt C.C., Levenson R.M. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J. Biomed. Opt. 2005;10:041207. doi: 10.1117/1.2032458. PubMed DOI
Weissleder R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001;19:316–317. doi: 10.1038/86684. PubMed DOI
Hoffmann S., Caysa H., Kuntsche J., Kreideweiss P., Leimert A., Mueller T., Mäder K. Carbohydrate plasma expanders for passive tumor targeting: In vitro and in vivo studies. Carbohyd. Polym. 2013;95:404–413. doi: 10.1016/j.carbpol.2013.03.033. PubMed DOI
Han Y.-H., Kankala R.K., Wang S.-B., Chen A.-Z. Leveraging Engineering of Indocyanine Green-Encapsulated Polymeric Nanocomposites for Biomedical Applications. Nanomaterials. 2018;8:360. doi: 10.3390/nano8060360. PubMed DOI PMC
Kolitz-Domb M., Grinberg I., Corem-Salkmon E., Margel S. Engineering of near infrared fluorescent proteinoid-poly(L-lactic acid) particles for in vivo colon cancer detection. J. Nanobiotechnol. 2014;12:30. doi: 10.1186/s12951-014-0030-z. PubMed DOI PMC
Hirsjarvi S., Sancey L., Dufort S., Belloche C., Vanpouille-Box C., Garcion E., Coll J.L., Hindre F., Benoit J.P. Effect of particle size on the biodistribution of lipid nanocapsules: Comparison between nuclear and fluorescence imaging and counting. Int. J. Pharm. 2013;453:594–600. doi: 10.1016/j.ijpharm.2013.05.057. PubMed DOI
Studenovský M., Heinrich A.-K., Lucas H., Mueller T., Mäder K., Etrych T. Dual fluorescent N-(2-hydroxypropyl)methacrylamide-based conjugates for passive tumor targeting with reduction-sensitive drug release: Proof of the concept, tumor accumulation, and biodistribution. J. Bioact. Compat. Pol. 2016 doi: 10.1177/0883911515618975. DOI
Pola R., Heinrich A.K., Mueller T., Kostka L., Mäder K., Pechar M., Etrych T. Passive Tumor Targeting of Polymer Therapeutics: In Vivo Imaging of Both the Polymer Carrier and the Enzymatically Cleavable Drug Model. Macromol. Biosci. 2016;16:1577–1582. doi: 10.1002/mabi.201600273. PubMed DOI
Cho H., Kwon G.S. Polymeric Micelles for Neoadjuvant Cancer Therapy and Tumor-Primed Optical Imaging. ACS Nano. 2011;5:8721–8729. doi: 10.1021/nn202676u. PubMed DOI PMC
Pola R., Parnica J., Zuska K., Böhmová E., Filipová M., Pechar M., Pankrác J., Mucksová J., Kalina J., Trefil P., et al. Oligopeptide-targeted polymer nanoprobes for fluorescence-guided endoscopic surgery. Multifunct. Mater. 2019;2:024004. doi: 10.1088/2399-7532/ab159e. DOI
Ko J.Y., Park S., Lee H., Koo H., Kim M.S., Choi K., Kwon I.C., Jeong S.Y., Kim K., Lee D.S. pH-Sensitive Nanoflash for Tumoral Acidic pH Imaging in Live Animals. Small. 2010;6:2539–2544. doi: 10.1002/smll.201001252. PubMed DOI
Gao G.H., Li Y., Lee D.S. Environmental pH-sensitive polymeric micelles for cancer diagnosis and targeted therapy. J. Control. release. 2013;169:180–184. doi: 10.1016/j.jconrel.2012.11.012. PubMed DOI
Etrych T., Daumová L., Pokorná E., Tušková D., Lidický O., Kolářová V., Pankrác J., Šefc L., Chytil P., Klener P. Effective doxorubicin-based nano-therapeutics for simultaneous malignant lymphoma treatment and lymphoma growth imaging. J. Control. Release. 2018;289:44–55. doi: 10.1016/j.jconrel.2018.09.018. PubMed DOI
Berg K., Selbo P.K., Weyergang A., Dietze A., Prasmickaite L., Bonsted A., Engesaeter B.O., Angell-Petersen E., Warloe T., Frandsen N., et al. Porphyrin-related photosensitizers for cancer imaging and therapeutic applications. J. Microsc-Oxford. 2005;218:133–147. doi: 10.1111/j.1365-2818.2005.01471.x. PubMed DOI
Nakamura H., Liao L., Hitaka Y., Tsukigawa K., Šubr V., Fang J., Ulbrich K., Maeda H. Micelles of zinc protoporphyrin conjugated to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer for imaging and light-induced antitumor effects in vivo. J. Control. Release. 2013;165:191–198. doi: 10.1016/j.jconrel.2012.11.017. PubMed DOI
Hackbarth S., Islam W., Fang J., Šubr V., Röder B., Etrych T., Maeda H. Singlet oxygen phosphorescence detection in vivo identifies PDT-induced anoxia in solid tumors. Photochem. Photobiol. Sci. 2019;18:1304–1314. doi: 10.1039/C8PP00570B. PubMed DOI
Niedre M.J., de Kleine R.H., Aikawa E., Kirsch D.G., Weissleder R., Ntziachristos V. Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proc. Natl. Acad. Sci. USA. 2008;105:19126–19131. doi: 10.1073/pnas.0804798105. PubMed DOI PMC
Hall D., Ma G.B., Lesage F., Yong W. Simple time-domain optical method for estimating the depth and concentration of a fluorescent inclusion in a turbid medium. Opt. Lett. 2004;29:2258–2260. doi: 10.1364/OL.29.002258. PubMed DOI
Swartling J., Svensson J., Bengtsson D., Terike K., Andersson-Engels S. Fluorescence spectra provide information on the depth of fluorescent lesions in tissue. Appl. Opt. 2005;44:1934–1941. doi: 10.1364/AO.44.001934. PubMed DOI
Shi J.W., Liu F., Pu H.S., Zuo S.M., Luo J.W., Bai J. An adaptive support driven reweighted L1-regularization algorithm for fluorescence molecular tomography. Biomed. Opt. Express. 2014;5:4039–4052. doi: 10.1364/BOE.5.004039. PubMed DOI PMC
Favicchio R., Psycharakis S., Schonig K., Bartsch D., Mamalaki C., Papamatheakis J., Ripoll J., Zacharakis G. Quantitative performance characterization of three-dimensional noncontact fluorescence molecular tomography. J. Biomed. Opt. 2016;21:026009. doi: 10.1117/1.JBO.21.2.026009. PubMed DOI
Pian Q., Yao R.Y., Zhao L.L., Intes X. Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection. Opt. Lett. 2015;40:431–434. doi: 10.1364/OL.40.000431. PubMed DOI PMC
An Y., Liu J., Zhang G.L., Ye J.Z., Du Y., Mao Y., Chi C.W., Tian J. A Novel Region Reconstruction Method for Fluorescence Molecular Tomography. IEEE Trans. Biomed. Eng. 2015;62:1818–1826. doi: 10.1109/TBME.2015.2404915. PubMed DOI
Chi C., Du Y., Ye J., Kou D., Qiu J., Wang J., Tian J., Chen X. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology. Theranostics. 2014;4:1072–1084. doi: 10.7150/thno.9899. PubMed DOI PMC
Kelly K., Alencar H., Funovics M., Mahmood U., Weissleder R. Detection of invasive colon cancer using a novel, targeted, library-derived fluorescent peptide. Cancer Res. 2004;64:6247–6251. doi: 10.1158/0008-5472.CAN-04-0817. PubMed DOI
Heffer E., Pera V., Schutz O., Siebold H., Fantini S. Near-infrared imaging of the human breast: Complementing hemoglobin concentration maps with oxygenation images. J. Biomed. Opt. 2004;9:1152–1160. doi: 10.1117/1.1805552. PubMed DOI
Choe R., Corlu A., Lee K., Durduran T., Konecky S.D., Grosicka-Koptyra M., Arridge S.R., Czerniecki B.J., Fraker D.L., DeMichele A., et al. Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI. Medical. Phys. 2005;32:1128–1139. doi: 10.1118/1.1869612. PubMed DOI
Taroni P., Danesini G., Torricelli A., Pifferi A., Spinelli L., Cubeddu R. Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm. J. Biomed. Opt. 2004;9:464–473. doi: 10.1117/1.1695561. PubMed DOI
Corlu A., Choe R., Durduran T., Rosen M.A., Schweiger M., Arridge S.R., Schnall M.D., Yodh A.G. Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Opt. Express. 2007;15:6696–6716. doi: 10.1364/OE.15.006696. PubMed DOI
Intes X., Ripoll J., Chen Y., Nioka S., Yodh A.G., Chance B. In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med. Phys. 2003;30:1039–1047. doi: 10.1118/1.1573791. PubMed DOI
Graves E.E., Ripoll J., Weissleder R., Ntziachristos V. A submillimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys. 2003;30:901–911. doi: 10.1118/1.1568977. PubMed DOI
Ntziachristos V., Weissleder R. Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation. Opt. Lett. 2001;26:893–895. doi: 10.1364/OL.26.000893. PubMed DOI
Ale A., Ermolayev V., Herzog E., Cohrs C., de Angelis M.H., Ntziachristos V. FMT-XCT: In vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat. Methods. 2012;9:615–620. doi: 10.1038/nmeth.2014. PubMed DOI
Panizzi P., Nahrendorf M., Figueiredo J.L., Panizzi J., Marinelli B., Iwamoto Y., Keliher E., Maddur A.A., Waterman P., Kroh H.K., et al. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat. Med. 2011;17:1142–1146. doi: 10.1038/nm.2423. PubMed DOI PMC
Vonwil D., Christensen J., Fischer S., Ronneberger O., Shastri V.P. Validation of Fluorescence Molecular Tomography/Micro-CT Multimodal Imaging In Vivo in Rats. Mol. Imaging Biol. 2014;16:350–361. doi: 10.1007/s11307-013-0698-8. PubMed DOI
Schulz R.B., Ale A., Sarantopoulos A., Freyer M., Soehngen E., Zientkowska M., Ntziachristos V. Hybrid System for Simultaneous Fluorescence and X-Ray Computed Tomography. IEEE Trans. Med. Imaging. 2010;29:465–473. doi: 10.1109/TMI.2009.2035310. PubMed DOI
Nahrendorf M., Keliher E., Marinelli B., Waterman P., Feruglio P.F., Fexon L., Pivovarov M., Swirski F.K., Pittet M.J., Vinegoni C., et al. Hybrid PET-optical imaging using targeted probes. Proc. Natl. Acad. Sci. USA. 2010;107:7910–7915. doi: 10.1073/pnas.0915163107. PubMed DOI PMC
Ma X., Phi Van V., Kimm M.A., Prakash J., Kessler H., Kosanke K., Feuchtinger A., Aichler M., Gupta A., Rummeny E.J., et al. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer. Neoplasia. 2017;19:8–16. doi: 10.1016/j.neo.2016.11.009. PubMed DOI PMC
Kunjachan S., Gremse F., Theek B., Koczera P., Pola R., Pechar M., Etrych T., Ulbrich K., Storm G., Kiessling F., et al. Noninvasive Optical Imaging of Nanomedicine Biodistribution. ACS Nano. 2013;7:252–262. doi: 10.1021/nn303955n. PubMed DOI PMC
Kunjachan S., Pola R., Gremse F., Theek B., Ehling J., Moeckel D., Hermanns-Sachweh B., Pechar M., Ulbrich K., Hennink W.E., et al. Passive versus Active Tumor Targeting Using RGD- and NGR-Modified Polymeric Nanomedicines. Nano. Lett. 2014;14:972–981. doi: 10.1021/nl404391r. PubMed DOI PMC
Giddabasappa A., Gupta V.R., Norberg R., Gupta P., Spilker M.E., Wentland J., Rago B., Eswaraka J., Leal M., Sapra P. Biodistribution and Targeting of Anti-5T4 Antibody-Drug Conjugate Using Fluorescence Molecular Tomography. Mol. Cancer Ther. 2016;15:2530–2540. doi: 10.1158/1535-7163.MCT-15-1012. PubMed DOI
Theek B., Baues M., Gremse F., Pola R., Pechar M., Negwer I., Koynov K., Weber B., Barz M., Jahnen-Dechent W., et al. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. J. Control. Release. 2018;282:25–34. doi: 10.1016/j.jconrel.2018.05.002. PubMed DOI PMC
Lee H., Lytton-Jean A.K.R., Chen Y., Love K.T., Park A.I., Karagiannis E.D., Sehgal A., Querbes W., Zurenko C.S., Jayaraman M., et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012;7:389–393. doi: 10.1038/nnano.2012.73. PubMed DOI PMC
Novobrantseva T.I., Borodovsky A., Wong J., Klebanov B., Zafari M., Yucius K., Querbes W., Ge P., Ruda V.M., Milstein S., et al. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. Mol. Ther-Nucl Acids. 2012;1:e4. doi: 10.1038/mtna.2011.3. PubMed DOI PMC
Al Rawashdeh W., Zuo S., Melle A., Appold L., Koletnik S., Tsvetkova Y., Beztsinna N., Pich A., Lammers T., Kiessling F., et al. Noninvasive Assessment of Elimination and Retention using CT-FMT and Kinetic Whole-body Modeling. Theranostics. 2017;7:1499–1510. doi: 10.7150/thno.17263. PubMed DOI PMC
Li B.Q., Maafi F., Berti R., Pouliot P., Rheaume E., Tardif J.C., Lesage F. Hybrid FMT-MRI applied to in vivo atherosclerosis imaging. Biomed. Opt. Express. 2014;5:1664–1676. doi: 10.1364/BOE.5.001664. PubMed DOI PMC
Sosnovik D.E., Nahrendorf M., Deliolanis N., Novikov M., Aikawa E., Josephson L., Rosenzweig A., Weissleder R., Ntziachristos V. Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation. 2007;115:1384–1391. doi: 10.1161/CIRCULATIONAHA.106.663351. PubMed DOI
Zhang Y., Zhang B., Liu F., Luo J.W., Bai J. In vivo tomographic imaging with fluorescence and MRI using tumor-targeted dual-labeled nanoparticles. Int. J. Nanomed. 2014;9:33–41. doi: 10.2147/IJN.S52492. PubMed DOI PMC
Gaedicke S., Braun F., Prasad S., Machein M., Firat E., Hettich M., Gudihal R., Zhu X., Klingner K., Schüler J., et al. Noninvasive positron emission tomography and fluorescence imaging of CD133+ tumor stem cells. Proc. Natl. Acad. Sci. USA. 2014;111:E692–E701. doi: 10.1073/pnas.1314189111. PubMed DOI PMC
Boutet J., Herve L., Debourdeau M., Guyon L., Peltie P., Dinten J.M., Saroul L., Duboeuf F., Vray D. Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis. J. Biomed. Opt. 2009;14:064001. doi: 10.1117/1.3257236. PubMed DOI
Laidevant A., Herve L., Debourdeau M., Boutet J., Grenier N., Dinten J.M. Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe. Biomed. Opt. Express. 2011;2:194–206. doi: 10.1364/BOE.2.000194. PubMed DOI PMC
Theek B., Gremse F., Kunjachan S., Fokong S., Pola R., Pechar M., Deckers R., Storm G., Ehling J., Kiessling F., et al. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J. Control. Release. 2014;182:83–89. doi: 10.1016/j.jconrel.2014.03.007. PubMed DOI PMC
McCann C.M., Waterman P., Figueiredo J.L., Aikawa E., Weissleder R., Chen J.W. Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neuroimage. 2009;45:360–369. doi: 10.1016/j.neuroimage.2008.12.022. PubMed DOI PMC
Penet M.F., Mikhaylova M., Li C., Krishnamachary B., Glunde K., Pathak A.P., Bhujwalla Z.M. Applications of molecular MRI and optical imaging in cancer. Future Med. Chem. 2010;2:975–988. doi: 10.4155/fmc.10.25. PubMed DOI PMC
Mikhaylova M., Stasinopoulos I., Kato Y., Artemov D., Bhujwalla Z.M. Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA. Cancer Gene Ther. 2009;16:217–226. doi: 10.1038/cgt.2008.79. PubMed DOI PMC
Medarova Z., Pham W., Farrar C., Petkova V., Moore A. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med. 2007;13:372–377. doi: 10.1038/nm1486. PubMed DOI