Modification of subcutaneous white adipose tissue inflammation by omega-3 fatty acids is limited in human obesity-a double blind, randomised clinical trial
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
PubMed
35247847
PubMed Central
PMC8894262
DOI
10.1016/j.ebiom.2022.103909
PII: S2352-3964(22)00093-7
Knihovny.cz E-zdroje
- Klíčová slova
- Adipose tissue, Immune system, Inflammation, LC n-3 PUFA, Lipids, Obesity,
- MeSH
- bílá tuková tkáň metabolismus MeSH
- kyseliny dokosahexaenové MeSH
- lidé MeSH
- mastné kyseliny MeSH
- obezita farmakoterapie MeSH
- omega-3 mastné kyseliny * MeSH
- potravní doplňky * MeSH
- zánět metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- kyseliny dokosahexaenové MeSH
- mastné kyseliny MeSH
- omega-3 mastné kyseliny * MeSH
BACKGROUND: Obesity is associated with enhanced inflammation. However, investigation in human subcutaneous white adipose tissue (scWAT) is limited and the mechanisms by which inflammation occurs have not been well elucidated. Marine long chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs) have anti-inflammatory actions and may reduce scWAT inflammation. METHODS: Subcutaneous white adipose tissue (scWAT) biopsies were collected from individuals living with obesity (n=45) and normal weight individuals (n=39) prior to and following a 12-week intervention with either 3 g/day of a fish oil concentrate (providing 1.1 g eicosapentaenoic acid (EPA) + 0.8 g docosahexaenoic acid (DHA)) or 3 g/day of corn oil. ScWAT fatty acid, oxylipin, and transcriptome profiles were assessed by gas chromatography, ultra-pure liquid chromatography tandem mass spectrometry, RNA sequencing and qRT-PCR, respectively. FINDINGS: Obesity was associated with greater scWAT inflammation demonstrated by lower concentrations of specialised pro-resolving mediators (SPMs) and hydroxy-DHA metabolites and an altered transcriptome with differential expression of genes involved in LC n-3 PUFA activation, oxylipin synthesis, inflammation, and immune response. Intervention with LC n-3 PUFAs increased their respective metabolites including the SPM precursor 14-hydroxy-DHA in normal weight individuals and decreased arachidonic acid derived metabolites and expression of genes involved in immune and inflammatory response with a greater effect in normal weight individuals. INTERPRETATION: Downregulated expression of genes responsible for fatty acid activation and metabolism may contribute to an inflammatory oxylipin profile and limit the effects of LC n-3 PUFAs in obesity. There may be a need for personalised LC n-3 PUFA supplementation based on obesity status. FUNDING: European Commission Seventh Framework Programme (Grant Number 244995) and Czech Academy of Sciences (Lumina quaeruntur LQ200111901).
Zobrazit více v PubMed
WHO . WHO; 2018. Obesity and Overweight 2015.http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight [updated February 16Available from.
British Heart Foundation . British Heart Foundation; UK: 2018. UK Factsheet. Foundation BHeditorhttps://wwwbhforguk/-/media/files//heart/bhf-cvd-statistics—uk-factsheetpdf.
National Statistics, NHS Digital . NatCen Social Research, Statistics N; UK: 2017. Health Survey for England 2016 Adult Overweight and Obesity.
Public Health England . Public Health England; UK: 2014. Adult Obesity and Type 2 Diabetes; p. 39. England PH, editor.
Gao M., Piernas C., Astbury N.M., et al. Associations between body-mass index and COVID-19 severity in 6·9 million people in England: a prospective, community-based, cohort study. Lancet Diabetes Endocrinol. 2021;9(6):350–359. PubMed PMC
Stefan N., Birkenfeld A.L., Schulze M.B. Global pandemics interconnected - obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol. 2021;17(3):135–149. PubMed
Mohammad S., Aziz R., Al Mahri S., et al. Obesity and COVID-19: what makes obese host so vulnerable? Immun Ageing. 2021;18(1):1. PubMed PMC
Daryabor G., Kabelitz D., Kalantar K. An update on immune dysregulation in obesity-related insulin resistance. Scand J Immunol. 2019;89(4):e12747. PubMed
Pérez de Heredia F., Gomez-Martinez S., Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71(2):332–338. PubMed
Masoodi M., Kuda O., Rossmeisl M., Flachs P., Kopecky J. Lipid signaling in adipose tissue: connecting inflammation & metabolism. Biochim Biophys Acta. 2014;1851(4):503–518. PubMed
Calder P.C. Fatty acids and inflammation: the cutting edge between food and pharma. Eur J Pharmacol. 2011;668:S50–S58. PubMed
Calder P.C., Ahluwalia N., Brouns F., et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:5–78. PubMed
Fisk H.L., Childs C.E., Miles E.A., et al. Dysregulation of endocannabinoid concentrations in human subcutaneous adipose tissue in obesity and modulation by omega-3 polyunsaturated fatty acids. Clin Sci (Lond) 2021;135(1):185–200. PubMed
Bittleman D.B., Casale T.B. 5-hydroxyeicosatetraenoic acid (HETE)-induced neutrophil transcellular migration is dependent upon enantiomeric structure. Am J Respir Cell Mol Biol. 1995;12:260–267. PubMed
Wright H.L., Moots R.J., Bucknall R.C., Edwards S.W. Neutrophil function in inflammation and inflammatory diseases. Rheumatol (Oxf) 2010;49(9):1618–1631. PubMed
Hecker G., Ney P., Schrör K. Cytotoxic enzyme release and oxygen centered radical formation in human neutrophils are selectively inhibited by E-type prostaglandins but not by PGI2. Naunyn Schmiedebergs Arch Pharmacol. 1990;1(4):308–315. PubMed
Fain J.N., Leffler C.W., Cowan G.S., Buffington C., Pouncey L., Bahouth S.W. Stimulation of leptin release by arachidonic acid and prostaglandin E(2) in adipose tissue from obese humans. Metabolism. 2001;50(8):921–928. PubMed
Balvers M.G., Verhoeckx K.C., Plastina P., Wortelboer H.M., Meijerink J., Witkamp R.F. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties. Biochim Biophys Acta. 2010;1801(10):1107–1114. PubMed
Serhan C.N., Chiang N., Dalli J., Levy B.D. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2015;7(2):a016311. PubMed PMC
Han Y.H., Lee K., Saha A., et al. Specialized proresolving mediators for therapeutic interventions targeting metabolic and inflammatory disorders. Biomol Ther (Seoul) 2021;29(5):455–464. PubMed PMC
Schwab J.M., Chiang N., Arita M., Serhan C.N. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature. 2007;447(7146):869–874. PubMed PMC
Croasdell A., Sime P.J., Phipps R.P. Resolvin D2 decreases TLR4 expression to mediate resolution in human monocytes. FASEB J. 2016;30(9):3181–3193. PubMed PMC
Claria J., Dalli J., Yacoubian S., Gao F., Serhan C.N. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J Immunol. 2012;189(5):2597–2605. PubMed PMC
Serhan C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101. PubMed PMC
Pal A., Gowdy K.M., Oestreich K.J., Beck M., Shaikh S.R. Obesity-driven deficiencies of specialized pro-resolving mediators may drive adverse outcomes during SARS-CoV-2 infection. Front Immunol. 2020;11:1997. PubMed PMC
Claria J., Nguyen B.T., Madenci A.L., Ozaki C.K., Serhan C.N. Diversity of lipid mediators in human adipose tissue depots. Am J Physiol Cell Physiol. 2013;304:C1141–C1149. PubMed PMC
Seppanen-Laakso T., Laakso I., Lehtimaki T., et al. Elevated plasma fibrinogen caused by inadequate alpha-linolenic acid intake can be reduced by replacing fat with canola-type rapeseed oil. Prostaglandins Leukot Essent Fatty Acids. 2010;83(1):45–54. PubMed
Calder P.C. Very long chain omega-3 (n-3) fatty acids and human health. Eur J Lipid Sci Technol. 2014;116(10):1280–1300.
Calder P.C. Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta. 2015;1851(4):469–484. PubMed
Nisoli E., Carruba M.O., Tonello C., Macor C., Federspil G., Vettor R. Induction of fatty acid translocase /CD36, peroxisome proliferator-activated receptor- 2, leptin, uncoupling proteins 2 and 3, and tumor necrosis factor- gene expression in human subcutaneous fat by lipid infusion. Diabetes. 2000;49:319–324. PubMed
Mejia-Barradas C.M., Del-Rio-Navarro B.E., Dominguez-Lopez A., et al. The consumption of n-3 polyunsaturated fatty acids differentially modulates gene expression of peroxisome proliferator-activated receptor alpha and gamma and hypoxia-inducible factor 1 alpha in subcutaneous adipose tissue of obese adolescents. Endocrine. 2014;45(1):98–105. PubMed
Larsen T.M., Toubro S., Astrup A. PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disord. 2003;27(2):147–161. PubMed
Villaret A., Galitzky J., Decaunes P., et al. Adipose tissue endothelial cells from obese human subjects: differences among depots in angiogenic, metabolic, and inflammatory gene expression and cellular senescence. Diabetes. 2010;59(11):2755–2763. PubMed PMC
Dewhurst-Trigg R., Hulston C.J., Markey O. The effect of quantity and quality of dietary fat intake on subcutaneous white adipose tissue inflammatory responses. Proc Nutr Soc. 2020;17:1–15. PubMed
Rossmeisl M., Pavlisova J., Janovska P., et al. Differential modulation of white adipose tissue endocannabinoid levels by n-3 fatty acids in obese mice and type 2 diabetic patients. BBA Mol Cell Biol Lipids. 2018;1863:712–725. PubMed
Polus A., Zapala B., Razny U., et al. Omega-3 fatty acid supplementation influences the whole blood transcriptome in women with obesity, associated with pro-resolving lipid mediator production. BBA Mol Cell Biol Lipids. 2016;1861(11):1746–1755. PubMed
Martinez-Fernandez L., Laiglesia L.M., Huerta A.E., Martinez J.A., Moreno-Aliaga M.J. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat. 2015;121(Pt A):24–41. PubMed
Baker C. House of Commons Library; UK: 2021. Obesity Statistics; p. 3336.
Fisk H.L., West A.L., Childs C.E., Burdge G.C., Calder P.C. The use of gas chromatography to analyze compositional changes of fatty acids in rat liver tissue during pregnancy. J Vis Exp. 2014;13(85):51445. PubMed PMC
Kuda O., Brezinova M., Rombaldova M., et al. Docosahexaenoic acid–derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes. 2016;65:2580–2590. PubMed
Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., Salzberg S. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. PubMed PMC
Anders S., Pyl P., Huber W. HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics. 2014;31(2):166–169. PubMed PMC
McCarthy D., Chen Y., Smyth G. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10):4288–4297. PubMed PMC
Li Y., Banerjee S., Wang Y., et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci USA. 2016;116(25):12573. PubMed PMC
Pairo-Castineira E., Clohisey S., Klaric L., et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591(7848):92–98. PubMed
Ho F.K., Celis-Morales C.A., Gray S.R., et al. Modifiable and non-modifiable risk factors for COVID-19: results from UK Biobank. BMJ Open. 2020;10(11) PubMed PMC
Kassir R. Risk of COVID-19 for patients with obesity. Obes Rev. 2020;21(6):e13034. PubMed PMC
Pinheiro T.A., Barcala-Jorge A.S., Andrade J.M.O., et al. Obesity and malnutrition similarly alter the renin-angiotensin system and inflammation in mice and human adipose. J Nutr Biochem. 2017;48:74–82. PubMed
Tam Vincent C., Quehenberger O., Oshansky Christine M., Suen R., Armando Aaron M., Mea T.P. Lipidomic profiling of influenza infection identifies mediators that induce and resolve inflammation. Cell. 2013;154:213–227. PubMed PMC
Basil M.C., Levy B.D. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol. 2016;16(1):51–67. PubMed PMC
Teague H., Fhaner C., Harris M., Duriancik D., Reid G., Shaikh S. n-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. J Lipid Res. 2013;54:3130–3138. PubMed PMC
Ramon S., Baker S., Sahler J., et al. The specialized proresolving mediator 17-HDHA enhances the antibody-mediated immune response against influenza virus: a new class of adjuvant? J Immunol. 2014;193:6031–6040. PubMed PMC
Kim N., Lannan K., Thatcher T., Pollock S., Woeller C., Phipps R. Lipoxin B4 enhances human memory b cell antibody production via upregulating cyclooxygenase-2 expression. J Immunol. 2018;201:3343–3351. PubMed PMC
Sapieha P., Stahl A., Chen J., et al. 5-lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of ω-3 polyunsaturated fatty acids. Sci Transl Med. 2011;3(69):69ra12. PubMed PMC
Yeung J., Hawley M., Holinstat M. The expansive role of oxylipins on platelet biology. J Mol Med (Berl) 2017;95(6):575–588. PubMed PMC
Serhan C.N., Yang R., Martinod K., et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med. 2009;206(1):15–23. PubMed PMC
Neuhofer A., Zeyda M., Mascher D., et al. Impaired local production of proresolving lipid mediators in obesity and 17-hdHA as a potential treatment for obesity-associated inflammation. Diabetes Obes Metab. 2013;62:1945–1956. PubMed PMC
Crouch M.J., Kosaraju R., Guesdon W., et al. Frontline science: a reduction in DHA-derived mediators in male obesity contributes toward defects in select B cell subsets and circulating antibody. J Leukoc Biol. 2019;106(2):241–257. PubMed PMC
Lopez-Vicario C., Titos E., Walker M.E., et al. Leukocytes from obese individuals exhibit an impaired SPM signature. FASEB J. 2019;33(6):7072–7083. PubMed
Schulte F., Asbeutah A.A., Benotti P.N., et al. The relationship between specialized pro-resolving lipid mediators, morbid obesity and weight loss after bariatric surgery. Sci Rep. 2020;10(1):20128. PubMed PMC
Titos E., Rius B., Lopez-Vicario C., et al. Signaling and immunoresolving actions of resolvin D1 in inflamed human visceral adipose tissue. J Immunol. 2016;197(8):3360–3370. PubMed PMC
Watkins P.A. Very-long-chain acyl-CoA synthetases. J Biol Chem. 2008;283(4):1773–1777. PubMed
Weldon S.M., Mullen A.C., Loscher C.E., Hurley L.A., Roche H.M. Docosahexaenoic acid induces an anti-inflammatory profile in lipopolysaccharide-stimulated human THP-1 macrophages more effectively than eicosapentaenoic acid. J Nutr Biochem. 2007;18(4):250–258. PubMed
Lee J.Y., Sohn K.H., Rhee S.H., Hwang D. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem. 2001;276(20):16683–16689. PubMed
Novak T.E., Babcock T.A., Jho D.H., Helton S.W., Espat J.N. NF-KB inhibition by n-3 fatty acids modulates LPS-stimulated macrophage TNF-α transcription. Am J Physiol Lung Cell Mol Physiol. 2003;284:L84–LL9. PubMed
Kong W., Yen J.H., Vassiliou E., Adhikary S., Toscano M.G., Ganea D. Docosahexaenoic acid prevents dendritic cell maturation and in vitro and in vivo expression of the IL-12 cytokine family. Lipids Health Dis. 2010;9:12. PubMed PMC
Porzio O., Massa O., Cunsolo V., et al. Missense mutations in the TGM2 gene encoding transglutaminase 2 are found in patients with early-onset type 2 diabetes. Mutation in brief no. 982. Online. Hum Mutat. 2007;28(11):1150. PubMed
Murtaugh M.P. Induction of tissue transglutaminase in human peripheral blood monocytes. J Exp Med. 1984;159(1):114–125. PubMed PMC