Traditional Medicinal Ranunculaceae Species from Romania and Their In Vitro Antioxidant, Antiproliferative, and Antiparasitic Potential
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA 20243109
Internal Grant Agency of the Faculty of Tropical AgriSciences of the Czech University of Life Sciences Prague
OPVVV 16_019/0000759
Ministry of Education, Youth and Sport of the Czech Republic
PN-III-565
UEFISCDI Romania
LM2023064
METROFOOD-CZ research infrastructure project
PubMed
39456769
PubMed Central
PMC11507926
DOI
10.3390/ijms252010987
PII: ijms252010987
Knihovny.cz E-zdroje
- Klíčová slova
- antileishmanial, antioxidants, antitrypanosomal, buttercup family, cytotoxicity, medicinal plants, plant extract,
- MeSH
- antioxidancia * farmakologie chemie MeSH
- antiparazitární látky farmakologie chemie MeSH
- buňky HT-29 MeSH
- Caco-2 buňky MeSH
- léčivé rostliny chemie MeSH
- lidé MeSH
- proliferace buněk * účinky léků MeSH
- Ranunculaceae chemie MeSH
- rostlinné extrakty * farmakologie chemie MeSH
- tradiční lékařství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Rumunsko MeSH
- Názvy látek
- antioxidancia * MeSH
- antiparazitární látky MeSH
- rostlinné extrakty * MeSH
Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for Aconitum toxicum extract [half-maximal inhibitory concentration (IC50) 18.7 and 92.6 μg/mL]. Likewise, Anemone transsilvanica extract exerted the most promising antiproliferative activity against Caco-2 (IC50 46.9 μg/mL) and HT29 (IC50 70.2 μg/mL) cell lines in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a dual antioxidant and cytotoxicity effect was demonstrated for Aconitum moldavicum and Caltha palustris extracts. Whilst the efficacy of extracts was modest against Trypanosoma brucei (IC50 ranging from 88.8 to 269.3 µg/mL), several extracts exhibited high potency against Leishmania infantum promastigotes (Aconitum vulparia IC50 18.8 µg/mL). We also tested them against the clinically relevant intracellular stage and found extract of A. vulparia to be the most effective (IC50 29.0 ± 1.1 µg/mL). All tested extracts showed no or low toxicity against FHs 74Int normal cell line (IC50 ranging from 152.9 to >512 µg/mL). In conclusion, we suggest the above-mentioned plant extracts as potential candidates for development of novel plant-based antioxidant and/or antiproliferative and/or antileishmanial compounds.
Zobrazit více v PubMed
Chen S.-L., Yu H., Luo H.-M., Wu Q., Li C.-F., Steinmetz A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016;11:37. doi: 10.1186/s13020-016-0108-7. PubMed DOI PMC
Heywood V.H., Brummitt R.K., Culham A., Seberg O. Flowering Plant Families of the World. 1st ed. Firefly Books; Richmond Hill, ON, Canada: 2007. pp. 273–276.
Cristea V. Plante Vasculare: Diversitate, Sistematica, Ecologie Si Importanta. Presa Universitara Clujeana; Cluj Napoca, Romania: 2014. pp. 32–38.
Hao D.-C., Xiao P.-G., Ma H.-Y., Peng Y., He C.-N. Mining chemodiversity from biodiversity: Pharmacophylogeny of medicinal plants of Ranunculaceae. Chin. J. Nat. Med. 2015;13:507–520. doi: 10.1016/S1875-5364(15)30045-5. PubMed DOI
Alexan M., Bojor O., Craciun F. Flora Medicinala a Romaniei. 2nd ed. Ceres; Bucuresti, Romania: 1991. pp. 23–41.
Neblea M., Marian M., Duţa M. Medicinal plant diversity in the Flora of the west part of Bucegi mountains (Romania) Acta Hortic. 2012;955:41–49. doi: 10.17660/ActaHortic.2012.955.3. DOI
Tamas M. Botanica Farmaceutica: Sistematica-Cormobionta. 3rd ed. Medicala Universitara; Cluj Napoca, Romania: 2005. pp. 40–44.
Darshan S., Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine. Phytother. Res. 2004;18:343–357. doi: 10.1002/ptr.1475. PubMed DOI
Salem M.L. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharmacol. 2005;5:1749–1770. doi: 10.1016/j.intimp.2005.06.008. PubMed DOI
Raskin I., Ribnicky D.M., Komarnytsky S., Ilic N., Poulev A., Borisjuk N., Brinker A., Moreno D.A., Ripoll C., Yakoby N., et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20:522–531. doi: 10.1016/S0167-7799(02)02080-2. PubMed DOI
Hao D.C., He C.N., Shen J., Xiao P.G. Anticancer chemodiversity of Ranunculaceae medicinal plants: Molecular mechanisms and functions. Curr. Genom. 2017;18:39–59. doi: 10.2174/1389202917666160803151752. PubMed DOI PMC
Ren M.Y., Yu Q.T., Shi C.Y., Luo J.B. Anticancer activities of C18-, C19-, C20-, and bis-diterpenoid alkaloids derived from genus Aconitum. Molecules. 2017;22:267. doi: 10.3390/molecules22020267. PubMed DOI PMC
Bhatti M.Z., Ali A., Ahmad A., Saeed A., Malik S.A. Antioxidant and phytochemical analysis of Ranunculus arvensis L. extracts. BMC Res. Notes. 2015;8:279. doi: 10.1186/s13104-015-1228-3. PubMed DOI PMC
Munir N., Ijaz W., Altaf I., Naz S. Evaluation of antifungal and antioxidant potential of two medicinal plants: Aconitum heterophyllum and Polygonum bistorta. Asian Pac. J. Trop. Biomed. 2014;4:S639–S643. doi: 10.12980/APJTB.4.201414B182. DOI
Shoieb A.M., Elgayyar M., Dudrick P.S., Bell J.L., Tithof P.K. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int. J. Oncol. 2003;22:107–113. doi: 10.3892/ijo.22.1.107. PubMed DOI
Song J.L., Zhao X., Qian Y., Wang Q. Antioxidant and anticancer activities of methanolic extract of Trollius chinensis Bunge. Afr. J. Pharm. Pharmacol. 2013;7:1015–1019. doi: 10.5897/AJPP12.412. DOI
Wang J.L., Liu K., Gong W.Z., Wang Q., Xu D.T., Liu M.F., Bi K.L., Song Y.F. Anticancer, antioxidant, and antimicrobial activities of anemone (Anemone cathayensis) Food Sci. Biotechnol. 2012;21:551–557. doi: 10.1007/s10068-012-0070-9. DOI
Yin T., Cai L., Ding Z. A systematic review on the chemical constituents of the genus Consolida (Ranunculaceae) and their biological activities. RSC Adv. 2020;10:35072–35089. doi: 10.1039/D0RA06811J. PubMed DOI PMC
Castano Osorio J.C., Giraldo Garcia A.M. Antiparasitic phytotherapy perspectives, scope and current development. Infectio. 2019;23:189–204. doi: 10.22354/in.v23i2.777. DOI
Mishra B.B., Singh R.K., Srivastava A., Tripathi V.J., Tiwari V.K. Fighting against Leishmaniasis: Search of alkaloids as future true potential anti-Leishmanial agents. Mini Rev. Med. Chem. 2009;9:107–123. doi: 10.2174/138955709787001758. PubMed DOI
Marin C., Diaz J.G., Maiques D.I., Ramirez-Macias I., Rosales M.J., Guitierrez-Sanchez R., Canas R., Sanchez-Moreno M. Antitrypanosomatid activity of flavonoid glycosides isolated from Delphinium gracile, D. staphisagria, Consolida oliveriana and from Aconitum napellus subsp. lusitanicum. Phytochem. Lett. 2017;19:196–209. doi: 10.1016/j.phytol.2016.12.010. DOI
Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC
Swiętek M., Lu Y.C., Konefal R., Ferreira L.P., Cruz M.M., Ma Y.H., Horak D. Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein J. Nanotechnol. 2019;20:1073–1088. doi: 10.3762/bjnano.10.108. PubMed DOI PMC
Rajendran P., Nandakumar N., Rengarajan T., Palaniswami R., Gnanadhas E.N., Lakshminarasaiah U. Antioxidants and human diseases. Clin. Chim. Acta. 2014;436:332–347. doi: 10.1016/j.cca.2014.06.004. PubMed DOI
Taniyama Y., Griendling K.K. Reactive oxygen species in the vasculature. Hypertension. 2003;42:1075–1081. doi: 10.1161/01.HYP.0000100443.09293.4F. PubMed DOI
Kumar N., Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019;20:e00370. doi: 10.1016/j.btre.2019.e00370. PubMed DOI PMC
Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI
Rondevaldova J., Tauchen J., Mascellani A., Tulkova J., Magdalita P.M., Tulin E.E., Kokoska L. Antioxidant activity and total phenolic content of underutilized edible tree species of the Philippines. Horticulturae. 2024;10:1051. doi: 10.3390/horticulturae10101051. DOI
Goo Y.-K. Therapeutic potential of Ranunculus species (Ranunculaceae): A literature review on traditional medicinal herbs. Plants. 2022;11:1599. doi: 10.3390/plants11121599. PubMed DOI PMC
Ahmad A., Husain A., Mujeeb M., Khan S.A., Najmi A.K., Siddique N.A., Anwar F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013;3:337–352. doi: 10.1016/S2221-1691(13)60075-1. PubMed DOI PMC
Mariani C., Braca A., Vitalini S., De Tommasi N., Visioli F., Fico G. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae) Phytochemistry. 2008;69:1220–1226. doi: 10.1016/j.phytochem.2007.12.009. PubMed DOI
Fico G., Braca A., Bilia A.R., Tome F., Morelli I. New flavonol glycosides from the flowers of Aconitum napellus ssp. tauricum. Planta Medica. 2001;67:287–290. doi: 10.1055/s-2001-11994. PubMed DOI
Braca A., Fico G., Morelli I., De Simone F., Tome F., De Tommasi N. Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species. J. Ethnopharmacol. 2003;86:63–67. doi: 10.1016/S0378-8741(03)00043-6. PubMed DOI
Malik J., Tauchen J., Landa P., Kutil Z., Marsik P., Kloucek P., Havlik J., Kokoska L. In vitro antiinflammatory and antioxidant potential of root extracts from Ranunculaceae species. S. Afr. J. Bot. 2017;109:128–137. doi: 10.1016/j.sajb.2016.12.008. DOI
Sutan N.A., Manolescu D.S., Fiarescu I., Neblea A.M., Sutan C., Ducu C., Soare L.C., Negrea D., Avramescu S.M., Fiarescu R.C. Phytosynthesis of gold and silver nanoparticles enhance in vitro antioxidant and mitostimulatory activity of Aconitum toxicum Reichenb. rhizomes alcoholic extracts. Mater. Sci. Eng. C-Mater. Biol. Appl. 2018;93:746–758. doi: 10.1016/j.msec.2018.08.042. PubMed DOI
Vitalini S., Braca A., Passarella D., Fico G. New flavonol glycosides from Aconitum burnatii Gayer and Aconitum variegatum L. Fitoterapia. 2010;81:940–947. doi: 10.1016/j.fitote.2010.06.012. PubMed DOI
Jeong H.J., Whang W.K., Kim I.H. New flavonoids from the aerial parts of Aconitum chiisanense. Planta Med. 1997;63:329–334. doi: 10.1055/s-2006-957694. PubMed DOI
Fico G., Braca A., De Tommasi N., Tome F., Morelli I. Flavonoids from Aconitum napellus subsp. neomontanum. Phytochemistry. 2001;57:543–546. doi: 10.1016/S0031-9422(01)00102-9. PubMed DOI
Neag T., Toma C.C., Olah N., Ardelean A. Polyphenols profile and antioxidant activity of some Romanian Ranunculus species. Stud. Univ. Babes-Bolyai Chem. 2017;62:75–88. doi: 10.24193/subbchem.2017.3.06. DOI
Khan M.Z., Jan S., Khan F.U., Noor W., Khan Y.M., Shah A., Chaudhary M.I., Ali F., Khan K., Ullah W., et al. Phytochemical screening and biological activities of Ranunculus arvensis. Int. J. Biosci. 2017;11:15–21.
Rui W., Chen H., Tan Y., Zhong Y., Feng Y. Rapid analysis of the main components of the total glycosides of Ranunculus japonicus by UPLC/Q-TOF-MS. Nat. Prod. Commun. 2010;5:783–788. doi: 10.1177/1934578X1000500521. PubMed DOI
Deng K.Z., Xiong Y., Zhou B., Guan Y.M., Luo Y.M. Chemical constituents from the roots of Ranunculus ternatus and their inhibitory effects on Mycobacterium tuberculosis. Molecules. 2013;18:11859–11865. doi: 10.3390/molecules181011859. PubMed DOI PMC
Zhang L., Yang Z., Tian J.K. Two new indolopyridoquinazoline alkaloidal glycosides from Ranunculus ternatus. Chem. Pharm. Bull. 2007;55:1267–1269. doi: 10.1248/cpb.55.1267. PubMed DOI
Kaya G.I., Somer N.U., Konyalioglu S., Yalcin H.T., Yavaşoglu N.U.K., Sarikaya B., Onur M.A. Antioxidant and antibacterial activities of Ranunculus marginatus var. trachycarpus and R. sprunerianus. Turk. J. Biol. 2010;34:139–146. doi: 10.3906/biy-0809-13. DOI
Azmir J., Zaidul I.S.M., Rahman M.M., Sharif K.M., Mohamed A., Sahena F., Jahurul M.H.A., Ghafoor K., Norulaini N.A.N., Omar A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013;117:426–436. doi: 10.1016/j.jfoodeng.2013.01.014. DOI
Gobbo-Neto L., Lopes N.P. Medicinal plants: Factors of influence on the content of secondary metabolites. Química Nova. 2007;30:374–381. doi: 10.1590/S0100-40422007000200026. DOI
Hrichi S., Chaabane-Banaoues R., Giuffrida D., Mangraviti D., Oulad El Majdoub Y., Rigano F., Mondello L., Babba H., Mighri Z., Cacciola F. Effect of seasonal variation on the chemical composition and antioxidant and antifungal activities of Convolvulus althaeoides L. leaf extracts. Arab. J. Chem. 2020;13:5651–5668. doi: 10.1016/j.arabjc.2020.04.006. DOI
Sun Y.X., Liu J.C., Liu D.Y. Phytochemicals and bioactivities of Anemone raddeana Regel: A review. Pharmazie. 2011;66:813–821. PubMed
Pei C., Fenge W., Lisheng D. Advances in the studies on the chemical constituents and biologic activities for Anemone species. Nat. Prod. Res. Dev. 2004;16:581–584.
Han L.-T., Li J., Huang F., Yu S.-G., Fang N.-B. Triterpenoid saponins from Anemone flaccida induce apoptosis activity in HeLa cells. J. Asian Natl. Prod. Res. 2009;11:122–127. doi: 10.1080/10286020802573818. PubMed DOI
Han L.-T., Fang Y., Li M.M., Yang H.B., Huang F. The antitumor effects of triterpenoid saponins from the Anemone flaccida and the underlying mechanism. Evid. Based Complement. Altern. Med. 2013;2013:517931. doi: 10.1155/2013/517931. PubMed DOI PMC
Luan X., Guan Y., Wang C., Zhao M., Lu Q., Tang Y., Liu Y., Yu D., Wang X., Qi H., et al. Determination of Raddeanin A in rat plasma by liquid chromatography–tandem mass spectrometry: Application to a pharmacokinetic study. J. Chromatogr. B. 2013;923–924:43–47. doi: 10.1016/j.jchromb.2013.01.019. PubMed DOI
Naz I., Ramchandani S., Khan M.R., Yang M.H., Ahn K.S. Anticancer potential of Raddeanin A, a natural triterpenoid isolated from Anemone raddeana Regel. Molecules. 2020;25:1035. doi: 10.3390/molecules25051035. PubMed DOI PMC
Xue G., Zou X., Zhou J.-Y., Sun W., Wu J., Xu J., Wang R.-P. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro. Biochem. Biophys. Res. Comm. 2013;439:196–202. doi: 10.1016/j.bbrc.2013.08.060. PubMed DOI
Guan Y.Y., Liu H.-J., Luan X., Xu J.-R., Lu Q., Liu Y.-R., Gao Y.-G., Zhao M., Chen H.-Z., Fang C. Raddeanin A, a triterpenoid saponin isolated from Anemone raddeana, suppresses the angiogenesis and growth of human colorectal tumor by inhibiting VEGFR2 signaling. Phytomedicine. 2015;22:103–110. doi: 10.1016/j.phymed.2014.11.008. PubMed DOI
Li J.N., Yu Y., Zhang Y.-F., Li Z.-M., Cai G.-Z., Gong J.-Y. Synergy of Raddeanin A and cisplatin induced therapeutic effect enhancement in human hepatocellular carcinoma. Biochem. Biophys. Res. Comm. 2017;485:335–341. doi: 10.1016/j.bbrc.2017.02.079. PubMed DOI
Wang Q., Mo J., Zhao C., Huang K., Feng M., He W., Wang J., Chen S., Xie Z., Ma J., et al. Raddeanin A suppresses breast cancer-associated osteolysis through inhibiting osteoclasts and breast cancer cells. Cell Death Dis. 2018;9:376. doi: 10.1038/s41419-018-0417-0. PubMed DOI PMC
Ali S., Chouhan R., Sultan P., Hassan Q.P., Gandhi S.G. A comprehensive review of phytochemistry, pharmacology and toxicology of the genus Aconitum L. Adv. Trad. Med. 2023;23:299–320. doi: 10.1007/s13596-021-00565-8. DOI
Mi L., Li Y., Sun M., Zhang P., Li Y., Yang H. A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids. Chin. J. Nat. Med. 2021;19:505–520. doi: 10.1016/S1875-5364(21)60050-X. PubMed DOI
Chan Y.-T., Wang N., Feng Y. The toxicology and detoxification of Aconitum: Traditional and modern views. Chin. Med. 2021;16:61. doi: 10.1186/s13020-021-00472-9. PubMed DOI PMC
WHO Leishmaniasis. [(accessed on 16 September 2024)]. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.
No J.H. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Trop. 2016;155:113–123. doi: 10.1016/j.actatropica.2015.12.016. PubMed DOI
Jabbar E.A.K., AL-Aboody B.A., Jarullah B.A., Noori N. Isolation and molecular diagnosis of Leishmania major and study activity of aqueous extract of plant Nigella sativa against the parasite in vitro. Int. J. Pharm. Qual. Assur. 2019;10:47–50.
Al-Turkmani M.O., Mokrani L., Soukkarieh C. Antileishmanial apoptotic activity of Nigella sativa L. essential oil and thymoquinone triggers on Leishmania tropica. Indian J. Exp. Biol. 2020;58:699–705.
Bafghi A.F., Vahidi A.R., Anvari M.H., Barzegar K., Ghafourzadeh M. The in vivo antileishmanial activity of alcoholic extract from Nigella sativa seeds. Afr. J. Microbiol. Res. 2011;5:1504–1510.
Bapela M.J., Kaiser M., Meyer J.J.M. Antileishmanial activity of selected South African plant species. S. Afr. J. Bot. 2017;108:342–345. doi: 10.1016/j.sajb.2016.08.014. DOI
Ramírez-Macias I., Marin C., Diaz J.G., Rosales M.J., Gutierrez-Sanchez R., Sanchez-Moreno M. Leishmanicidal activity of nine novel flavonoids from Delphinium staphisagria. Sci. World J. 2012;2012:203646. doi: 10.1100/2012/203646. PubMed DOI PMC
Shyaula S.L., Tamang T., Ghouri N., Adhikari A., Marasini S., Bajracharya G.B., Manandhar M.D., Choudhary M.I. Antileishmanial diterpenoid alkaloids from Aconitum spicatum (Bruhl) Stapf. Nat. Prod. Res. 2016;30:2590–2593. doi: 10.1080/14786419.2015.1114941. PubMed DOI
Sundar S., Singh J., Singh V.K., Agrawal N., Kumar R. Current and emerging therapies for the treatment of leishmaniasis. Expert Opin. Orphan Drugs. 2024;12:19–32. doi: 10.1080/21678707.2024.2335248. DOI
Wijnant G., Dumetz F., Dirkx L., Bulte D., Cuypers B., Van Bocxlaer K., Hendrickx S. Tackling drug resistance and other causes of treatment failure in Leishmaniasis. Front. Trop. Dis. 2022;3:837460. doi: 10.3389/fitd.2022.837460. DOI
Wei J., Wang B., Chen Y., Wang Q., Ahmed A.F., Zhang Y., Kang W. The immunomodulatory effects of active ingredients from Nigella sativa in RAW264.7 cells through NF-κB/MAPK signaling pathways. Front. Nutr. 2022;9:899797. doi: 10.3389/fnut.2022.899797. PubMed DOI PMC
Di Sotto A., Vitalone A., Di Giacomo S. Plant-derived nutraceuticals and immune system modulation: An evidence-based overview. Vaccines. 2020;8:468. doi: 10.3390/vaccines8030468. PubMed DOI PMC
Costa-da-Silva A.C., Nascimento D.d.O., Ferreira J.R.M., Guimaraes-Pinto K., Freire-de-Lima L., Morrot A., Decote-Ricardo D., Filardy A.A., Freire-de-Lima C.G. Immune responses in Leishmaniasis: An overview. Trop. Med. Infect. Dis. 2022;7:54. doi: 10.3390/tropicalmed7040054. PubMed DOI PMC
Cedillo-Cortezano M., Martinez-Cuevas L.R., López J.A.M., Barrera López I.L., Escutia-Perez S., Petricevich V.L. Use of medicinal plants in the process of wound healing: A literature review. Pharmaceuticals. 2024;17:303. doi: 10.3390/ph17030303. PubMed DOI PMC
Herrmann F., Romero M.R., Blazquez A.G., Kaufmann D., Ashour M.L., Kahl S., Marin J.J., Efferth T., Wink M. Diversity of pharmacological properties in Chinese and European medicinal plants: Cytotoxicity, antiviral and antitrypanosomal screening of 82 herbal drugs. Diversity. 2011;3:547–580. doi: 10.3390/d3040547. DOI
Kou X., Kirberger M., Yang Y., Chen N. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci. Hum. Wellness. 2013;2:22–28. doi: 10.1016/j.fshw.2013.01.001. DOI
Gerhauser C., Klimo K., Heiss E., Neumann I., Gamal-Eldeen A., Knauft J., Liu G.Y., Sitthimonchai S., Frank N. Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat. Res. 2003;523:163–172. doi: 10.1016/S0027-5107(02)00332-9. PubMed DOI
Hensley K., Robinson K.A., Gabbita S.P., Salsman S., Floyd R.A. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 2000;28:1456–1462. doi: 10.1016/S0891-5849(00)00252-5. PubMed DOI
Block K.I., Koch A.C., Mead M.N., Tothy P.K., Newman R.A., Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic toxicity: A systematic review of the evidence from randomized controlled trials. Int. J. Cancer. 2008;123:1227–1239. doi: 10.1002/ijc.23754. PubMed DOI
Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition. 2013;29:15–21. doi: 10.1016/j.nut.2012.02.014. PubMed DOI
Das L., Vinayak M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signaling and modulation of inflammation in prevention of cancer. PLoS ONE. 2015;10:e0124000. doi: 10.1371/journal.pone.0124000. PubMed DOI PMC
Ji C.C., Tang H.F., Hu Y.Y., Zhang Y., Zheng M.H., Qin H.Y., Li S.Z., Wang X.Y., Fei Z., Cheng G. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl 2 family proteins. Mol. Med. Rep. 2016;14:380–386. doi: 10.3892/mmr.2016.5287. PubMed DOI
Liu Q., Chen W., Jiao Y., Hou J., Wu Q., Lu Y., Qi X. Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell death and inhibits tumor growth in mouse xenograft models. J. Surg. Res. 2014;188:387–395. doi: 10.1016/j.jss.2014.01.026. PubMed DOI
Borcsa B., Fodor L., Csupor D., Forgo P., Molnar A., Hohmann J. Diterpene alkaloids from the roots of Aconitum moldavicum and assessment of Nav 1.2 sodium channel activity of aconitum alkaloids. Planta Medica. 2014;80:231–236. doi: 10.1055/s-0033-1360278. PubMed DOI
Mubashir S., Dar M.Y., Lone B.A., Zargar M.I., Shah W.A. Anthelmintic, antimicrobial, antioxidant and cytotoxic activity of Caltha palustris var. alba Kashmir, India. Chin. J. Nat. Med. 2014;12:567–572. doi: 10.1016/S1875-5364(14)60087-X. PubMed DOI
Sanchez-Villamil J.P., Bautista-Nino P.K., Serrano N.C., Rincon M.Y., Garg N.J. Potential role of antioxidants as adjunctive therapy in Chagas disease. Oxid. Med. Cell. Longev. 2020;2020:9081813. doi: 10.1155/2020/9081813. PubMed DOI PMC
Hall B.S., Wilkinson S.R. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob. Agents Chemother. 2012;56:115–123. doi: 10.1128/AAC.05135-11. PubMed DOI PMC
Wyllie S., Foth B.J., Kelner A., Sokolova A.Y., Berriman M., Fairlamb A.H. Nitroheterocyclic drug resistance mechanisms in Trypanosoma brucei. J. Antimicrob. Chemother. 2016;71:625–634. doi: 10.1093/jac/dkv376. PubMed DOI PMC
Wyllie S., Roberts A.J., Norval S., Patterson S., Foth B.J., Berriman M., Read K.D., Fairlamb A.H. Activation of bicyclic nitro-drugs by a novel nitroreductase (NTR2) in Leishmania. PLoS Pathog. 2016;12:e1005971. doi: 10.1371/journal.ppat.1005971. PubMed DOI PMC
Leitsch D., Kolarich D., Binder M., Stadlmann J., Altmann F., Duchene M. Trichomonas vaginalis: Metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system: Implications for nitroimidazole toxicity and resistance. Mol. Microbiol. 2009;72:518–536. doi: 10.1111/j.1365-2958.2009.06675.x. PubMed DOI
Howard H.K., Pharoah M.M., Ashall F., Miles M.A. Human urine stimulates growth of Leishmania in vitro. Trans. R. Soc. Trop. Med. Hyg. 1991;85:477–479. doi: 10.1016/0035-9203(91)90226-O. PubMed DOI
Allahverdiyev A.M., Bagirova M., Elcicek S., Koc R.C., Oztel O.N. Effect of human urine on cell cycle and infectivity of Leismania species promastigotes in vitro. Am. J. Trop. Med. Hyg. 2011;85:639–643. doi: 10.4269/ajtmh.2011.10-0207. PubMed DOI PMC
Hirumi H., Hirumi K. Axenic culture of African trypanosome bloodstream forms. Parasitol. Today. 1994;10:80–84. doi: 10.1016/0169-4758(94)90402-2. PubMed DOI
Ou B., Hampsch-Woodill M., Prior R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agr. Food Chem. 2001;49:4619–4626. doi: 10.1021/jf010586o. PubMed DOI
Tauchen J., Huml L., Bortl L., Doskocil I., Jarosova V., Marsik P., Frankova A., Clavo Peralta Z.M., Chuspe Zans M.E., Havlik J., et al. Screening of medicinal plants traditionally used in Peruvian Amazon for in vitro antioxidant and anticancer potential. Nat. Prod. Res. 2019;33:2718–2721. doi: 10.1080/14786419.2018.1462180. PubMed DOI
Rondevaldova J., Novy P., Tauchen J., Drabek O., Kotikova Z., Dajcl J., Mascellani A., Chrun R., Nguon S., Kokoska L. Determination of antioxidants, minerals and vitamins in Cambodian underutilized fruits and vegetables. J. Food Meas. Charact. 2023;17:716–731. doi: 10.1007/s11694-022-01630-9. DOI
Sharma O.P., Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009;113:1202–1205. doi: 10.1016/j.foodchem.2008.08.008. DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Zhang N., Zoltner M., Leung K.F., Scullion P., Hutchinson S., Del Pino R.C., Vincent I.M., Zhang Y.K., Freund Y.R., Alley M.R., et al. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog. 2018;14:e1006850. doi: 10.1371/journal.ppat.1006850. PubMed DOI PMC
Zahedifard F., Bansal M., Sharma N., Kumar S., Shen S., Singh P., Rathi B., Zoltner M. Phenotypic screening reveals a highly selective phthalimide-based compound with antileishmanial activity. PLoS Negl. Trop. Dis. 2024;18:e0012050. doi: 10.1371/journal.pntd.0012050. PubMed DOI PMC
Jain S.K., Sahu R., Walker L.A., Tekwani B.L. A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line. J. Vis. Exp. 2012;70:e4054. PubMed PMC