Traditional Medicinal Ranunculaceae Species from Romania and Their In Vitro Antioxidant, Antiproliferative, and Antiparasitic Potential

. 2024 Oct 12 ; 25 (20) : . [epub] 20241012

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39456769

Grantová podpora
IGA 20243109 Internal Grant Agency of the Faculty of Tropical AgriSciences of the Czech University of Life Sciences Prague
OPVVV 16_019/0000759 Ministry of Education, Youth and Sport of the Czech Republic
PN-III-565 UEFISCDI Romania
LM2023064 METROFOOD-CZ research infrastructure project

Several Ranunculaceae species are used in folk medicine to eliminate pathologies associated with oxidative stress as well as parasitic infections; however, a number of studies confirming their pharmacological properties is limited. In this study, 19 ethanolic extracts obtained from 16 Ranunculaceae species were assayed for in vitro antioxidant, antiproliferative, and antiparasitic potential. The maximum antioxidant potential in both oxygen radical absorbance capacity (ORAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was observed for Aconitum toxicum extract [half-maximal inhibitory concentration (IC50) 18.7 and 92.6 μg/mL]. Likewise, Anemone transsilvanica extract exerted the most promising antiproliferative activity against Caco-2 (IC50 46.9 μg/mL) and HT29 (IC50 70.2 μg/mL) cell lines in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, a dual antioxidant and cytotoxicity effect was demonstrated for Aconitum moldavicum and Caltha palustris extracts. Whilst the efficacy of extracts was modest against Trypanosoma brucei (IC50 ranging from 88.8 to 269.3 µg/mL), several extracts exhibited high potency against Leishmania infantum promastigotes (Aconitum vulparia IC50 18.8 µg/mL). We also tested them against the clinically relevant intracellular stage and found extract of A. vulparia to be the most effective (IC50 29.0 ± 1.1 µg/mL). All tested extracts showed no or low toxicity against FHs 74Int normal cell line (IC50 ranging from 152.9 to >512 µg/mL). In conclusion, we suggest the above-mentioned plant extracts as potential candidates for development of novel plant-based antioxidant and/or antiproliferative and/or antileishmanial compounds.

Zobrazit více v PubMed

Chen S.-L., Yu H., Luo H.-M., Wu Q., Li C.-F., Steinmetz A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin. Med. 2016;11:37. doi: 10.1186/s13020-016-0108-7. PubMed DOI PMC

Heywood V.H., Brummitt R.K., Culham A., Seberg O. Flowering Plant Families of the World. 1st ed. Firefly Books; Richmond Hill, ON, Canada: 2007. pp. 273–276.

Cristea V. Plante Vasculare: Diversitate, Sistematica, Ecologie Si Importanta. Presa Universitara Clujeana; Cluj Napoca, Romania: 2014. pp. 32–38.

Hao D.-C., Xiao P.-G., Ma H.-Y., Peng Y., He C.-N. Mining chemodiversity from biodiversity: Pharmacophylogeny of medicinal plants of Ranunculaceae. Chin. J. Nat. Med. 2015;13:507–520. doi: 10.1016/S1875-5364(15)30045-5. PubMed DOI

Alexan M., Bojor O., Craciun F. Flora Medicinala a Romaniei. 2nd ed. Ceres; Bucuresti, Romania: 1991. pp. 23–41.

Neblea M., Marian M., Duţa M. Medicinal plant diversity in the Flora of the west part of Bucegi mountains (Romania) Acta Hortic. 2012;955:41–49. doi: 10.17660/ActaHortic.2012.955.3. DOI

Tamas M. Botanica Farmaceutica: Sistematica-Cormobionta. 3rd ed. Medicala Universitara; Cluj Napoca, Romania: 2005. pp. 40–44.

Darshan S., Doreswamy R. Patented antiinflammatory plant drug development from traditional medicine. Phytother. Res. 2004;18:343–357. doi: 10.1002/ptr.1475. PubMed DOI

Salem M.L. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed. Int. Immunopharmacol. 2005;5:1749–1770. doi: 10.1016/j.intimp.2005.06.008. PubMed DOI

Raskin I., Ribnicky D.M., Komarnytsky S., Ilic N., Poulev A., Borisjuk N., Brinker A., Moreno D.A., Ripoll C., Yakoby N., et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20:522–531. doi: 10.1016/S0167-7799(02)02080-2. PubMed DOI

Hao D.C., He C.N., Shen J., Xiao P.G. Anticancer chemodiversity of Ranunculaceae medicinal plants: Molecular mechanisms and functions. Curr. Genom. 2017;18:39–59. doi: 10.2174/1389202917666160803151752. PubMed DOI PMC

Ren M.Y., Yu Q.T., Shi C.Y., Luo J.B. Anticancer activities of C18-, C19-, C20-, and bis-diterpenoid alkaloids derived from genus Aconitum. Molecules. 2017;22:267. doi: 10.3390/molecules22020267. PubMed DOI PMC

Bhatti M.Z., Ali A., Ahmad A., Saeed A., Malik S.A. Antioxidant and phytochemical analysis of Ranunculus arvensis L. extracts. BMC Res. Notes. 2015;8:279. doi: 10.1186/s13104-015-1228-3. PubMed DOI PMC

Munir N., Ijaz W., Altaf I., Naz S. Evaluation of antifungal and antioxidant potential of two medicinal plants: Aconitum heterophyllum and Polygonum bistorta. Asian Pac. J. Trop. Biomed. 2014;4:S639–S643. doi: 10.12980/APJTB.4.201414B182. DOI

Shoieb A.M., Elgayyar M., Dudrick P.S., Bell J.L., Tithof P.K. In vitro inhibition of growth and induction of apoptosis in cancer cell lines by thymoquinone. Int. J. Oncol. 2003;22:107–113. doi: 10.3892/ijo.22.1.107. PubMed DOI

Song J.L., Zhao X., Qian Y., Wang Q. Antioxidant and anticancer activities of methanolic extract of Trollius chinensis Bunge. Afr. J. Pharm. Pharmacol. 2013;7:1015–1019. doi: 10.5897/AJPP12.412. DOI

Wang J.L., Liu K., Gong W.Z., Wang Q., Xu D.T., Liu M.F., Bi K.L., Song Y.F. Anticancer, antioxidant, and antimicrobial activities of anemone (Anemone cathayensis) Food Sci. Biotechnol. 2012;21:551–557. doi: 10.1007/s10068-012-0070-9. DOI

Yin T., Cai L., Ding Z. A systematic review on the chemical constituents of the genus Consolida (Ranunculaceae) and their biological activities. RSC Adv. 2020;10:35072–35089. doi: 10.1039/D0RA06811J. PubMed DOI PMC

Castano Osorio J.C., Giraldo Garcia A.M. Antiparasitic phytotherapy perspectives, scope and current development. Infectio. 2019;23:189–204. doi: 10.22354/in.v23i2.777. DOI

Mishra B.B., Singh R.K., Srivastava A., Tripathi V.J., Tiwari V.K. Fighting against Leishmaniasis: Search of alkaloids as future true potential anti-Leishmanial agents. Mini Rev. Med. Chem. 2009;9:107–123. doi: 10.2174/138955709787001758. PubMed DOI

Marin C., Diaz J.G., Maiques D.I., Ramirez-Macias I., Rosales M.J., Guitierrez-Sanchez R., Canas R., Sanchez-Moreno M. Antitrypanosomatid activity of flavonoid glycosides isolated from Delphinium gracile, D. staphisagria, Consolida oliveriana and from Aconitum napellus subsp. lusitanicum. Phytochem. Lett. 2017;19:196–209. doi: 10.1016/j.phytol.2016.12.010. DOI

Pizzino G., Irrera N., Cucinotta M., Pallio G., Mannino F., Arcoraci V., Squadrito F., Altavilla D., Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. PubMed DOI PMC

Swiętek M., Lu Y.C., Konefal R., Ferreira L.P., Cruz M.M., Ma Y.H., Horak D. Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein J. Nanotechnol. 2019;20:1073–1088. doi: 10.3762/bjnano.10.108. PubMed DOI PMC

Rajendran P., Nandakumar N., Rengarajan T., Palaniswami R., Gnanadhas E.N., Lakshminarasaiah U. Antioxidants and human diseases. Clin. Chim. Acta. 2014;436:332–347. doi: 10.1016/j.cca.2014.06.004. PubMed DOI

Taniyama Y., Griendling K.K. Reactive oxygen species in the vasculature. Hypertension. 2003;42:1075–1081. doi: 10.1161/01.HYP.0000100443.09293.4F. PubMed DOI

Kumar N., Goel N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019;20:e00370. doi: 10.1016/j.btre.2019.e00370. PubMed DOI PMC

Gill S.S., Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010;48:909–930. doi: 10.1016/j.plaphy.2010.08.016. PubMed DOI

Rondevaldova J., Tauchen J., Mascellani A., Tulkova J., Magdalita P.M., Tulin E.E., Kokoska L. Antioxidant activity and total phenolic content of underutilized edible tree species of the Philippines. Horticulturae. 2024;10:1051. doi: 10.3390/horticulturae10101051. DOI

Goo Y.-K. Therapeutic potential of Ranunculus species (Ranunculaceae): A literature review on traditional medicinal herbs. Plants. 2022;11:1599. doi: 10.3390/plants11121599. PubMed DOI PMC

Ahmad A., Husain A., Mujeeb M., Khan S.A., Najmi A.K., Siddique N.A., Anwar F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013;3:337–352. doi: 10.1016/S2221-1691(13)60075-1. PubMed DOI PMC

Mariani C., Braca A., Vitalini S., De Tommasi N., Visioli F., Fico G. Flavonoid characterization and in vitro antioxidant activity of Aconitum anthora L. (Ranunculaceae) Phytochemistry. 2008;69:1220–1226. doi: 10.1016/j.phytochem.2007.12.009. PubMed DOI

Fico G., Braca A., Bilia A.R., Tome F., Morelli I. New flavonol glycosides from the flowers of Aconitum napellus ssp. tauricum. Planta Medica. 2001;67:287–290. doi: 10.1055/s-2001-11994. PubMed DOI

Braca A., Fico G., Morelli I., De Simone F., Tome F., De Tommasi N. Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species. J. Ethnopharmacol. 2003;86:63–67. doi: 10.1016/S0378-8741(03)00043-6. PubMed DOI

Malik J., Tauchen J., Landa P., Kutil Z., Marsik P., Kloucek P., Havlik J., Kokoska L. In vitro antiinflammatory and antioxidant potential of root extracts from Ranunculaceae species. S. Afr. J. Bot. 2017;109:128–137. doi: 10.1016/j.sajb.2016.12.008. DOI

Sutan N.A., Manolescu D.S., Fiarescu I., Neblea A.M., Sutan C., Ducu C., Soare L.C., Negrea D., Avramescu S.M., Fiarescu R.C. Phytosynthesis of gold and silver nanoparticles enhance in vitro antioxidant and mitostimulatory activity of Aconitum toxicum Reichenb. rhizomes alcoholic extracts. Mater. Sci. Eng. C-Mater. Biol. Appl. 2018;93:746–758. doi: 10.1016/j.msec.2018.08.042. PubMed DOI

Vitalini S., Braca A., Passarella D., Fico G. New flavonol glycosides from Aconitum burnatii Gayer and Aconitum variegatum L. Fitoterapia. 2010;81:940–947. doi: 10.1016/j.fitote.2010.06.012. PubMed DOI

Jeong H.J., Whang W.K., Kim I.H. New flavonoids from the aerial parts of Aconitum chiisanense. Planta Med. 1997;63:329–334. doi: 10.1055/s-2006-957694. PubMed DOI

Fico G., Braca A., De Tommasi N., Tome F., Morelli I. Flavonoids from Aconitum napellus subsp. neomontanum. Phytochemistry. 2001;57:543–546. doi: 10.1016/S0031-9422(01)00102-9. PubMed DOI

Neag T., Toma C.C., Olah N., Ardelean A. Polyphenols profile and antioxidant activity of some Romanian Ranunculus species. Stud. Univ. Babes-Bolyai Chem. 2017;62:75–88. doi: 10.24193/subbchem.2017.3.06. DOI

Khan M.Z., Jan S., Khan F.U., Noor W., Khan Y.M., Shah A., Chaudhary M.I., Ali F., Khan K., Ullah W., et al. Phytochemical screening and biological activities of Ranunculus arvensis. Int. J. Biosci. 2017;11:15–21.

Rui W., Chen H., Tan Y., Zhong Y., Feng Y. Rapid analysis of the main components of the total glycosides of Ranunculus japonicus by UPLC/Q-TOF-MS. Nat. Prod. Commun. 2010;5:783–788. doi: 10.1177/1934578X1000500521. PubMed DOI

Deng K.Z., Xiong Y., Zhou B., Guan Y.M., Luo Y.M. Chemical constituents from the roots of Ranunculus ternatus and their inhibitory effects on Mycobacterium tuberculosis. Molecules. 2013;18:11859–11865. doi: 10.3390/molecules181011859. PubMed DOI PMC

Zhang L., Yang Z., Tian J.K. Two new indolopyridoquinazoline alkaloidal glycosides from Ranunculus ternatus. Chem. Pharm. Bull. 2007;55:1267–1269. doi: 10.1248/cpb.55.1267. PubMed DOI

Kaya G.I., Somer N.U., Konyalioglu S., Yalcin H.T., Yavaşoglu N.U.K., Sarikaya B., Onur M.A. Antioxidant and antibacterial activities of Ranunculus marginatus var. trachycarpus and R. sprunerianus. Turk. J. Biol. 2010;34:139–146. doi: 10.3906/biy-0809-13. DOI

Azmir J., Zaidul I.S.M., Rahman M.M., Sharif K.M., Mohamed A., Sahena F., Jahurul M.H.A., Ghafoor K., Norulaini N.A.N., Omar A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013;117:426–436. doi: 10.1016/j.jfoodeng.2013.01.014. DOI

Gobbo-Neto L., Lopes N.P. Medicinal plants: Factors of influence on the content of secondary metabolites. Química Nova. 2007;30:374–381. doi: 10.1590/S0100-40422007000200026. DOI

Hrichi S., Chaabane-Banaoues R., Giuffrida D., Mangraviti D., Oulad El Majdoub Y., Rigano F., Mondello L., Babba H., Mighri Z., Cacciola F. Effect of seasonal variation on the chemical composition and antioxidant and antifungal activities of Convolvulus althaeoides L. leaf extracts. Arab. J. Chem. 2020;13:5651–5668. doi: 10.1016/j.arabjc.2020.04.006. DOI

Sun Y.X., Liu J.C., Liu D.Y. Phytochemicals and bioactivities of Anemone raddeana Regel: A review. Pharmazie. 2011;66:813–821. PubMed

Pei C., Fenge W., Lisheng D. Advances in the studies on the chemical constituents and biologic activities for Anemone species. Nat. Prod. Res. Dev. 2004;16:581–584.

Han L.-T., Li J., Huang F., Yu S.-G., Fang N.-B. Triterpenoid saponins from Anemone flaccida induce apoptosis activity in HeLa cells. J. Asian Natl. Prod. Res. 2009;11:122–127. doi: 10.1080/10286020802573818. PubMed DOI

Han L.-T., Fang Y., Li M.M., Yang H.B., Huang F. The antitumor effects of triterpenoid saponins from the Anemone flaccida and the underlying mechanism. Evid. Based Complement. Altern. Med. 2013;2013:517931. doi: 10.1155/2013/517931. PubMed DOI PMC

Luan X., Guan Y., Wang C., Zhao M., Lu Q., Tang Y., Liu Y., Yu D., Wang X., Qi H., et al. Determination of Raddeanin A in rat plasma by liquid chromatography–tandem mass spectrometry: Application to a pharmacokinetic study. J. Chromatogr. B. 2013;923–924:43–47. doi: 10.1016/j.jchromb.2013.01.019. PubMed DOI

Naz I., Ramchandani S., Khan M.R., Yang M.H., Ahn K.S. Anticancer potential of Raddeanin A, a natural triterpenoid isolated from Anemone raddeana Regel. Molecules. 2020;25:1035. doi: 10.3390/molecules25051035. PubMed DOI PMC

Xue G., Zou X., Zhou J.-Y., Sun W., Wu J., Xu J., Wang R.-P. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro. Biochem. Biophys. Res. Comm. 2013;439:196–202. doi: 10.1016/j.bbrc.2013.08.060. PubMed DOI

Guan Y.Y., Liu H.-J., Luan X., Xu J.-R., Lu Q., Liu Y.-R., Gao Y.-G., Zhao M., Chen H.-Z., Fang C. Raddeanin A, a triterpenoid saponin isolated from Anemone raddeana, suppresses the angiogenesis and growth of human colorectal tumor by inhibiting VEGFR2 signaling. Phytomedicine. 2015;22:103–110. doi: 10.1016/j.phymed.2014.11.008. PubMed DOI

Li J.N., Yu Y., Zhang Y.-F., Li Z.-M., Cai G.-Z., Gong J.-Y. Synergy of Raddeanin A and cisplatin induced therapeutic effect enhancement in human hepatocellular carcinoma. Biochem. Biophys. Res. Comm. 2017;485:335–341. doi: 10.1016/j.bbrc.2017.02.079. PubMed DOI

Wang Q., Mo J., Zhao C., Huang K., Feng M., He W., Wang J., Chen S., Xie Z., Ma J., et al. Raddeanin A suppresses breast cancer-associated osteolysis through inhibiting osteoclasts and breast cancer cells. Cell Death Dis. 2018;9:376. doi: 10.1038/s41419-018-0417-0. PubMed DOI PMC

Ali S., Chouhan R., Sultan P., Hassan Q.P., Gandhi S.G. A comprehensive review of phytochemistry, pharmacology and toxicology of the genus Aconitum L. Adv. Trad. Med. 2023;23:299–320. doi: 10.1007/s13596-021-00565-8. DOI

Mi L., Li Y., Sun M., Zhang P., Li Y., Yang H. A systematic review of pharmacological activities, toxicological mechanisms and pharmacokinetic studies on Aconitum alkaloids. Chin. J. Nat. Med. 2021;19:505–520. doi: 10.1016/S1875-5364(21)60050-X. PubMed DOI

Chan Y.-T., Wang N., Feng Y. The toxicology and detoxification of Aconitum: Traditional and modern views. Chin. Med. 2021;16:61. doi: 10.1186/s13020-021-00472-9. PubMed DOI PMC

WHO Leishmaniasis. [(accessed on 16 September 2024)]. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis.

No J.H. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Trop. 2016;155:113–123. doi: 10.1016/j.actatropica.2015.12.016. PubMed DOI

Jabbar E.A.K., AL-Aboody B.A., Jarullah B.A., Noori N. Isolation and molecular diagnosis of Leishmania major and study activity of aqueous extract of plant Nigella sativa against the parasite in vitro. Int. J. Pharm. Qual. Assur. 2019;10:47–50.

Al-Turkmani M.O., Mokrani L., Soukkarieh C. Antileishmanial apoptotic activity of Nigella sativa L. essential oil and thymoquinone triggers on Leishmania tropica. Indian J. Exp. Biol. 2020;58:699–705.

Bafghi A.F., Vahidi A.R., Anvari M.H., Barzegar K., Ghafourzadeh M. The in vivo antileishmanial activity of alcoholic extract from Nigella sativa seeds. Afr. J. Microbiol. Res. 2011;5:1504–1510.

Bapela M.J., Kaiser M., Meyer J.J.M. Antileishmanial activity of selected South African plant species. S. Afr. J. Bot. 2017;108:342–345. doi: 10.1016/j.sajb.2016.08.014. DOI

Ramírez-Macias I., Marin C., Diaz J.G., Rosales M.J., Gutierrez-Sanchez R., Sanchez-Moreno M. Leishmanicidal activity of nine novel flavonoids from Delphinium staphisagria. Sci. World J. 2012;2012:203646. doi: 10.1100/2012/203646. PubMed DOI PMC

Shyaula S.L., Tamang T., Ghouri N., Adhikari A., Marasini S., Bajracharya G.B., Manandhar M.D., Choudhary M.I. Antileishmanial diterpenoid alkaloids from Aconitum spicatum (Bruhl) Stapf. Nat. Prod. Res. 2016;30:2590–2593. doi: 10.1080/14786419.2015.1114941. PubMed DOI

Sundar S., Singh J., Singh V.K., Agrawal N., Kumar R. Current and emerging therapies for the treatment of leishmaniasis. Expert Opin. Orphan Drugs. 2024;12:19–32. doi: 10.1080/21678707.2024.2335248. DOI

Wijnant G., Dumetz F., Dirkx L., Bulte D., Cuypers B., Van Bocxlaer K., Hendrickx S. Tackling drug resistance and other causes of treatment failure in Leishmaniasis. Front. Trop. Dis. 2022;3:837460. doi: 10.3389/fitd.2022.837460. DOI

Wei J., Wang B., Chen Y., Wang Q., Ahmed A.F., Zhang Y., Kang W. The immunomodulatory effects of active ingredients from Nigella sativa in RAW264.7 cells through NF-κB/MAPK signaling pathways. Front. Nutr. 2022;9:899797. doi: 10.3389/fnut.2022.899797. PubMed DOI PMC

Di Sotto A., Vitalone A., Di Giacomo S. Plant-derived nutraceuticals and immune system modulation: An evidence-based overview. Vaccines. 2020;8:468. doi: 10.3390/vaccines8030468. PubMed DOI PMC

Costa-da-Silva A.C., Nascimento D.d.O., Ferreira J.R.M., Guimaraes-Pinto K., Freire-de-Lima L., Morrot A., Decote-Ricardo D., Filardy A.A., Freire-de-Lima C.G. Immune responses in Leishmaniasis: An overview. Trop. Med. Infect. Dis. 2022;7:54. doi: 10.3390/tropicalmed7040054. PubMed DOI PMC

Cedillo-Cortezano M., Martinez-Cuevas L.R., López J.A.M., Barrera López I.L., Escutia-Perez S., Petricevich V.L. Use of medicinal plants in the process of wound healing: A literature review. Pharmaceuticals. 2024;17:303. doi: 10.3390/ph17030303. PubMed DOI PMC

Herrmann F., Romero M.R., Blazquez A.G., Kaufmann D., Ashour M.L., Kahl S., Marin J.J., Efferth T., Wink M. Diversity of pharmacological properties in Chinese and European medicinal plants: Cytotoxicity, antiviral and antitrypanosomal screening of 82 herbal drugs. Diversity. 2011;3:547–580. doi: 10.3390/d3040547. DOI

Kou X., Kirberger M., Yang Y., Chen N. Natural products for cancer prevention associated with Nrf2–ARE pathway. Food Sci. Hum. Wellness. 2013;2:22–28. doi: 10.1016/j.fshw.2013.01.001. DOI

Gerhauser C., Klimo K., Heiss E., Neumann I., Gamal-Eldeen A., Knauft J., Liu G.Y., Sitthimonchai S., Frank N. Mechanism-based in vitro screening of potential cancer chemopreventive agents. Mutat. Res. 2003;523:163–172. doi: 10.1016/S0027-5107(02)00332-9. PubMed DOI

Hensley K., Robinson K.A., Gabbita S.P., Salsman S., Floyd R.A. Reactive oxygen species, cell signaling, and cell injury. Free Radic. Biol. Med. 2000;28:1456–1462. doi: 10.1016/S0891-5849(00)00252-5. PubMed DOI

Block K.I., Koch A.C., Mead M.N., Tothy P.K., Newman R.A., Gyllenhaal C. Impact of antioxidant supplementation on chemotherapeutic toxicity: A systematic review of the evidence from randomized controlled trials. Int. J. Cancer. 2008;123:1227–1239. doi: 10.1002/ijc.23754. PubMed DOI

Fuchs-Tarlovsky V. Role of antioxidants in cancer therapy. Nutrition. 2013;29:15–21. doi: 10.1016/j.nut.2012.02.014. PubMed DOI

Das L., Vinayak M. Long term effect of curcumin in restoration of tumour suppressor p53 and phase-II antioxidant enzymes via activation of Nrf2 signaling and modulation of inflammation in prevention of cancer. PLoS ONE. 2015;10:e0124000. doi: 10.1371/journal.pone.0124000. PubMed DOI PMC

Ji C.C., Tang H.F., Hu Y.Y., Zhang Y., Zheng M.H., Qin H.Y., Li S.Z., Wang X.Y., Fei Z., Cheng G. Saponin 6 derived from Anemone taipaiensis induces U87 human malignant glioblastoma cell apoptosis via regulation of Fas and Bcl 2 family proteins. Mol. Med. Rep. 2016;14:380–386. doi: 10.3892/mmr.2016.5287. PubMed DOI

Liu Q., Chen W., Jiao Y., Hou J., Wu Q., Lu Y., Qi X. Pulsatilla saponin A, an active molecule from Pulsatilla chinensis, induces cancer cell death and inhibits tumor growth in mouse xenograft models. J. Surg. Res. 2014;188:387–395. doi: 10.1016/j.jss.2014.01.026. PubMed DOI

Borcsa B., Fodor L., Csupor D., Forgo P., Molnar A., Hohmann J. Diterpene alkaloids from the roots of Aconitum moldavicum and assessment of Nav 1.2 sodium channel activity of aconitum alkaloids. Planta Medica. 2014;80:231–236. doi: 10.1055/s-0033-1360278. PubMed DOI

Mubashir S., Dar M.Y., Lone B.A., Zargar M.I., Shah W.A. Anthelmintic, antimicrobial, antioxidant and cytotoxic activity of Caltha palustris var. alba Kashmir, India. Chin. J. Nat. Med. 2014;12:567–572. doi: 10.1016/S1875-5364(14)60087-X. PubMed DOI

Sanchez-Villamil J.P., Bautista-Nino P.K., Serrano N.C., Rincon M.Y., Garg N.J. Potential role of antioxidants as adjunctive therapy in Chagas disease. Oxid. Med. Cell. Longev. 2020;2020:9081813. doi: 10.1155/2020/9081813. PubMed DOI PMC

Hall B.S., Wilkinson S.R. Activation of benznidazole by trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob. Agents Chemother. 2012;56:115–123. doi: 10.1128/AAC.05135-11. PubMed DOI PMC

Wyllie S., Foth B.J., Kelner A., Sokolova A.Y., Berriman M., Fairlamb A.H. Nitroheterocyclic drug resistance mechanisms in Trypanosoma brucei. J. Antimicrob. Chemother. 2016;71:625–634. doi: 10.1093/jac/dkv376. PubMed DOI PMC

Wyllie S., Roberts A.J., Norval S., Patterson S., Foth B.J., Berriman M., Read K.D., Fairlamb A.H. Activation of bicyclic nitro-drugs by a novel nitroreductase (NTR2) in Leishmania. PLoS Pathog. 2016;12:e1005971. doi: 10.1371/journal.ppat.1005971. PubMed DOI PMC

Leitsch D., Kolarich D., Binder M., Stadlmann J., Altmann F., Duchene M. Trichomonas vaginalis: Metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system: Implications for nitroimidazole toxicity and resistance. Mol. Microbiol. 2009;72:518–536. doi: 10.1111/j.1365-2958.2009.06675.x. PubMed DOI

Howard H.K., Pharoah M.M., Ashall F., Miles M.A. Human urine stimulates growth of Leishmania in vitro. Trans. R. Soc. Trop. Med. Hyg. 1991;85:477–479. doi: 10.1016/0035-9203(91)90226-O. PubMed DOI

Allahverdiyev A.M., Bagirova M., Elcicek S., Koc R.C., Oztel O.N. Effect of human urine on cell cycle and infectivity of Leismania species promastigotes in vitro. Am. J. Trop. Med. Hyg. 2011;85:639–643. doi: 10.4269/ajtmh.2011.10-0207. PubMed DOI PMC

Hirumi H., Hirumi K. Axenic culture of African trypanosome bloodstream forms. Parasitol. Today. 1994;10:80–84. doi: 10.1016/0169-4758(94)90402-2. PubMed DOI

Ou B., Hampsch-Woodill M., Prior R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agr. Food Chem. 2001;49:4619–4626. doi: 10.1021/jf010586o. PubMed DOI

Tauchen J., Huml L., Bortl L., Doskocil I., Jarosova V., Marsik P., Frankova A., Clavo Peralta Z.M., Chuspe Zans M.E., Havlik J., et al. Screening of medicinal plants traditionally used in Peruvian Amazon for in vitro antioxidant and anticancer potential. Nat. Prod. Res. 2019;33:2718–2721. doi: 10.1080/14786419.2018.1462180. PubMed DOI

Rondevaldova J., Novy P., Tauchen J., Drabek O., Kotikova Z., Dajcl J., Mascellani A., Chrun R., Nguon S., Kokoska L. Determination of antioxidants, minerals and vitamins in Cambodian underutilized fruits and vegetables. J. Food Meas. Charact. 2023;17:716–731. doi: 10.1007/s11694-022-01630-9. DOI

Sharma O.P., Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009;113:1202–1205. doi: 10.1016/j.foodchem.2008.08.008. DOI

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Zhang N., Zoltner M., Leung K.F., Scullion P., Hutchinson S., Del Pino R.C., Vincent I.M., Zhang Y.K., Freund Y.R., Alley M.R., et al. Host-parasite co-metabolic activation of antitrypanosomal aminomethyl-benzoxaboroles. PLoS Pathog. 2018;14:e1006850. doi: 10.1371/journal.ppat.1006850. PubMed DOI PMC

Zahedifard F., Bansal M., Sharma N., Kumar S., Shen S., Singh P., Rathi B., Zoltner M. Phenotypic screening reveals a highly selective phthalimide-based compound with antileishmanial activity. PLoS Negl. Trop. Dis. 2024;18:e0012050. doi: 10.1371/journal.pntd.0012050. PubMed DOI PMC

Jain S.K., Sahu R., Walker L.A., Tekwani B.L. A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line. J. Vis. Exp. 2012;70:e4054. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...