Tannic Acid Coating Augments Glioblastoma Cellular Uptake of Magnetic Nanoparticles with Antioxidant Effects
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-02177J
Czech Science Foundation
109-2923-B-182-001-MY3
Ministry of Science and Technology of the Republic of China
PubMed
35458018
PubMed Central
PMC9028780
DOI
10.3390/nano12081310
PII: nano12081310
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant activity, cellular uptake, magnetic nanoparticles, tannic acid,
- Publikační typ
- časopisecké články MeSH
Coating of nanoparticles with gallates renders them antioxidant and enhances cellular internalization. In this study, (amino)silica magnetic particles modified with tannic acid (TA) and optionally with chitosan (CS) were developed, and their physicochemical properties and antioxidant activity were evaluated. The results demonstrated that the TA-modified aminosilica-coated particles, as well as the silica-coated particles with a double TA layer, exhibited high antioxidant activity, whereas the silica-coated particles with no or only a single TA layer were well-internalized by LN-229 cells. In addition, a magnet placed under the culture plates greatly increased the cellular uptake of all TA-coated magnetic nanoparticles. The coating thus had a considerable impact on nanoparticle-cell interactions and particle internalization. The TA-coated magnetic nanoparticles have great potential as intracellular carriers with preserved antioxidant activity.
Zobrazit více v PubMed
Zhang Y., Li M., Gao X., Chen Y., Liu T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 2019;12:137. doi: 10.1186/s13045-019-0833-3. PubMed DOI PMC
He B., Sui X., Yu B., Wang S., Shen Y., Cong H. Recent advances in drug delivery systems for enhancing drug penetration into tumors. Drug. Deliv. 2020;27:1474–1490. doi: 10.1080/10717544.2020.1831106. PubMed DOI PMC
Chen L., Hong W., Ren W., Xu T., Qian Z., He Z. Recent progress in targeted delivery vectors based on biomimetic nanoparticles. Sig. Transduct. Target Ther. 2021;6:225. doi: 10.1038/s41392-021-00631-2. PubMed DOI PMC
Kashani A.S., Packirisamy M. Cancer-nano-interaction: From cellular uptake to mechanobiological response. Int. J. Mol. Sci. 2021;22:9587. PubMed PMC
Northcott J.M., Dean I.S., Mouw J.K., Weaver V.M. Feeling stress: The mechanics of cancer progression and aggression. Front. Cell Dev. Biol. 2018;6:17. doi: 10.3389/fcell.2018.00017. PubMed DOI PMC
Hanif F., Muzaffar K., Perveen K., Malhi M.S., Simjee S.U. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev. 2017;18:3–9. PubMed PMC
Ostrom Q.T., Cioffi G., Gittleman H., Patil N., Waite K., Kruchko C., Barnholts-Sloan J.S. CBTRUS Statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 2019;21:1–100. doi: 10.1093/neuonc/noz150. PubMed DOI PMC
Bae S.H., Park M.J., Lee M.M., Kim T.M., Lee S.H., Cho S.Y., Kim Y.H., Kim Y.J., Park C.K., Kim C.Y. Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. J. Korean Med. Sci. 2014;29:980–984. doi: 10.3346/jkms.2014.29.7.980. PubMed DOI PMC
Perillo B., Di Donato M., Pezone A., Di Zazzo E., Giovannelli P., Galasso G., Castoria G., Migliaccio A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020;52:193–203. doi: 10.1038/s12276-020-0384-2. PubMed DOI PMC
George S., Abrahamse H. Redox potential of antioxidants in cancer progression and prevention. Antioxidants. 2020;9:1156. doi: 10.3390/antiox9111156. PubMed DOI PMC
Birben E., Sahiner U., Sackesen C., Erzurum S., Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012;5:9–19. doi: 10.1097/WOX.0b013e3182439613. PubMed DOI PMC
Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513. PubMed DOI PMC
Pisoschi A.M., Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015;97:55–74. doi: 10.1016/j.ejmech.2015.04.040. PubMed DOI
Castañeda-Arriaga R., Pérez-González A., Reina M., Alvarez-Idaboy J.R., Galano A. Comprehensive investigation of the antioxidant and pro-oxidant effects of phenolic compounds: A double-edge sword in the context of oxidative stress? J. Phys. Chem. B. 2018;122:6198–6214. doi: 10.1021/acs.jpcb.8b03500. PubMed DOI
Olszowy M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019;144:135–143. doi: 10.1016/j.plaphy.2019.09.039. PubMed DOI
Chowdhury P., Nagesh P.K.B., Hatami E., Wagh S., Dan N., Tripathi M.K., Khan S., Hafeez B.B., Meibohm B., Chauhan S.C., et al. Tannic acid-inspired paclitaxel nanoparticles for enhanced anticancer effects in breast cancer cells. J. Colloid Interface Sci. 2019;535:133–148. doi: 10.1016/j.jcis.2018.09.072. PubMed DOI PMC
Huang H., Li P., Liu C., Ma H., Huang H., Lin Y., Wang C., Yang Y. pH-Responsive nanodrug encapsulated by tannic acid complex for controlled drug delivery. RSC Adv. 2017;7:2829–2835. doi: 10.1039/C6RA26936B. DOI
Orłowski P., Kowalczyk A., Tomaszewska E., Ranoszek-Soliwoda K., Węgrzyn A., Grzesiak J., Celichowski G., Grobelny J., Eriksson K., Krzyzowska M. Antiviral activity of tannic acid modified silver nanoparticles: Potential to activate immune response in herpes genitalis. Viruses. 2018;10:524. doi: 10.3390/v10100524. PubMed DOI PMC
Sahiner N., Sagbas S., Sahiner M., Silan C., Aktas N., Turk M. Biocompatible and biodegradable poly(tannic acid) hydrogel with antimicrobial and antioxidant properties. Int. J. Biol. Macromol. 2016;82:150–159. doi: 10.1016/j.ijbiomac.2015.10.057. PubMed DOI
Ninan N., Forget A., Shastri V.P., Voelcker N.H., Blencowe A. Antibacterial and anti-inflammatory pH-responsive tannic acid-carboxylated agarose composite hydrogels for wound healing. ACS Appl. Mater. Interfaces. 2016;8:28511–28521. doi: 10.1021/acsami.6b10491. PubMed DOI
Hu X., Wang Y., Zhang L., Xu M. Morphological and mechanical properties of tannic acid/PAAm semi-IPN hydrogels for cell adhesion. Polym. Test. 2017;61:314–323. doi: 10.1016/j.polymertesting.2017.05.034. DOI
Kaczmarek B., Sionkowska A., Otrocka-Domagała I., Polkowska I. In vivo studies of novel scaffolds with tannic acid addition. Polym. Degrad. Stab. 2018;158:26–30. doi: 10.1016/j.polymdegradstab.2018.10.018. DOI
Ding P., Wang Z., Wu Z., Hu M., Zhu W., Sun N., Pei R. Tannic acid (TA)-functionalized magnetic nanoparticles for EpCAM-independent circulating tumor cell (CTC) isolation from patients with different cancers. ACS Appl. Mater. Interfaces. 2021;13:3694–3700. doi: 10.1021/acsami.0c20916. PubMed DOI
Atacan K., Özacar M. Characterization and immobilization of trypsin on tannic acid modified Fe3O4 nanoparticles. Colloids Surf. B. 2015;128:227–236. doi: 10.1016/j.colsurfb.2015.01.038. PubMed DOI
Lu Y.C., Luo P.C., Huang C.W., Leu Y.L., Wang T.H., Wei K.C., Wang H.E., Ma Y.H. Augmented cellular uptake of nanoparticles using tea catechins: Effect of surface modification on nanoparticle–cell interaction. Nanoscale. 2014;6:10297–10306. doi: 10.1039/C4NR00617H. PubMed DOI
Cheng M.C., Lu Y.C., Wu J., Ma Y.H. Gallate-induced nanoparticle uptake by tumor cells: Structure-activity relationships. Colloids Surf. B. 2019;179:28–36. doi: 10.1016/j.colsurfb.2019.03.048. PubMed DOI
Khan S., Setua S., Kumari S., Dan N., Massey A., Hafeez B.B., Yallapu M.M., Stiles Z.E., Alabkaa A., Yue J., et al. Superparamagnetic iron oxide nanoparticles of curcumin enhance gemcitabine therapeutic response in pancreatic cancer. Biomaterials. 2019;208:83–97. doi: 10.1016/j.biomaterials.2019.04.005. PubMed DOI
Ebrahimpour S., Shahidi S.B., Abbasi M., Tavakoli Z., Esmaeili A. Quercetin-conjugated superparamagnetic iron oxide nanoparticles (QCSPIONs) increases Nrf2 expression via miR-27a mediation to prevent memory dysfunction in diabetic rats. Sci. Rep. 2020;10:15957. doi: 10.1038/s41598-020-71971-2. PubMed DOI PMC
Świętek M., Lu Y.C., Konefał R., Ferreira L.P., Cruz M.M., Ma Y.H., Horák D. Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein J. Nanotechnol. 2019;10:1073–1088. doi: 10.3762/bjnano.10.108. PubMed DOI PMC
Sunoqrot S., Orainee B., Alqudah D.A., Daoud F., Alshaer W. Curcumin-tannic acid-poloxamer nanoassemblies enhance curcumin’s uptake and bioactivity against cancer cells in vitro. Int. J. Pharm. 2021;610:121255. doi: 10.1016/j.ijpharm.2021.121255. PubMed DOI
Zhao D., Yu S., Sun B., Gao S., Guo S., Zhao K. Biomedical applications of chitosan and its derivative nanoparticles. Polymers. 2018;10:462. doi: 10.3390/polym10040462. PubMed DOI PMC
Chen C., Hao Y., Xiao Y., Qinghai M. Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review. RSC Adv. 2022;12:7689–7711. doi: 10.1039/D1RA07657D. PubMed DOI PMC
Kostiv U., Janoušková O., Šlouf M., Kotov N., Engstová H., Smolková K., Ježek P., Horák D. Silica-modified monodisperse hexagonal lanthanide nanocrystals: Synthesis and biological properties. Nanoscale. 2015;7:18096–18104. doi: 10.1039/C5NR05572E. PubMed DOI
Lu Y.C., Chang F.Y., Tu S.J., Chen J.P., Ma Y.H. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement. J. Magn. Magn. Mater. 2017;427:71–80. doi: 10.1016/j.jmmm.2016.11.010. DOI
Li Y.S., Church J.S., Woodhead A.L. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J. Magn. Magn. Mater. 2012;324:1543–1550. doi: 10.1016/j.jmmm.2011.11.065. DOI
Kucheryavy P., He J., John V.T., Maharjan P., Spinu L., Goloverda G.Z., Kolesnichenko V.L. Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir. 2018;29:710–716. doi: 10.1021/la3037007. PubMed DOI PMC
Peternele W.S., Fuentes V.M., Fascineli M.L., Rodrigues da Silva J., Silva R.C., Lucci C.M., Bentes de Azevedo R. Experimental investigation of the coprecipitation method: An approach to obtain magnetite and maghemite nanoparticles with improved properties. J. Nanomater. 2014;2014:682985. doi: 10.1155/2014/682985. DOI
Świętek M., Gunár K., Kołodziej A., Wesełucha-Birczyńska A., Veverka P., Šebestová Janoušková O., Horák D. Surface effect of iron oxide nanoparticles on the suppression of oxidative burst in cells. J. Clust. Sci. 2022 doi: 10.1007/s10876-022-02222-9. in press . DOI
Yang K., Peng H., Wen Y., Li N. Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. App. Surf. Sci. 2010;256:3093–3097. doi: 10.1016/j.apsusc.2009.11.079. DOI
Lowe B.M., Skylaris C.K., Green N.G. Acid-base dissociation mechanisms and energetics at the silica-water interface: An activationless process. J. Colloid Interface Sci. 2015;451:231–244. doi: 10.1016/j.jcis.2015.01.094. PubMed DOI
Zasonska B.A., Boiko N., Klyuchivska O., Trchová M., Petrovský E., Stoika R., Horák D. Silica-coated γ-Fe2O3 nanoparticles: Preparation and engulfment by mammalian macrophages. J. Nanopharm. Drug Deliv. 2013;1:182–192. doi: 10.1166/jnd.2013.1020. DOI
Bini R.A., Marques R.F.C., Santos F.J., Chaker J.A., Jafelicci M. Synthesis and functionalization of magnetite nanoparticles with different amino-functional alkoxysilanes. J. Magn. Magn. Mater. 2012;324:534–539. doi: 10.1016/j.jmmm.2011.08.035. DOI
Shafqat S.S., Khan A.A., Zafar M.N., Alhaji M.H., Sanaullah K., Shafqat S.R., Murtaza S., Pang S.C. Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J. Mater. Res. Technol. 2019;8:385–395. doi: 10.1016/j.jmrt.2018.03.002. DOI
Wu H., Yin J.J., Wamer W.G., Zeng M., Li Y.M. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J. Food Drug Anal. 2014;22:86–94. doi: 10.1016/j.jfda.2014.01.007. PubMed DOI PMC
Baber O., Jang M., Barber D., Powers K. Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells. Inhal. Toxicol. 2011;23:532–543. doi: 10.3109/08958378.2011.592869. PubMed DOI
Reczyńska K., Marszalek M., Zarzycki A., Reczyński W., Kornaus K., Pamuła E., Chrzanowski W. Superparamagnetic iron oxide nanoparticles modified with silica layers as potential agents for lung cancer treatment. Nanomaterials. 2020;10:1076. doi: 10.3390/nano10061076. PubMed DOI PMC
Malvindi M.A., De Matteis V., Galeone A., Brunetti V., Anyfantis G.C., Athanassiou A., Cingolani R., Pompa P.P. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering. PLoS ONE. 2014;9:e85835. PubMed PMC
Shutava T.G., Lvov Y.M. Nano-engineered microcapsules of tannic acid and chitosan for protein encapsulation. J. Nanosci. Nanotechnol. 2006;6:1655–1661. doi: 10.1166/jnn.2006.225. PubMed DOI
Ranoszek-Soliwoda K., Tomaszewska E., Socha E., Krzyczmonik P., Ignaczak A., Orlowski P., Krzyzowska M., Celichowski G., Groberny J. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles. J. Nanopart. Res. 2017;19:273. doi: 10.1007/s11051-017-3973-9. PubMed DOI PMC
Yilmaz M.D. Layer-by-layer hyaluronic acid/chitosan polyelectrolyte coated mesoporous silica nanoparticles as pH-responsive nanocontainers for optical bleaching of cellulose fabrics. Carbohydr. Polym. 2016;146:174–180. doi: 10.1016/j.carbpol.2016.03.037. PubMed DOI
Ligler F.S., Lingerfelt B.M., Price R.P., Schoen P.E. Development of uniform chitosan thin-film layers on silicon chips. Langmuir. 2001;17:5082–5084. doi: 10.1021/la010148b. DOI
Valet S., Wirth T., Höhlinger M., Hernándes Y.T., Ortiz J.A.R., Wagener V., Virtanen S., Boccaccini A.R. Electrophoretic deposition of chitosan/bioactive glass/silica coating on stainless steel and WE43. Surf. Coat. Technol. 2018;344:553–563.
An X., Kang Y., Li G. The interaction between chitosan and tannic acid calculated based on the density functional theory. Chem. Phys. 2019;520:100–107. doi: 10.1016/j.chemphys.2018.12.009. DOI
Roy S., Zhai L., Kim H.C., Pham D.H., Alrobei H., Kim J. Tannic-acid-cross-linked and TiO2-nanoparticle-reinforced chitosan-based nanocomposite films. Polymers. 2021;13:228. doi: 10.3390/polym13020228. PubMed DOI PMC
Kaczmarek B., Owczarek A., Nadolna K., Sionkowska A. The film-forming properties of chitosan with tannic acid addition. Mater. Lett. 2019;245:22–24. doi: 10.1016/j.matlet.2019.02.090. DOI
Huang J., Cheng Y., Wu Y., Shi X., Du Y., Deng H. Chitosan/tannic acid bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial applications. Inter. J. Biol. Macromol. 2019;139:1910198. doi: 10.1016/j.ijbiomac.2019.07.185. PubMed DOI
Liao B., Xu C., Wang Z., Li W., Liu X., Lu D. Preparation of chitosan-tannic acid coating and its antiosteoclast and antibacterial activities in titanium implant. J. Bone Miner. Metab. Epub. 2022 doi: 10.1007/s00774-022-01309-7. in press . PubMed DOI
Kumorek M., Minisy I.M., Krunclová T., Voršiláková M., Venclíková K., Mázl Chánová E., Janoušková O., Kubies D. pH-responsive and antibacterial properties of self-assembled multilayer films based on chitosan and tannic acid. Mater. Sci. Eng. C. 2020;109:110493. doi: 10.1016/j.msec.2019.110493. PubMed DOI
Wahyono T., Astuti D.A., Wiryawan K.G., Sugoro I., Jayanegara A. Fourier transform mid-infrared (FTIR) spectroscopy to identify tannin compounds in the panicle of sorghum mutant lines. IOP Conf. Ser. Mater. Sci. Eng. 2019;546:042045. doi: 10.1088/1757-899X/546/4/042045. DOI
Wang J., Zheng S., Liu J., Xu Z. Tannic acid adsorption on amino-functionalized magnetic mesoporous silica. Chem. Eng. J. 2010;165:10–16. doi: 10.1016/j.cej.2010.08.066. DOI
Wang C., Zhou H., Niu H., Ma X., Yuan Y., Hong H., Liu C. Tannic acid-loaded mesoporous silica for rapid hemostasis and antibacterial activity. Biomater. Sci. 2018;6:3318–3331. doi: 10.1039/C8BM00837J. PubMed DOI
Song Q., Zhao W.J., Yin H.X., Lian H.Z. Facile synthesis of FeIII-tannic acid film-functionalized magnetic silica microspheres for the enrichment of low-abundance peptides and proteins for MALDI-TOF MS analysis. RSC Adv. 2015;5:63896. doi: 10.1039/C5RA05872D. DOI
Kumar R., Mondal K., Panda P.K., Kaushik A., Abolhassani R., Ahuja R., Rubahn H.-G., Mishra Y.K. Core-shell nanostructures: Perspectives towards drug delivery applications. Mater. Chem. B. 2020;8:8992–9027. doi: 10.1039/D0TB01559H. PubMed DOI
Cabana S., Curcio A., Michel A., Wilhelm C., Abou-Hassan A. Iron oxide mediated photothermal therapy in the second biological window: A comparative study between magnetite/maghemite nanospheres and nanoflowers. Nanomaterials. 2020;10:1548. doi: 10.3390/nano10081548. PubMed DOI PMC
Park E.J., Umh H.N., Choi D.H., Chao M.H., Choi W., Kim S.W., Kim Y., Kim J.Y. Magnetite- and maghemite-induced different toxicity in murine alveolar macrophage cells. Arch. Toxicol. 2014;88:1607–1618. doi: 10.1007/s00204-014-1210-1. PubMed DOI
Mehrizi T.Z. Hemocompatibility and hemolytic effects of functionalized nanoparticles on red blood cells: A recent review study. Nano. 2021;16:213000. doi: 10.1142/S1793292021300073. DOI