Synthetic Analogues of Aminoadamantane as Influenza Viral Inhibitors-In Vitro, In Silico and QSAR Studies

. 2020 Sep 01 ; 25 (17) : . [epub] 20200901

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32883012

A series of nineteen amino acid analogues of amantadine (Amt) and rimantadine (Rim) were synthesized and their antiviral activity was evaluated against influenza virus A (H3N2). Among these analogues, the conjugation of rimantadine with glycine illustrated high antiviral activity combined with low cytotoxicity. Moreover, this compound presented a profoundly high stability after in vitro incubation in human plasma for 24 h. Its thermal stability was established using differential and gravimetric thermal analysis. The crystal structure of glycyl-rimantadine revealed that it crystallizes in the orthorhombic Pbca space group. The structure-activity relationship for this class of compounds was established, with CoMFA (Comparative Molecular Field Analysis) 3D-Quantitative Structure Activity Relationships (3D-QSAR) studies predicting the activities of synthetic molecules. In addition, molecular docking studies were conducted, revealing the structural requirements for the activity of the synthetic molecules.

Zobrazit více v PubMed

Spilovska K., Zemek F., Korabecny J., Nepovimova E., Soukup O., Windisch M., Kuca K. Adamantane-a lead structure for drugs in clinical practice. Curr. Med. Chem. 2016;23:3245–3266. doi: 10.2174/0929867323666160525114026. PubMed DOI

Shibnev V.A., Garaev T.M., Finogenova M.P., Shevchenko E.S., Burtseva E.I. New adamantane derivatives can overcome resistance of influenza A(H1N1)pdm2009 and A(H3N2) viruses to remantadine. Bull. Exp. Biol. Med. 2012;153:233–235. doi: 10.1007/s10517-012-1684-x. PubMed DOI

Deryabin P.G., Garaev T.M., Finogenova M.P., Botikov A.G., Shibnev V.A. Amino acid derivatives of adamantane carbocycle are capable of inhibiting replication of highly virulent avian influenza A/H5N1 Virus. Bull. Exp. Biol. Med. 2014;157:62–65. doi: 10.1007/s10517-014-2492-2. PubMed DOI

Shibnev V.A., Garaev T.M., Deryabin P.G., Finogenova M.P., Botikov A.G., Mishin D.V. New carbocyclic amino acid derivatives inhibit infection caused by highly pathogenic influenza A virus strain (H5N1) Bull. Exp. Biol. Med. 2016;161:284–287. doi: 10.1007/s10517-016-3396-0. PubMed DOI

Hong B.T., Chen C.L., Fang J.M., Tsai K.C., Wang S.Y., Huang W.I., Cheng Y.E., Wong C.H. Oseltamivir hydroxamate and acyl sulfonamide derivatives as influenza neuraminidase inhibitors. Bioorg. Med. Chem. 2014;22:6647–6654. doi: 10.1016/j.bmc.2014.10.005. PubMed DOI

Jackson R.J., Cooper K.L., Tappenden P., Rees A., Simpson E.L., Read R.C., Nicholson K.G. Oseltamivir, zanamivir and amantadine in the prevention of influenza: A systematic review. J. Infect. 2011;62:14–25. doi: 10.1016/j.jinf.2010.10.003. PubMed DOI

FDA Approves Using Relenza to Prevent Flu, March 29, 2006. [(accessed on 1 September 2020)]; Available online: www.cidrap.umn.edu.

Gaiday A.V., Levandovskiy I.A., Byler K.G., Shubina T.E. Mechanism of influenza A M2 ion-channel inhibition: A docking and QSAR study. Comput. Sci. ICCS. 2008;5102:360–368. doi: 10.1007/978-3-540-69387-1_40. DOI

Knorr R., Trzeciak A., Annwarth W., Gillessen D. New coupling reagents in peptide chemistry. Tetrahedron Lett. 1989;30:1927–1930. doi: 10.1016/S0040-4039(00)99616-3. DOI

Bernatowicz M., Wu Y., Matsueda G. 1H-Pyrazole-1-carboxamidine hydrochloride an attractive reagent for guanylation of amines and its application to peptide synthesis. J. Org. Chem. 1992;57:2497–2502. doi: 10.1021/jo00034a059. DOI

Schnell J.R., Chou J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature. 2008;451:591–595. doi: 10.1038/nature06531. PubMed DOI PMC

Beauchamp L.M., Orr G.F., Demiranda P., Burnette T., Krenitsky T.A. Amino-acid ester prodrugs of acyclovir. Antivir. Chem. Chemother. 1992;3:157–164. doi: 10.1177/095632029200300305. DOI

Han H., de Vrueh R.L., Rhie J.K., Covitz K.M., Smith P.L., Lee C.P., Oh D.M., Sadee W., Amidon G.L. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res. 1998;15:1154–1159. doi: 10.1023/A:1011919319810. PubMed DOI

Shen W., Kim J.S., Mitchell S., Kish P., Kijek P., Hilfinger J. 5′-O-D-valyl ara A, a potential prodrug for improving oral bioavailability of the antiviral agent vidarabine. Nucleos. Nucleot. Nucl. Acids. 2009;28:43–55. doi: 10.1080/15257770802581757. PubMed DOI PMC

Kim C.U., Lew W., Williams M.A., Wu H., Zhang L., Chen X., Escarpe P.A., Mendel D.B., Laver W.G., Stevens R.C. Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J. Med. Chem. 1998;41:2451–2460. doi: 10.1021/jm980162u. PubMed DOI

Kim S.H., Tangallapally R., Kim I.C., Trovato R., Parker D., Patton J.S., Reeves L., Bradford C., Wettstein D., Baichwal V., et al. Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100. Bioorg. Med. Chem. Lett. 2015;25:5254–5257. doi: 10.1016/j.bmcl.2015.09.053. PubMed DOI

Lin T.I., Heider H., Schroeder C. Different modes of inhibition by adamantane amine derivatives and natural polyamines of the functionally reconstituted influenza virus M2 proton channel protein. J. Gen. Virol. 1997;78:767–774. doi: 10.1099/0022-1317-78-4-767. PubMed DOI

Leonov H., Astrahan P., Krugliak M., Arkin I.T. How do aminoadamantanes block the influenza M2 channel, and how does resistance develop? J. Am. Chem. Soc. 2011;133:9903–9911. doi: 10.1021/ja202288m. PubMed DOI

Lamb R.A., Zebedee S.L., Richardson C.D. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell. 1985;40:627–633. doi: 10.1016/0092-8674(85)90211-9. PubMed DOI

Nain M., Hinder F., Gong J.H., Schmidt A., Bender A., Sprenger H., Gemsa D. Tumor necrosis factor-alpha production of influenza A virus-infected macrophages and potentiating effect of lipopolysaccharides. J. Immunol. 1990;145:1921–1928. PubMed

Li F., Ma C., Hu Y., Wang Y., Wang J. Discovery of potent antivirals against amantadine-resistant Influenza A viruses by targeting the M2-S31N proton channel. Acs Infect. Dis. 2016;2:726–733. doi: 10.1021/acsinfecdis.6b00130. PubMed DOI PMC

Wang J., Ma C., Wang J., Jo H., Canturk B., Fiorin G., Pinto L.H., Lamb R.A., Klein M.L., DeGrado W.F. Discovery of novel dual inhibitors of the wild-type and the most prevalent drug-resistant mutant, S31N, of the M2 proton channel from influenza A virus. J. Med. Chem. 2013;56:2804–2812. doi: 10.1021/jm301538e. PubMed DOI PMC

ChemBioDraw Ultra, version 14.0.; PerkinElmer. [(accessed on 1 September 2020)];2014 Available online: https://www.perkinelmer.com.

Maestro. Schroedinger, LLC; New York, NY, USA: 2015. version 10.2.

LigPrep. Schroedinger, LLC; New York, NY, USA: 2015. version 3.4.

MacroModel. Schroedinger, LLC; New York, NY, USA: 2015. version 10.8.

Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI

Vrontaki E., Melagraki G., Mavromoustakos T., Afantitis A. Searching for anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors through a combination of molecular docking, 3D-QSAR and virtual screening. J. Enzym. Inhib. Med. Chem. 2016;31:38–52. doi: 10.3109/14756366.2014.1003925. PubMed DOI

Tripos Associates . SYBYL QSAR and COMFA. Tripos Associates; St. Louis, MO, USA: 2007. version 8.0.

Gasteiger J., Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI

Purcell P., Singer A. A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method. J. Chem. Eng. Data. 1967;12:235–246. doi: 10.1021/je60033a020. DOI

Clark M., Cramer R.D., Vanopdenbosch N. Validation of the general-purpose Tripos 5.2 force-field. J. Comput. Chem. 1989;10:982–1012. doi: 10.1002/jcc.540100804. DOI

Cramer R.D., Patterson D.E., Bunce J.D. Comparative molecular-field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988;110:5959–5967. doi: 10.1021/ja00226a005. PubMed DOI

Frank I., Feikema J., Constantine N., Kowalski B. Prediction of product quality from spectral data using the partial least-squares method. J. Chem. Inf. Comput. Sci. 1984;24:20–24. doi: 10.1021/ci00041a602. DOI

Rannar S., Lindgren F., Geladi P., Wold S. A Pls kernel algorithm for data sets with many variables and fewer objects. 1. theory and algorithm. J. Chemometr. 1994;8:111–125. doi: 10.1002/cem.1180080204. DOI

Cramer R.D., Bunce J.D., Patterson D.E., Frank I.E. Cross-validation, bootstrapping, and partial least-squares compared with multiple-regression in conventional QSAR studies. Quant. Struct-Act. Rel. 1988;7:18–25. doi: 10.1002/qsar.19880070105. DOI

Hawkins D.M., Basak S.C., Mills D. Assessing model fit by cross-validation. J. Chem. Inf. Comput. Sci. 2003;43:579–586. doi: 10.1021/ci025626i. PubMed DOI

Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 2010;29:476–488. doi: 10.1002/minf.201000061. PubMed DOI

Melagraki G., Afantitis A. Enalos KNIME nodes: Exploring corrosion inhibition of steel in acidic medium. Chemometr. Intell. Lab. 2013;123:9–14. doi: 10.1016/j.chemolab.2013.02.003. DOI

Golbraikh A., Tropsha A. Beware of q2! J. Mol. Graph. Model. 2002;20:269–276. doi: 10.1016/S1093-3263(01)00123-1. PubMed DOI

LigPrep. Schroedinger, LLC; New York, NY, USA: 2012. version 2.5.

Protein Preparation Wizard. Schroedinger, LLC; New York, NY, USA: 2012. Epik version 2.3.

Impact. Schroedinger, LLC; New York, NY, USA: 2012. version 5.8.

Prime. Schroedinger, LLC; New York, NY, USA: 2012. version 3.1.

CrysAlis PRO version 171.36.20. Agilent Technologies, Ltd.; Yarnton, UK: 2011.

Sheldrick G.M. A short history of SHELX. Acta Crystallogr. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Farrugia L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012;45:849–854. doi: 10.1107/S0021889812029111. DOI

Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI

Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr. D. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...