Synthetic Analogues of Aminoadamantane as Influenza Viral Inhibitors-In Vitro, In Silico and QSAR Studies
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32883012
PubMed Central
PMC7504818
DOI
10.3390/molecules25173989
PII: molecules25173989
Knihovny.cz E-resources
- Keywords
- 3D-QSAR, LC–MS/MS., X-Ray crystallography, adamantane derivatives, amino acids, mass spectrometry, molecular docking, plasma stability,
- MeSH
- Adamantane analogs & derivatives chemical synthesis chemistry pharmacology MeSH
- Antiviral Agents chemical synthesis chemistry pharmacology MeSH
- Cell Death drug effects MeSH
- Madin Darby Canine Kidney Cells MeSH
- Differential Thermal Analysis MeSH
- Crystallography, X-Ray MeSH
- Quantitative Structure-Activity Relationship * MeSH
- Humans MeSH
- Least-Squares Analysis MeSH
- Molecular Conformation MeSH
- Orthomyxoviridae drug effects MeSH
- Computer Simulation * MeSH
- Protein Domains MeSH
- Viral Matrix Proteins chemistry MeSH
- Dogs MeSH
- Rimantadine blood chemistry MeSH
- Molecular Docking Simulation MeSH
- Drug Stability MeSH
- Temperature MeSH
- Binding Sites MeSH
- Hydrogen Bonding MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adamantane MeSH
- Antiviral Agents MeSH
- M2 protein, Influenza A virus MeSH Browser
- Viral Matrix Proteins MeSH
- Rimantadine MeSH
A series of nineteen amino acid analogues of amantadine (Amt) and rimantadine (Rim) were synthesized and their antiviral activity was evaluated against influenza virus A (H3N2). Among these analogues, the conjugation of rimantadine with glycine illustrated high antiviral activity combined with low cytotoxicity. Moreover, this compound presented a profoundly high stability after in vitro incubation in human plasma for 24 h. Its thermal stability was established using differential and gravimetric thermal analysis. The crystal structure of glycyl-rimantadine revealed that it crystallizes in the orthorhombic Pbca space group. The structure-activity relationship for this class of compounds was established, with CoMFA (Comparative Molecular Field Analysis) 3D-Quantitative Structure Activity Relationships (3D-QSAR) studies predicting the activities of synthetic molecules. In addition, molecular docking studies were conducted, revealing the structural requirements for the activity of the synthetic molecules.
Department of Analytical Chemistry Charles University 11636 Prague 1 Czech Republic
Department of Chemistry South West University Neofit Rilski 2700 Blagoevgrad Bulgaria
Department of Virology and Antiviral Therapy Friedrich Schiller University 207745 Jena Germany
See more in PubMed
Spilovska K., Zemek F., Korabecny J., Nepovimova E., Soukup O., Windisch M., Kuca K. Adamantane-a lead structure for drugs in clinical practice. Curr. Med. Chem. 2016;23:3245–3266. doi: 10.2174/0929867323666160525114026. PubMed DOI
Shibnev V.A., Garaev T.M., Finogenova M.P., Shevchenko E.S., Burtseva E.I. New adamantane derivatives can overcome resistance of influenza A(H1N1)pdm2009 and A(H3N2) viruses to remantadine. Bull. Exp. Biol. Med. 2012;153:233–235. doi: 10.1007/s10517-012-1684-x. PubMed DOI
Deryabin P.G., Garaev T.M., Finogenova M.P., Botikov A.G., Shibnev V.A. Amino acid derivatives of adamantane carbocycle are capable of inhibiting replication of highly virulent avian influenza A/H5N1 Virus. Bull. Exp. Biol. Med. 2014;157:62–65. doi: 10.1007/s10517-014-2492-2. PubMed DOI
Shibnev V.A., Garaev T.M., Deryabin P.G., Finogenova M.P., Botikov A.G., Mishin D.V. New carbocyclic amino acid derivatives inhibit infection caused by highly pathogenic influenza A virus strain (H5N1) Bull. Exp. Biol. Med. 2016;161:284–287. doi: 10.1007/s10517-016-3396-0. PubMed DOI
Hong B.T., Chen C.L., Fang J.M., Tsai K.C., Wang S.Y., Huang W.I., Cheng Y.E., Wong C.H. Oseltamivir hydroxamate and acyl sulfonamide derivatives as influenza neuraminidase inhibitors. Bioorg. Med. Chem. 2014;22:6647–6654. doi: 10.1016/j.bmc.2014.10.005. PubMed DOI
Jackson R.J., Cooper K.L., Tappenden P., Rees A., Simpson E.L., Read R.C., Nicholson K.G. Oseltamivir, zanamivir and amantadine in the prevention of influenza: A systematic review. J. Infect. 2011;62:14–25. doi: 10.1016/j.jinf.2010.10.003. PubMed DOI
FDA Approves Using Relenza to Prevent Flu, March 29, 2006. [(accessed on 1 September 2020)]; Available online: www.cidrap.umn.edu.
Gaiday A.V., Levandovskiy I.A., Byler K.G., Shubina T.E. Mechanism of influenza A M2 ion-channel inhibition: A docking and QSAR study. Comput. Sci. ICCS. 2008;5102:360–368. doi: 10.1007/978-3-540-69387-1_40. DOI
Knorr R., Trzeciak A., Annwarth W., Gillessen D. New coupling reagents in peptide chemistry. Tetrahedron Lett. 1989;30:1927–1930. doi: 10.1016/S0040-4039(00)99616-3. DOI
Bernatowicz M., Wu Y., Matsueda G. 1H-Pyrazole-1-carboxamidine hydrochloride an attractive reagent for guanylation of amines and its application to peptide synthesis. J. Org. Chem. 1992;57:2497–2502. doi: 10.1021/jo00034a059. DOI
Schnell J.R., Chou J.J. Structure and mechanism of the M2 proton channel of influenza A virus. Nature. 2008;451:591–595. doi: 10.1038/nature06531. PubMed DOI PMC
Beauchamp L.M., Orr G.F., Demiranda P., Burnette T., Krenitsky T.A. Amino-acid ester prodrugs of acyclovir. Antivir. Chem. Chemother. 1992;3:157–164. doi: 10.1177/095632029200300305. DOI
Han H., de Vrueh R.L., Rhie J.K., Covitz K.M., Smith P.L., Lee C.P., Oh D.M., Sadee W., Amidon G.L. 5′-Amino acid esters of antiviral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res. 1998;15:1154–1159. doi: 10.1023/A:1011919319810. PubMed DOI
Shen W., Kim J.S., Mitchell S., Kish P., Kijek P., Hilfinger J. 5′-O-D-valyl ara A, a potential prodrug for improving oral bioavailability of the antiviral agent vidarabine. Nucleos. Nucleot. Nucl. Acids. 2009;28:43–55. doi: 10.1080/15257770802581757. PubMed DOI PMC
Kim C.U., Lew W., Williams M.A., Wu H., Zhang L., Chen X., Escarpe P.A., Mendel D.B., Laver W.G., Stevens R.C. Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J. Med. Chem. 1998;41:2451–2460. doi: 10.1021/jm980162u. PubMed DOI
Kim S.H., Tangallapally R., Kim I.C., Trovato R., Parker D., Patton J.S., Reeves L., Bradford C., Wettstein D., Baichwal V., et al. Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100. Bioorg. Med. Chem. Lett. 2015;25:5254–5257. doi: 10.1016/j.bmcl.2015.09.053. PubMed DOI
Lin T.I., Heider H., Schroeder C. Different modes of inhibition by adamantane amine derivatives and natural polyamines of the functionally reconstituted influenza virus M2 proton channel protein. J. Gen. Virol. 1997;78:767–774. doi: 10.1099/0022-1317-78-4-767. PubMed DOI
Leonov H., Astrahan P., Krugliak M., Arkin I.T. How do aminoadamantanes block the influenza M2 channel, and how does resistance develop? J. Am. Chem. Soc. 2011;133:9903–9911. doi: 10.1021/ja202288m. PubMed DOI
Lamb R.A., Zebedee S.L., Richardson C.D. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell. 1985;40:627–633. doi: 10.1016/0092-8674(85)90211-9. PubMed DOI
Nain M., Hinder F., Gong J.H., Schmidt A., Bender A., Sprenger H., Gemsa D. Tumor necrosis factor-alpha production of influenza A virus-infected macrophages and potentiating effect of lipopolysaccharides. J. Immunol. 1990;145:1921–1928. PubMed
Li F., Ma C., Hu Y., Wang Y., Wang J. Discovery of potent antivirals against amantadine-resistant Influenza A viruses by targeting the M2-S31N proton channel. Acs Infect. Dis. 2016;2:726–733. doi: 10.1021/acsinfecdis.6b00130. PubMed DOI PMC
Wang J., Ma C., Wang J., Jo H., Canturk B., Fiorin G., Pinto L.H., Lamb R.A., Klein M.L., DeGrado W.F. Discovery of novel dual inhibitors of the wild-type and the most prevalent drug-resistant mutant, S31N, of the M2 proton channel from influenza A virus. J. Med. Chem. 2013;56:2804–2812. doi: 10.1021/jm301538e. PubMed DOI PMC
ChemBioDraw Ultra, version 14.0.; PerkinElmer. [(accessed on 1 September 2020)];2014 Available online: https://www.perkinelmer.com.
Maestro. Schroedinger, LLC; New York, NY, USA: 2015. version 10.2.
LigPrep. Schroedinger, LLC; New York, NY, USA: 2015. version 3.4.
MacroModel. Schroedinger, LLC; New York, NY, USA: 2015. version 10.8.
Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B. 2001;105:6474–6487. doi: 10.1021/jp003919d. DOI
Vrontaki E., Melagraki G., Mavromoustakos T., Afantitis A. Searching for anthranilic acid-based thumb pocket 2 HCV NS5B polymerase inhibitors through a combination of molecular docking, 3D-QSAR and virtual screening. J. Enzym. Inhib. Med. Chem. 2016;31:38–52. doi: 10.3109/14756366.2014.1003925. PubMed DOI
Tripos Associates . SYBYL QSAR and COMFA. Tripos Associates; St. Louis, MO, USA: 2007. version 8.0.
Gasteiger J., Marsili M. Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron. 1980;36:3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI
Purcell P., Singer A. A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method. J. Chem. Eng. Data. 1967;12:235–246. doi: 10.1021/je60033a020. DOI
Clark M., Cramer R.D., Vanopdenbosch N. Validation of the general-purpose Tripos 5.2 force-field. J. Comput. Chem. 1989;10:982–1012. doi: 10.1002/jcc.540100804. DOI
Cramer R.D., Patterson D.E., Bunce J.D. Comparative molecular-field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988;110:5959–5967. doi: 10.1021/ja00226a005. PubMed DOI
Frank I., Feikema J., Constantine N., Kowalski B. Prediction of product quality from spectral data using the partial least-squares method. J. Chem. Inf. Comput. Sci. 1984;24:20–24. doi: 10.1021/ci00041a602. DOI
Rannar S., Lindgren F., Geladi P., Wold S. A Pls kernel algorithm for data sets with many variables and fewer objects. 1. theory and algorithm. J. Chemometr. 1994;8:111–125. doi: 10.1002/cem.1180080204. DOI
Cramer R.D., Bunce J.D., Patterson D.E., Frank I.E. Cross-validation, bootstrapping, and partial least-squares compared with multiple-regression in conventional QSAR studies. Quant. Struct-Act. Rel. 1988;7:18–25. doi: 10.1002/qsar.19880070105. DOI
Hawkins D.M., Basak S.C., Mills D. Assessing model fit by cross-validation. J. Chem. Inf. Comput. Sci. 2003;43:579–586. doi: 10.1021/ci025626i. PubMed DOI
Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform. 2010;29:476–488. doi: 10.1002/minf.201000061. PubMed DOI
Melagraki G., Afantitis A. Enalos KNIME nodes: Exploring corrosion inhibition of steel in acidic medium. Chemometr. Intell. Lab. 2013;123:9–14. doi: 10.1016/j.chemolab.2013.02.003. DOI
Golbraikh A., Tropsha A. Beware of q2! J. Mol. Graph. Model. 2002;20:269–276. doi: 10.1016/S1093-3263(01)00123-1. PubMed DOI
LigPrep. Schroedinger, LLC; New York, NY, USA: 2012. version 2.5.
Protein Preparation Wizard. Schroedinger, LLC; New York, NY, USA: 2012. Epik version 2.3.
Impact. Schroedinger, LLC; New York, NY, USA: 2012. version 5.8.
Prime. Schroedinger, LLC; New York, NY, USA: 2012. version 3.1.
CrysAlis PRO version 171.36.20. Agilent Technologies, Ltd.; Yarnton, UK: 2011.
Sheldrick G.M. A short history of SHELX. Acta Crystallogr. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Farrugia L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012;45:849–854. doi: 10.1107/S0021889812029111. DOI
Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI
Spek A.L. Structure validation in chemical crystallography. Acta Crystallogr. D. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC