Genome-Wide DNA Methylation in Policemen Working in Cities Differing by Major Sources of Air Pollution
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35163587
PubMed Central
PMC8915177
DOI
10.3390/ijms23031666
PII: ijms23031666
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, air pollution, environment, epigenetics, molecular epidemiology,
- MeSH
- celogenomová asociační studie MeSH
- dospělí MeSH
- látky znečišťující vzduch škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA účinky léků MeSH
- policie * MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- znečištění ovzduší škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- látky znečišťující vzduch MeSH
DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.
Zobrazit více v PubMed
Rider C.F., Carlsten C. Air Pollution and DNA Methylation: Effects of Exposure in Humans. Clin. Epigen. 2019;11:131. doi: 10.1186/s13148-019-0713-2. PubMed DOI PMC
Curradi M., Izzo A., Badaracco G., Landsberger N. Molecular Mechanisms of Gene Silencing Mediated by DNA Methylation. Mol. Cell. Biol. 2002;22:3157–3173. doi: 10.1128/MCB.22.9.3157-3173.2002. PubMed DOI PMC
Baccarelli A., Wright R.O., Bollati V., Tarantini L., Litonjua A.A., Suh H.H., Zanobetti A., Sparrow D., Vokonas P.S., Schwartz J. Rapid DNA Methylation Changes after Exposure to Traffic Particles. Am. J. Respir. Crit. Care Med. 2009;179:572–578. doi: 10.1164/rccm.200807-1097OC. PubMed DOI PMC
Li H., Chen R., Cai J., Cui X., Huang N., Kan H. Short-Term Exposure to Fine Particulate Air Pollution and Genome-Wide DNA Methylation: A Randomized, Double-Blind, Crossover Trial. Environ. Int. 2018;120:130–136. doi: 10.1016/j.envint.2018.07.041. PubMed DOI
Nwanaji-Enwerem J.C., Colicino E. DNA Methylation-Based Biomarkers of Environmental Exposures for Human Population Studies. Curr. Environ. Health Rep. 2020;7:121–128. doi: 10.1007/s40572-020-00269-2. PubMed DOI
Zeilinger S., Kühnel B., Klopp N., Baurecht H., Kleinschmidt A., Gieger C., Weidinger S., Lattka E., Adamski J., Peters A., et al. Tobacco Smoking Leads to Extensive Genome-Wide Changes in DNA Methylation. PLoS ONE. 2013;8:e63812. doi: 10.1371/journal.pone.0063812. PubMed DOI PMC
Joubert B.R., Håberg S.E., Nilsen R.M., Wang X., Vollset S.E., Murphy S.K., Huang Z., Hoyo C., Midttun Ø., Cupul-Uicab L.A., et al. 450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns Related to Maternal Smoking during Pregnancy. Environ. Health Perspect. 2012;120:1425–1431. doi: 10.1289/ehp.1205412. PubMed DOI PMC
Reese S.E., Zhao S., Wu M.C., Joubert B.R., Parr C.L., Håberg S.E., Ueland P.M., Nilsen R.M., Midttun Ø., Vollset S.E., et al. DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking during Pregnancy. Environ. Health Perspect. 2017;125:760–766. doi: 10.1289/EHP333. PubMed DOI PMC
Liu C., Marioni R.E., Hedman Å.K., Pfeiffer L., Tsai P.-C., Reynolds L.M., Just A.C., Duan Q., Boer C.G., Tanaka T., et al. A DNA Methylation Biomarker of Alcohol Consumption. Mol. Psychiatry. 2018;23:422–433. doi: 10.1038/mp.2016.192. PubMed DOI PMC
Wright R.O., Schwartz J., Wright R.J., Bollati V., Tarantini L., Park S., Hu H., Sparrow D., Vokonas P., Baccarelli A. Biomarkers of Lead Exposure and DNA Methylation within Retrotransposons. Environ. Health Perspect. 2010;118:790–795. doi: 10.1289/ehp.0901429. PubMed DOI PMC
Boyne D.J., O’Sullivan D.E., Olij B.F., King W.D., Friedenreich C.M., Brenner D.R. Physical Activity, Global DNA Methylation, and Breast Cancer Risk: A Systematic Literature Review and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2018;27:1320–1331. doi: 10.1158/1055-9965.EPI-18-0175. PubMed DOI
Maghbooli Z., Hossein-Nezhad A., Adabi E., Asadollah-Pour E., Sadeghi M., Mohammad-Nabi S., Zakeri Rad L., Malek Hosseini A.-A., Radmehr M., Faghihi F., et al. Air Pollution during Pregnancy and Placental Adaptation in the Levels of Global DNA Methylation. PLoS ONE. 2018;13:e0199772. doi: 10.1371/journal.pone.0199772. PubMed DOI PMC
Flanagan J.M. Epigenome-Wide Association Studies (EWAS): Past, Present, and Future. Methods Mol. Biol. 2015;1238:51–63. doi: 10.1007/978-1-4939-1804-1_3. PubMed DOI
Gruzieva O., Xu C.-J., Breton C.V., Annesi-Maesano I., Antó J.M., Auffray C., Ballereau S., Bellander T., Bousquet J., Bustamante M., et al. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure. Environ. Health Perspect. 2017;125:104–110. doi: 10.1289/EHP36. PubMed DOI PMC
Gruzieva O., Xu C.-J., Yousefi P., Relton C., Merid S.K., Breton C.V., Gao L., Volk H.E., Feinberg J.I., Ladd-Acosta C., et al. Prenatal Particulate Air Pollution and DNA Methylation in Newborns: An Epigenome-Wide Meta-Analysis. Environ. Health Perspect. 2019;127:57012. doi: 10.1289/EHP4522. PubMed DOI PMC
Jiang C.-L., He S.-W., Zhang Y.-D., Duan H.-X., Huang T., Huang Y.-C., Li G.-F., Wang P., Ma L.-J., Zhou G.-B., et al. Air Pollution and DNA Methylation Alterations in Lung Cancer: A Systematic and Comparative Study. Oncotarget. 2016;8:1369–1391. doi: 10.18632/oncotarget.13622. PubMed DOI PMC
Sram R.J., Benes I., Binkova B., Dejmek J., Horstman D., Kotesovec F., Otto D., Perreault S.D., Rubes J., Selevan S.G., et al. Teplice Program—The Impact of Air Pollution on Human Health. Environ. Health Perspect. 1996;104:699–714. PubMed PMC
Jirik V., Machaczka O., Miturova H., Tomasek I., Slachtova H., Janoutova J., Velicka H., Janout V. Air Pollution and Potential Health Risk in Ostrava Region—A Review. Cent. Eur. J. Public Health. 2016;24:S4–S17. doi: 10.21101/cejph.a4533. PubMed DOI
Sram R.J., Milcova A., Pastorkova A., Rossner P., Rossnerova A., Schmuczerova J., Spatova M., Svecova V., Topinka J. European Hot Spot of Air Pollution by PM2.5 and Bap: Ostrava, Czech Republic. Epidemiology. 2011;22:S232. doi: 10.1097/01.ede.0000392401.66783.9d. DOI
Rossnerova A., Tulupova E., Tabashidze N., Schmuczerova J., Dostal M., Rossner P., Gmuender H., Sram R.J. Factors Affecting the 27K DNA Methylation Pattern in Asthmatic and Healthy Children from Locations with Various Environments. Mutat. Res. 2013;741–742:18–26. doi: 10.1016/j.mrfmmm.2013.02.003. PubMed DOI
Honkova K., Rossnerova A., Pavlikova J., Svecova V., Klema J., Topinka J., Milcova A., Libalova H., Choi H., Veleminsky M., et al. Gene Expression Profiling in Healthy Newborns from Diverse Localities of the Czech Republic. Environ. Mol. Mutagenes. 2018;59:401–415. doi: 10.1002/em.22184. PubMed DOI
Rossner P., Tulupova E., Rossnerova A., Libalova H., Honkova K., Gmuender H., Pastorkova A., Svecova V., Topinka J., Sram R.J. Reduced Gene Expression Levels after Chronic Exposure to High Concentrations of Air Pollutants. Mutat. Res. 2015;780:60–70. doi: 10.1016/j.mrfmmm.2015.08.001. PubMed DOI
Rossner P., Uhlirova K., Beskid O., Rossnerova A., Svecova V., Sram R.J. Expression of XRCC5 in Peripheral Blood Lymphocytes Is Upregulated in Subjects from a Heavily Polluted Region in the Czech Republic. Mutat. Res. 2011;713:76–82. doi: 10.1016/j.mrfmmm.2011.06.001. PubMed DOI
Jirik V., Tomasek L., Fojtikova I., Janoš T., Stanovska M., Gunkova P., Dalecka A., Vrtkova A., Sram R.J. Lifetime Carcinogenic Risk Proportions from Inhalation Exposures in Industrial and Non-Industrial Regions. Int. J. Environ. Res. Public Health. 2021;18:13295. doi: 10.3390/ijerph182413295. PubMed DOI PMC
Libalova H., Dostal M., Sram R.J. Study of Gene Expression in Asthmatic Children Living in Localities with Differenct Extent of Air Pollution. Ochr. Ovzduší. 2011;23:13–17.
Kratenova J., Zejglicova K., Puklova V. Respiratory Diseases in Children in the Moravian-Silesian Region in Comparison with the Results of National Monitoring. Hygiena. 2018;63:116–121. doi: 10.21101/hygiena.a1633. DOI
Zejglicova K., Puklova V., Kratenova J., Brabec M., Maly M., Tomek M., Urban F., Kubinova R. Prevalence of Allergic Diseases and Respiratory Disorders in Children in Relation to Air Quality in the Moravian-Silesian Region. Hygiena. 2019;64:45–51. doi: 10.21101/hygiena.a1705. DOI
Stirzaker C., Taberlay P.C., Statham A.L., Clark S.J. Mining Cancer Methylomes: Prospects and Challenges. Trends Genet. 2014;30:75–84. doi: 10.1016/j.tig.2013.11.004. PubMed DOI
Lanata C.M., Chung S.A., Criswell L.A. DNA Methylation 101: What Is Important to Know about DNA Methylation and Its Role in SLE Risk and Disease Heterogeneity. Lupus Sci. Med. 2018;5:e000285. doi: 10.1136/lupus-2018-000285. PubMed DOI PMC
Rubes J., Sipek J., Kopecka V., Musilova P., Vozdova M. Semen Quality and Sperm DNA Integrity in City Policemen Exposed to Polluted Air in an Urban Industrial Agglomeration. Int. J. Hyg. Environ. Health. 2021;237:113835. doi: 10.1016/j.ijheh.2021.113835. PubMed DOI
Ferrari L., Carugno M., Bollati V. Particulate Matter Exposure Shapes DNA Methylation through the Lifespan. Clin. Epigenet. 2019;11:129. doi: 10.1186/s13148-019-0726-x. PubMed DOI PMC
Vojtisek-Lom M., Suta M., Sikorova J., Sram R.J. High NO2 Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate? Atmosphere. 2021;12:649. doi: 10.3390/atmos12050649. DOI
Rossnerova A., Izzotti A., Pulliero A., Bast A., Rattan S.I.S., Rossner P. The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int. J. Mol. Sci. 2020;21:7053. doi: 10.3390/ijms21197053. PubMed DOI PMC
Rossnerova A., Honkova K., Chvojkova I., Pelclova D., Zdimal V., Hubacek J.A., Lischkova L., Vlckova S., Ondracek J., Dvorackova S., et al. Individual DNA Methylation Pattern Shifts in Nanoparticles-Exposed Workers Analyzed in Four Consecutive Years. Int. J. Mol. Sci. 2021;22:7834. doi: 10.3390/ijms22157834. PubMed DOI PMC
Moore L.D., Le T., Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013;38:23–38. doi: 10.1038/npp.2012.112. PubMed DOI PMC
Lieber M.R., Yu K., Raghavan S.C. Roles of Nonhomologous DNA End Joining, V(D)J Recombination, and Class Switch Recombination in Chromosomal Translocations. DNA Repair. 2006;5:1234–1245. doi: 10.1016/j.dnarep.2006.05.013. PubMed DOI
Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zölzer F., Rossner P. Adaptation of the Human Population to the Environment: Current Knowledge, Clues from Czech Cytogenetic and “Omics” Biomonitoring Studies and Possible Mechanisms. Mutat. Res. Rev. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI
Miller S., Tsou P.-S., Coit P., Gensterblum-Miller E., Renauer P., Rohraff D.M., Kilian N.C., Schonfeld M., Sawalha A.H. Hypomethylation of STAT1 and HLA-DRB1 Is Associated with Type-I Interferon-Dependent HLA-DRB1 Expression in Lupus CD8+ T Cells. Ann. Rheum. Dis. 2019;78:519–528. doi: 10.1136/annrheumdis-2018-214323. PubMed DOI PMC
Rebbeck T.R. Molecular Epidemiology of the Human Glutathione S-Transferase Genotypes GSTM1 and GSTT1 in Cancer Susceptibility. Cancer Epidemiol. Biomark. Prev. 1997;6:733–743. PubMed
Naccarati A., Soucek P., Stetina R., Haufroid V., Kumar R., Vodickova L., Trtkova K., Dusinska M., Hemminki K., Vodicka P. Genetic Polymorphisms and Possible Gene-Gene Interactions in Metabolic and DNA Repair Genes: Effects on DNA Damage. Mutat. Res. 2006;593:22–31. doi: 10.1016/j.mrfmmm.2005.06.016. PubMed DOI
Levinsson A., Olin A.-C., Modig L., Dahgam S., Björck L., Rosengren A., Nyberg F. Interaction Effects of Long-Term Air Pollution Exposure and Variants in the GSTP1, GSTT1 and GSTCD Genes on Risk of Acute Myocardial Infarction and Hypertension: A Case-Control Study. PLoS ONE. 2014;9:e99043. doi: 10.1371/journal.pone.0099043. PubMed DOI PMC
Caubit X., Thoby-Brisson M., Voituron N., Filippi P., Bévengut M., Faralli H., Zanella S., Fortin G., Hilaire G., Fasano L. Teashirt 3 Regulates Development of Neurons Involved in Both Respiratory Rhythm and Airflow Control. J. Neurosci. 2010;30:9465–9476. doi: 10.1523/JNEUROSCI.1765-10.2010. PubMed DOI PMC
Kajiwara Y., Akram A., Katsel P., Haroutunian V., Schmeidler J., Beecham G., Haines J.L., Pericak-Vance M.A., Buxbaum J.D. FE65 Binds Teashirt, Inhibiting Expression of the Primate-Specific Caspase-4. PLoS ONE. 2009;4:e5071. doi: 10.1371/journal.pone.0005071. PubMed DOI PMC
Guertin D.A., Sabatini D.M. Defining the Role of MTOR in Cancer. Cancer Cell. 2007;12:9–22. doi: 10.1016/j.ccr.2007.05.008. PubMed DOI
Weichhart T., Säemann M.D. The Multiple Facets of MTOR in Immunity. Trends Immunol. 2009;30:218–226. doi: 10.1016/j.it.2009.02.002. PubMed DOI
Kim D.-H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., Tempst P., Sabatini D.M. MTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex That Signals to the Cell Growth Machinery. Cell. 2002;110:163–175. doi: 10.1016/S0092-8674(02)00808-5. PubMed DOI
Blandino-Rosano M., Bernal-Mizrachi E. 2124-P: Raptor Levels Are Critical in the Adaptation of Beta Cells to High-Fat Diet. Diabetes. 2020;69:2124. doi: 10.2337/db20-2124-P. DOI
Ni Q., Gu Y., Xie Y., Yin Q., Zhang H., Nie A., Li W., Wang Y., Ning G., Wang W., et al. Raptor Regulates Functional Maturation of Murine Beta Cells. Nat. Commun. 2017;8:15755. doi: 10.1038/ncomms15755. PubMed DOI PMC
Banyard J., Bao L., Hofer M.D., Zurakowski D., Spivey K.A., Feldman A.S., Hutchinson L.M., Kuefer R., Rubin M.A., Zetter B.R. Collagen XXIII Expression Is Associated with Prostate Cancer Recurrence and Distant Metastases. Clin. Cancer Res. 2007;13:2634–2642. doi: 10.1158/1078-0432.CCR-06-2163. PubMed DOI
Spivey K.A., Banyard J., Solis L.M., Wistuba I.I., Barletta J.A., Gandhi L., Feldman H.A., Rodig S.J., Chirieac L.R., Zetter B.R. Collagen XXIII: A Potential Biomarker for the Detection of Primary and Recurrent Non-Small Cell Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2010;19:1362–1372. doi: 10.1158/1055-9965.EPI-09-1095. PubMed DOI PMC
Abbott G.W. Biology of the KCNQ1 Potassium Channel. New J. Sci. 2014;2014:e237431. doi: 10.1155/2014/237431. DOI
Rajender S., Avery K., Agarwal A. Epigenetics, Spermatogenesis and Male Infertility. Mutat. Res. 2011;727:62–71. doi: 10.1016/j.mrrev.2011.04.002. PubMed DOI
Travers M.E., Mackay D.J.G., Nitert M.D., Morris A.P., Lindgren C.M., Berry A., Johnson P.R., Hanley N., Groop L.C., McCarthy M.I., et al. Insights into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets. Diabetes. 2013;62:987–992. doi: 10.2337/db12-0819. PubMed DOI PMC
Lu J., Li Q., Xie H., Chen Z.J., Borovitskaya A.E., Maclaren N.K., Notkins A.L., Lan M.S. Identification of a Second Transmembrane Protein Tyrosine Phosphatase, IA-2beta, as an Autoantigen in Insulin-Dependent Diabetes Mellitus: Precursor of the 37-KDa Tryptic Fragment. Proc. Natl. Acad. Sci. USA. 1996;93:2307–2311. doi: 10.1073/pnas.93.6.2307. PubMed DOI PMC
Den Dekker H.T., Burrows K., Felix J.F., Salas L.A., Nedeljkovic I., Yao J., Rifas-Shiman S.L., Ruiz-Arenas C., Amin N., Bustamante M., et al. Newborn DNA-Methylation, Childhood Lung Function, and the Risks of Asthma and COPD across the Life Course. Eur. Respir. J. 2019;53 doi: 10.1183/13993003.01795-2018. PubMed DOI
Kingsley S.L., Eliot M.N., Whitsel E.A., Huang Y.-T., Kelsey K.T., Marsit C.J., Wellenius G.A. Maternal Residential Proximity to Major Roadways, Birth Weight, and Placental DNA Methylation. Environ. Int. 2016;92:43–49. doi: 10.1016/j.envint.2016.03.020. PubMed DOI PMC
Sacchetti P., Carpentier R., Ségard P., Olivé-Cren C., Lefebvre P. Multiple Signaling Pathways Regulate the Transcriptional Activity of the Orphan Nuclear Receptor NURR1. Nucleic Acids Res. 2006;34:5515–5527. doi: 10.1093/nar/gkl712. PubMed DOI PMC
Doi Y., Oki S., Ozawa T., Hohjoh H., Miyake S., Yamamura T. Orphan Nuclear Receptor NR4A2 Expressed in T Cells from Multiple Sclerosis Mediates Production of Inflammatory Cytokines. Proc. Natl. Acad. Sci. USA. 2008;105:8381–8386. doi: 10.1073/pnas.0803454105. PubMed DOI PMC
Ruiz-Sánchez E., Yescas P., Rodríguez-Violante M., Martínez-Rodríguez N., Díaz-López J.N., Ochoa A., Valdes-Rojas S.S., Magos-Rodríguez D., Rojas-Castañeda J.C., Cervantes-Arriaga A., et al. Association of Polymorphisms and Reduced Expression Levels of the NR4A2 Gene with Parkinson’s Disease in a Mexican Population. J. Neurol. Sci. 2017;379:58–63. doi: 10.1016/j.jns.2017.05.029. PubMed DOI
Montarolo F., Perga S., Martire S., Navone D.N., Marchet A., Leotta D., Bertolotto A. Altered NR4A Subfamily Gene Expression Level in Peripheral Blood of Parkinson’s and Alzheimer’s Disease Patients. Neurotox. Res. 2016;30:338–344. doi: 10.1007/s12640-016-9626-4. PubMed DOI
Le W., Pan T., Huang M., Xu P., Xie W., Zhu W., Zhang X., Deng H., Jankovic J. Decreased NURR1 Gene Expression in Patients with Parkinson’s Disease. J. Neurol. Sci. 2008;273:29–33. doi: 10.1016/j.jns.2008.06.007. PubMed DOI PMC
Liu H., Wei L., Tao Q., Deng H., Ming M., Xu P., Le W. Decreased NURR1 and PITX3 Gene Expression in Chinese Patients with Parkinson’s Disease. Eur. J. Neurol. 2012;19:870–875. doi: 10.1111/j.1468-1331.2011.03644.x. PubMed DOI
Zolochevska O., Figueiredo M.L. Novel Tumor Growth Inhibition Mechanism by Cell Cycle Regulator Cdk2ap1 Involves Antiangiogenesis Modulation. Microvasc. Res. 2010;80:324–331. doi: 10.1016/j.mvr.2010.06.001. PubMed DOI PMC
Battum E.Y.V., Brignani S., Pasterkamp R.J. Axon Guidance Proteins in Neurological Disorders. Lancet Neurol. 2015;14:532–546. doi: 10.1016/S1474-4422(14)70257-1. PubMed DOI
Antonell A., Lladó A., Altirriba J., Botta-Orfila T., Balasa M., Fernández M., Ferrer I., Sánchez-Valle R., Molinuevo J.L. A Preliminary Study of the Whole-Genome Expression Profile of Sporadic and Monogenic Early-Onset Alzheimer’s Disease. Neurobiol. Aging. 2013;34:1772–1778. doi: 10.1016/j.neurobiolaging.2012.12.026. PubMed DOI
Ambroz A., Vlkova V., Rossner P., Rossnerova A., Svecova V., Milcova A., Pulkrabova J., Hajslova J., Veleminsky M., Solansky I., et al. Impact of Air Pollution on Oxidative DNA Damage and Lipid Peroxidation in Mothers and Their Newborns. Int. J. Hyg. Environ. Health. 2016;219:545–556. doi: 10.1016/j.ijheh.2016.05.010. PubMed DOI
Sram R.J., Binkova B., Dostal M., Merkerova-Dostalova M., Libalova H., Milcova A., Rossner P., Rossnerova A., Schmuczerova J., Svecova V., et al. Health Impact of Air Pollution to Children. Int. J. Hyg. Environ. Health. 2013;216:533–540. doi: 10.1016/j.ijheh.2012.12.001. PubMed DOI
Miller S.A., Dykes D.D., Polesky H.F. A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
Aryee M.J., Jaffe A.E., Corrada-Bravo H., Ladd-Acosta C., Feinberg A.P., Hansen K.D., Irizarry R.A. Minfi: A Flexible and Comprehensive Bioconductor Package for the Analysis of Infinium DNA Methylation Microarrays. Bioinformatics. 2014;30:1363–1369. doi: 10.1093/bioinformatics/btu049. PubMed DOI PMC
McCartney D.L., Walker R.M., Morris S.W., McIntosh A.M., Porteous D.J., Evans K.L. Identification of Polymorphic and Off-Target Probe Binding Sites on the Illumina Infinium MethylationEPIC BeadChip. Genom. Data. 2016;9:22–24. doi: 10.1016/j.gdata.2016.05.012. PubMed DOI PMC
Leek J.T., Johnson W.E., Parker H.S., Jaffe A.E., Storey J.D. The Sva Package for Removing Batch Effects and Other Unwanted Variation in High-Throughput Experiments. Bioinformatics. 2012;28:882–883. doi: 10.1093/bioinformatics/bts034. PubMed DOI PMC
Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Li D., Xie Z., Le Pape M., Dye T. An Evaluation of Statistical Methods for DNA Methylation Microarray Data Analysis. BMC Bioinform. 2015;16:217. doi: 10.1186/s12859-015-0641-x. PubMed DOI PMC
Cavalcante R.G., Sartor M.A. Annotatr: Genomic Regions in Context. Bioinformatics. 2017;33:2381–2383. doi: 10.1093/bioinformatics/btx183. PubMed DOI PMC
Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC
Houseman E.A., Accomando W.P., Koestler D.C., Christensen B.C., Marsit C.J., Nelson H.H., Wiencke J.K., Kelsey K.T. DNA Methylation Arrays as Surrogate Measures of Cell Mixture Distribution. BMC Bioinform. 2012;13:86. doi: 10.1186/1471-2105-13-86. PubMed DOI PMC