Genome-Wide DNA Methylation in Policemen Working in Cities Differing by Major Sources of Air Pollution

. 2022 Jan 31 ; 23 (3) : . [epub] 20220131

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35163587

DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.

Zobrazit více v PubMed

Rider C.F., Carlsten C. Air Pollution and DNA Methylation: Effects of Exposure in Humans. Clin. Epigen. 2019;11:131. doi: 10.1186/s13148-019-0713-2. PubMed DOI PMC

Curradi M., Izzo A., Badaracco G., Landsberger N. Molecular Mechanisms of Gene Silencing Mediated by DNA Methylation. Mol. Cell. Biol. 2002;22:3157–3173. doi: 10.1128/MCB.22.9.3157-3173.2002. PubMed DOI PMC

Baccarelli A., Wright R.O., Bollati V., Tarantini L., Litonjua A.A., Suh H.H., Zanobetti A., Sparrow D., Vokonas P.S., Schwartz J. Rapid DNA Methylation Changes after Exposure to Traffic Particles. Am. J. Respir. Crit. Care Med. 2009;179:572–578. doi: 10.1164/rccm.200807-1097OC. PubMed DOI PMC

Li H., Chen R., Cai J., Cui X., Huang N., Kan H. Short-Term Exposure to Fine Particulate Air Pollution and Genome-Wide DNA Methylation: A Randomized, Double-Blind, Crossover Trial. Environ. Int. 2018;120:130–136. doi: 10.1016/j.envint.2018.07.041. PubMed DOI

Nwanaji-Enwerem J.C., Colicino E. DNA Methylation-Based Biomarkers of Environmental Exposures for Human Population Studies. Curr. Environ. Health Rep. 2020;7:121–128. doi: 10.1007/s40572-020-00269-2. PubMed DOI

Zeilinger S., Kühnel B., Klopp N., Baurecht H., Kleinschmidt A., Gieger C., Weidinger S., Lattka E., Adamski J., Peters A., et al. Tobacco Smoking Leads to Extensive Genome-Wide Changes in DNA Methylation. PLoS ONE. 2013;8:e63812. doi: 10.1371/journal.pone.0063812. PubMed DOI PMC

Joubert B.R., Håberg S.E., Nilsen R.M., Wang X., Vollset S.E., Murphy S.K., Huang Z., Hoyo C., Midttun Ø., Cupul-Uicab L.A., et al. 450K Epigenome-Wide Scan Identifies Differential DNA Methylation in Newborns Related to Maternal Smoking during Pregnancy. Environ. Health Perspect. 2012;120:1425–1431. doi: 10.1289/ehp.1205412. PubMed DOI PMC

Reese S.E., Zhao S., Wu M.C., Joubert B.R., Parr C.L., Håberg S.E., Ueland P.M., Nilsen R.M., Midttun Ø., Vollset S.E., et al. DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking during Pregnancy. Environ. Health Perspect. 2017;125:760–766. doi: 10.1289/EHP333. PubMed DOI PMC

Liu C., Marioni R.E., Hedman Å.K., Pfeiffer L., Tsai P.-C., Reynolds L.M., Just A.C., Duan Q., Boer C.G., Tanaka T., et al. A DNA Methylation Biomarker of Alcohol Consumption. Mol. Psychiatry. 2018;23:422–433. doi: 10.1038/mp.2016.192. PubMed DOI PMC

Wright R.O., Schwartz J., Wright R.J., Bollati V., Tarantini L., Park S., Hu H., Sparrow D., Vokonas P., Baccarelli A. Biomarkers of Lead Exposure and DNA Methylation within Retrotransposons. Environ. Health Perspect. 2010;118:790–795. doi: 10.1289/ehp.0901429. PubMed DOI PMC

Boyne D.J., O’Sullivan D.E., Olij B.F., King W.D., Friedenreich C.M., Brenner D.R. Physical Activity, Global DNA Methylation, and Breast Cancer Risk: A Systematic Literature Review and Meta-Analysis. Cancer Epidemiol. Biomark. Prev. 2018;27:1320–1331. doi: 10.1158/1055-9965.EPI-18-0175. PubMed DOI

Maghbooli Z., Hossein-Nezhad A., Adabi E., Asadollah-Pour E., Sadeghi M., Mohammad-Nabi S., Zakeri Rad L., Malek Hosseini A.-A., Radmehr M., Faghihi F., et al. Air Pollution during Pregnancy and Placental Adaptation in the Levels of Global DNA Methylation. PLoS ONE. 2018;13:e0199772. doi: 10.1371/journal.pone.0199772. PubMed DOI PMC

Flanagan J.M. Epigenome-Wide Association Studies (EWAS): Past, Present, and Future. Methods Mol. Biol. 2015;1238:51–63. doi: 10.1007/978-1-4939-1804-1_3. PubMed DOI

Gruzieva O., Xu C.-J., Breton C.V., Annesi-Maesano I., Antó J.M., Auffray C., Ballereau S., Bellander T., Bousquet J., Bustamante M., et al. Epigenome-Wide Meta-Analysis of Methylation in Children Related to Prenatal NO2 Air Pollution Exposure. Environ. Health Perspect. 2017;125:104–110. doi: 10.1289/EHP36. PubMed DOI PMC

Gruzieva O., Xu C.-J., Yousefi P., Relton C., Merid S.K., Breton C.V., Gao L., Volk H.E., Feinberg J.I., Ladd-Acosta C., et al. Prenatal Particulate Air Pollution and DNA Methylation in Newborns: An Epigenome-Wide Meta-Analysis. Environ. Health Perspect. 2019;127:57012. doi: 10.1289/EHP4522. PubMed DOI PMC

Jiang C.-L., He S.-W., Zhang Y.-D., Duan H.-X., Huang T., Huang Y.-C., Li G.-F., Wang P., Ma L.-J., Zhou G.-B., et al. Air Pollution and DNA Methylation Alterations in Lung Cancer: A Systematic and Comparative Study. Oncotarget. 2016;8:1369–1391. doi: 10.18632/oncotarget.13622. PubMed DOI PMC

Sram R.J., Benes I., Binkova B., Dejmek J., Horstman D., Kotesovec F., Otto D., Perreault S.D., Rubes J., Selevan S.G., et al. Teplice Program—The Impact of Air Pollution on Human Health. Environ. Health Perspect. 1996;104:699–714. PubMed PMC

Jirik V., Machaczka O., Miturova H., Tomasek I., Slachtova H., Janoutova J., Velicka H., Janout V. Air Pollution and Potential Health Risk in Ostrava Region—A Review. Cent. Eur. J. Public Health. 2016;24:S4–S17. doi: 10.21101/cejph.a4533. PubMed DOI

Sram R.J., Milcova A., Pastorkova A., Rossner P., Rossnerova A., Schmuczerova J., Spatova M., Svecova V., Topinka J. European Hot Spot of Air Pollution by PM2.5 and Bap: Ostrava, Czech Republic. Epidemiology. 2011;22:S232. doi: 10.1097/01.ede.0000392401.66783.9d. DOI

Rossnerova A., Tulupova E., Tabashidze N., Schmuczerova J., Dostal M., Rossner P., Gmuender H., Sram R.J. Factors Affecting the 27K DNA Methylation Pattern in Asthmatic and Healthy Children from Locations with Various Environments. Mutat. Res. 2013;741–742:18–26. doi: 10.1016/j.mrfmmm.2013.02.003. PubMed DOI

Honkova K., Rossnerova A., Pavlikova J., Svecova V., Klema J., Topinka J., Milcova A., Libalova H., Choi H., Veleminsky M., et al. Gene Expression Profiling in Healthy Newborns from Diverse Localities of the Czech Republic. Environ. Mol. Mutagenes. 2018;59:401–415. doi: 10.1002/em.22184. PubMed DOI

Rossner P., Tulupova E., Rossnerova A., Libalova H., Honkova K., Gmuender H., Pastorkova A., Svecova V., Topinka J., Sram R.J. Reduced Gene Expression Levels after Chronic Exposure to High Concentrations of Air Pollutants. Mutat. Res. 2015;780:60–70. doi: 10.1016/j.mrfmmm.2015.08.001. PubMed DOI

Rossner P., Uhlirova K., Beskid O., Rossnerova A., Svecova V., Sram R.J. Expression of XRCC5 in Peripheral Blood Lymphocytes Is Upregulated in Subjects from a Heavily Polluted Region in the Czech Republic. Mutat. Res. 2011;713:76–82. doi: 10.1016/j.mrfmmm.2011.06.001. PubMed DOI

Jirik V., Tomasek L., Fojtikova I., Janoš T., Stanovska M., Gunkova P., Dalecka A., Vrtkova A., Sram R.J. Lifetime Carcinogenic Risk Proportions from Inhalation Exposures in Industrial and Non-Industrial Regions. Int. J. Environ. Res. Public Health. 2021;18:13295. doi: 10.3390/ijerph182413295. PubMed DOI PMC

Libalova H., Dostal M., Sram R.J. Study of Gene Expression in Asthmatic Children Living in Localities with Differenct Extent of Air Pollution. Ochr. Ovzduší. 2011;23:13–17.

Kratenova J., Zejglicova K., Puklova V. Respiratory Diseases in Children in the Moravian-Silesian Region in Comparison with the Results of National Monitoring. Hygiena. 2018;63:116–121. doi: 10.21101/hygiena.a1633. DOI

Zejglicova K., Puklova V., Kratenova J., Brabec M., Maly M., Tomek M., Urban F., Kubinova R. Prevalence of Allergic Diseases and Respiratory Disorders in Children in Relation to Air Quality in the Moravian-Silesian Region. Hygiena. 2019;64:45–51. doi: 10.21101/hygiena.a1705. DOI

Stirzaker C., Taberlay P.C., Statham A.L., Clark S.J. Mining Cancer Methylomes: Prospects and Challenges. Trends Genet. 2014;30:75–84. doi: 10.1016/j.tig.2013.11.004. PubMed DOI

Lanata C.M., Chung S.A., Criswell L.A. DNA Methylation 101: What Is Important to Know about DNA Methylation and Its Role in SLE Risk and Disease Heterogeneity. Lupus Sci. Med. 2018;5:e000285. doi: 10.1136/lupus-2018-000285. PubMed DOI PMC

Rubes J., Sipek J., Kopecka V., Musilova P., Vozdova M. Semen Quality and Sperm DNA Integrity in City Policemen Exposed to Polluted Air in an Urban Industrial Agglomeration. Int. J. Hyg. Environ. Health. 2021;237:113835. doi: 10.1016/j.ijheh.2021.113835. PubMed DOI

Ferrari L., Carugno M., Bollati V. Particulate Matter Exposure Shapes DNA Methylation through the Lifespan. Clin. Epigenet. 2019;11:129. doi: 10.1186/s13148-019-0726-x. PubMed DOI PMC

Vojtisek-Lom M., Suta M., Sikorova J., Sram R.J. High NO2 Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate? Atmosphere. 2021;12:649. doi: 10.3390/atmos12050649. DOI

Rossnerova A., Izzotti A., Pulliero A., Bast A., Rattan S.I.S., Rossner P. The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int. J. Mol. Sci. 2020;21:7053. doi: 10.3390/ijms21197053. PubMed DOI PMC

Rossnerova A., Honkova K., Chvojkova I., Pelclova D., Zdimal V., Hubacek J.A., Lischkova L., Vlckova S., Ondracek J., Dvorackova S., et al. Individual DNA Methylation Pattern Shifts in Nanoparticles-Exposed Workers Analyzed in Four Consecutive Years. Int. J. Mol. Sci. 2021;22:7834. doi: 10.3390/ijms22157834. PubMed DOI PMC

Moore L.D., Le T., Fan G. DNA Methylation and Its Basic Function. Neuropsychopharmacology. 2013;38:23–38. doi: 10.1038/npp.2012.112. PubMed DOI PMC

Lieber M.R., Yu K., Raghavan S.C. Roles of Nonhomologous DNA End Joining, V(D)J Recombination, and Class Switch Recombination in Chromosomal Translocations. DNA Repair. 2006;5:1234–1245. doi: 10.1016/j.dnarep.2006.05.013. PubMed DOI

Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zölzer F., Rossner P. Adaptation of the Human Population to the Environment: Current Knowledge, Clues from Czech Cytogenetic and “Omics” Biomonitoring Studies and Possible Mechanisms. Mutat. Res. Rev. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI

Miller S., Tsou P.-S., Coit P., Gensterblum-Miller E., Renauer P., Rohraff D.M., Kilian N.C., Schonfeld M., Sawalha A.H. Hypomethylation of STAT1 and HLA-DRB1 Is Associated with Type-I Interferon-Dependent HLA-DRB1 Expression in Lupus CD8+ T Cells. Ann. Rheum. Dis. 2019;78:519–528. doi: 10.1136/annrheumdis-2018-214323. PubMed DOI PMC

Rebbeck T.R. Molecular Epidemiology of the Human Glutathione S-Transferase Genotypes GSTM1 and GSTT1 in Cancer Susceptibility. Cancer Epidemiol. Biomark. Prev. 1997;6:733–743. PubMed

Naccarati A., Soucek P., Stetina R., Haufroid V., Kumar R., Vodickova L., Trtkova K., Dusinska M., Hemminki K., Vodicka P. Genetic Polymorphisms and Possible Gene-Gene Interactions in Metabolic and DNA Repair Genes: Effects on DNA Damage. Mutat. Res. 2006;593:22–31. doi: 10.1016/j.mrfmmm.2005.06.016. PubMed DOI

Levinsson A., Olin A.-C., Modig L., Dahgam S., Björck L., Rosengren A., Nyberg F. Interaction Effects of Long-Term Air Pollution Exposure and Variants in the GSTP1, GSTT1 and GSTCD Genes on Risk of Acute Myocardial Infarction and Hypertension: A Case-Control Study. PLoS ONE. 2014;9:e99043. doi: 10.1371/journal.pone.0099043. PubMed DOI PMC

Caubit X., Thoby-Brisson M., Voituron N., Filippi P., Bévengut M., Faralli H., Zanella S., Fortin G., Hilaire G., Fasano L. Teashirt 3 Regulates Development of Neurons Involved in Both Respiratory Rhythm and Airflow Control. J. Neurosci. 2010;30:9465–9476. doi: 10.1523/JNEUROSCI.1765-10.2010. PubMed DOI PMC

Kajiwara Y., Akram A., Katsel P., Haroutunian V., Schmeidler J., Beecham G., Haines J.L., Pericak-Vance M.A., Buxbaum J.D. FE65 Binds Teashirt, Inhibiting Expression of the Primate-Specific Caspase-4. PLoS ONE. 2009;4:e5071. doi: 10.1371/journal.pone.0005071. PubMed DOI PMC

Guertin D.A., Sabatini D.M. Defining the Role of MTOR in Cancer. Cancer Cell. 2007;12:9–22. doi: 10.1016/j.ccr.2007.05.008. PubMed DOI

Weichhart T., Säemann M.D. The Multiple Facets of MTOR in Immunity. Trends Immunol. 2009;30:218–226. doi: 10.1016/j.it.2009.02.002. PubMed DOI

Kim D.-H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., Tempst P., Sabatini D.M. MTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex That Signals to the Cell Growth Machinery. Cell. 2002;110:163–175. doi: 10.1016/S0092-8674(02)00808-5. PubMed DOI

Blandino-Rosano M., Bernal-Mizrachi E. 2124-P: Raptor Levels Are Critical in the Adaptation of Beta Cells to High-Fat Diet. Diabetes. 2020;69:2124. doi: 10.2337/db20-2124-P. DOI

Ni Q., Gu Y., Xie Y., Yin Q., Zhang H., Nie A., Li W., Wang Y., Ning G., Wang W., et al. Raptor Regulates Functional Maturation of Murine Beta Cells. Nat. Commun. 2017;8:15755. doi: 10.1038/ncomms15755. PubMed DOI PMC

Banyard J., Bao L., Hofer M.D., Zurakowski D., Spivey K.A., Feldman A.S., Hutchinson L.M., Kuefer R., Rubin M.A., Zetter B.R. Collagen XXIII Expression Is Associated with Prostate Cancer Recurrence and Distant Metastases. Clin. Cancer Res. 2007;13:2634–2642. doi: 10.1158/1078-0432.CCR-06-2163. PubMed DOI

Spivey K.A., Banyard J., Solis L.M., Wistuba I.I., Barletta J.A., Gandhi L., Feldman H.A., Rodig S.J., Chirieac L.R., Zetter B.R. Collagen XXIII: A Potential Biomarker for the Detection of Primary and Recurrent Non-Small Cell Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2010;19:1362–1372. doi: 10.1158/1055-9965.EPI-09-1095. PubMed DOI PMC

Abbott G.W. Biology of the KCNQ1 Potassium Channel. New J. Sci. 2014;2014:e237431. doi: 10.1155/2014/237431. DOI

Rajender S., Avery K., Agarwal A. Epigenetics, Spermatogenesis and Male Infertility. Mutat. Res. 2011;727:62–71. doi: 10.1016/j.mrrev.2011.04.002. PubMed DOI

Travers M.E., Mackay D.J.G., Nitert M.D., Morris A.P., Lindgren C.M., Berry A., Johnson P.R., Hanley N., Groop L.C., McCarthy M.I., et al. Insights into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets. Diabetes. 2013;62:987–992. doi: 10.2337/db12-0819. PubMed DOI PMC

Lu J., Li Q., Xie H., Chen Z.J., Borovitskaya A.E., Maclaren N.K., Notkins A.L., Lan M.S. Identification of a Second Transmembrane Protein Tyrosine Phosphatase, IA-2beta, as an Autoantigen in Insulin-Dependent Diabetes Mellitus: Precursor of the 37-KDa Tryptic Fragment. Proc. Natl. Acad. Sci. USA. 1996;93:2307–2311. doi: 10.1073/pnas.93.6.2307. PubMed DOI PMC

Den Dekker H.T., Burrows K., Felix J.F., Salas L.A., Nedeljkovic I., Yao J., Rifas-Shiman S.L., Ruiz-Arenas C., Amin N., Bustamante M., et al. Newborn DNA-Methylation, Childhood Lung Function, and the Risks of Asthma and COPD across the Life Course. Eur. Respir. J. 2019;53 doi: 10.1183/13993003.01795-2018. PubMed DOI

Kingsley S.L., Eliot M.N., Whitsel E.A., Huang Y.-T., Kelsey K.T., Marsit C.J., Wellenius G.A. Maternal Residential Proximity to Major Roadways, Birth Weight, and Placental DNA Methylation. Environ. Int. 2016;92:43–49. doi: 10.1016/j.envint.2016.03.020. PubMed DOI PMC

Sacchetti P., Carpentier R., Ségard P., Olivé-Cren C., Lefebvre P. Multiple Signaling Pathways Regulate the Transcriptional Activity of the Orphan Nuclear Receptor NURR1. Nucleic Acids Res. 2006;34:5515–5527. doi: 10.1093/nar/gkl712. PubMed DOI PMC

Doi Y., Oki S., Ozawa T., Hohjoh H., Miyake S., Yamamura T. Orphan Nuclear Receptor NR4A2 Expressed in T Cells from Multiple Sclerosis Mediates Production of Inflammatory Cytokines. Proc. Natl. Acad. Sci. USA. 2008;105:8381–8386. doi: 10.1073/pnas.0803454105. PubMed DOI PMC

Ruiz-Sánchez E., Yescas P., Rodríguez-Violante M., Martínez-Rodríguez N., Díaz-López J.N., Ochoa A., Valdes-Rojas S.S., Magos-Rodríguez D., Rojas-Castañeda J.C., Cervantes-Arriaga A., et al. Association of Polymorphisms and Reduced Expression Levels of the NR4A2 Gene with Parkinson’s Disease in a Mexican Population. J. Neurol. Sci. 2017;379:58–63. doi: 10.1016/j.jns.2017.05.029. PubMed DOI

Montarolo F., Perga S., Martire S., Navone D.N., Marchet A., Leotta D., Bertolotto A. Altered NR4A Subfamily Gene Expression Level in Peripheral Blood of Parkinson’s and Alzheimer’s Disease Patients. Neurotox. Res. 2016;30:338–344. doi: 10.1007/s12640-016-9626-4. PubMed DOI

Le W., Pan T., Huang M., Xu P., Xie W., Zhu W., Zhang X., Deng H., Jankovic J. Decreased NURR1 Gene Expression in Patients with Parkinson’s Disease. J. Neurol. Sci. 2008;273:29–33. doi: 10.1016/j.jns.2008.06.007. PubMed DOI PMC

Liu H., Wei L., Tao Q., Deng H., Ming M., Xu P., Le W. Decreased NURR1 and PITX3 Gene Expression in Chinese Patients with Parkinson’s Disease. Eur. J. Neurol. 2012;19:870–875. doi: 10.1111/j.1468-1331.2011.03644.x. PubMed DOI

Zolochevska O., Figueiredo M.L. Novel Tumor Growth Inhibition Mechanism by Cell Cycle Regulator Cdk2ap1 Involves Antiangiogenesis Modulation. Microvasc. Res. 2010;80:324–331. doi: 10.1016/j.mvr.2010.06.001. PubMed DOI PMC

Battum E.Y.V., Brignani S., Pasterkamp R.J. Axon Guidance Proteins in Neurological Disorders. Lancet Neurol. 2015;14:532–546. doi: 10.1016/S1474-4422(14)70257-1. PubMed DOI

Antonell A., Lladó A., Altirriba J., Botta-Orfila T., Balasa M., Fernández M., Ferrer I., Sánchez-Valle R., Molinuevo J.L. A Preliminary Study of the Whole-Genome Expression Profile of Sporadic and Monogenic Early-Onset Alzheimer’s Disease. Neurobiol. Aging. 2013;34:1772–1778. doi: 10.1016/j.neurobiolaging.2012.12.026. PubMed DOI

Ambroz A., Vlkova V., Rossner P., Rossnerova A., Svecova V., Milcova A., Pulkrabova J., Hajslova J., Veleminsky M., Solansky I., et al. Impact of Air Pollution on Oxidative DNA Damage and Lipid Peroxidation in Mothers and Their Newborns. Int. J. Hyg. Environ. Health. 2016;219:545–556. doi: 10.1016/j.ijheh.2016.05.010. PubMed DOI

Sram R.J., Binkova B., Dostal M., Merkerova-Dostalova M., Libalova H., Milcova A., Rossner P., Rossnerova A., Schmuczerova J., Svecova V., et al. Health Impact of Air Pollution to Children. Int. J. Hyg. Environ. Health. 2013;216:533–540. doi: 10.1016/j.ijheh.2012.12.001. PubMed DOI

Miller S.A., Dykes D.D., Polesky H.F. A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC

Aryee M.J., Jaffe A.E., Corrada-Bravo H., Ladd-Acosta C., Feinberg A.P., Hansen K.D., Irizarry R.A. Minfi: A Flexible and Comprehensive Bioconductor Package for the Analysis of Infinium DNA Methylation Microarrays. Bioinformatics. 2014;30:1363–1369. doi: 10.1093/bioinformatics/btu049. PubMed DOI PMC

McCartney D.L., Walker R.M., Morris S.W., McIntosh A.M., Porteous D.J., Evans K.L. Identification of Polymorphic and Off-Target Probe Binding Sites on the Illumina Infinium MethylationEPIC BeadChip. Genom. Data. 2016;9:22–24. doi: 10.1016/j.gdata.2016.05.012. PubMed DOI PMC

Leek J.T., Johnson W.E., Parker H.S., Jaffe A.E., Storey J.D. The Sva Package for Removing Batch Effects and Other Unwanted Variation in High-Throughput Experiments. Bioinformatics. 2012;28:882–883. doi: 10.1093/bioinformatics/bts034. PubMed DOI PMC

Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Li D., Xie Z., Le Pape M., Dye T. An Evaluation of Statistical Methods for DNA Methylation Microarray Data Analysis. BMC Bioinform. 2015;16:217. doi: 10.1186/s12859-015-0641-x. PubMed DOI PMC

Cavalcante R.G., Sartor M.A. Annotatr: Genomic Regions in Context. Bioinformatics. 2017;33:2381–2383. doi: 10.1093/bioinformatics/btx183. PubMed DOI PMC

Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., Feng T., Zhou L., Tang W., Zhan L., et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation. 2021;2:100141. doi: 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Houseman E.A., Accomando W.P., Koestler D.C., Christensen B.C., Marsit C.J., Nelson H.H., Wiencke J.K., Kelsey K.T. DNA Methylation Arrays as Surrogate Measures of Cell Mixture Distribution. BMC Bioinform. 2012;13:86. doi: 10.1186/1471-2105-13-86. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...