Skin Wound Healing: The Impact of Treatment with Antimicrobial Nanoparticles and Mesenchymal Stem Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17720S
Czech Science Foundation
LM2023053
Ministry of Education, Youth and Sports of the Czech Republic
LM2023066
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
40700166
PubMed Central
PMC12285939
DOI
10.3390/jox15040119
PII: jox15040119
Knihovny.cz E-zdroje
- Klíčová slova
- epigenetic regulation, gene expression, immune response, mesenchymal stem cells, nanoparticles, skin injury,
- Publikační typ
- časopisecké články MeSH
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing process. This combined treatment was hypothesized to be beneficial, as it is associated with the production of molecules supporting the healing process and antimicrobial activity. The samples were collected seven days after injury. When compared with untreated wounded animals (controls), the combined (MSCs+NPs) treatment induced the expression of Sprr2b, encoding small proline-rich protein 2B, which is involved in keratinocyte differentiation, the response to tissue injury, and inflammation. Pathways associated with keratinocyte differentiation were also affected. Ag NP treatment (alone or combined) modulated DNA methylation changes in genes involved in desmosome organization. The percentage of activated regulatory macrophages at the wound site was increased by MSC-alone and Ag-alone treatments, while the production of nitric oxide, an inflammatory marker, by stimulated macrophages was decreased by both MSC/Ag-alone and MSCs+Ag treatments. Ag induced the expression of Col1, encoding collagen-1, at the injury site. The results of the MSC and NP treatment of skin wounds (alone or combined) suggest an induction of processes accelerating the proliferative phase of healing. Thus, MSC-NP interactions are a key factor affecting global mRNA expression changes in the wound.
Department of Cell Biology Faculty of Science Charles University 12843 Prague Czech Republic
Department of Computer Science Czech Technical University Prague 16000 Prague Czech Republic
Zobrazit více v PubMed
Cioce A., Cavani A., Cattani C., Scopelliti F. Role of the Skin Immune System in Wound Healing. Cells. 2024;13:624. doi: 10.3390/cells13070624. PubMed DOI PMC
Zomer H.D., Trentin A.G. Skin Wound Healing in Humans and Mice: Challenges in Translational Research. J. Dermatol. Sci. 2018;90:3–12. doi: 10.1016/j.jdermsci.2017.12.009. PubMed DOI
Businaro R., Corsi M., Di Raimo T., Marasco S., Laskin D.L., Salvati B., Capoano R., Ricci S., Siciliano C., Frati G., et al. Multidisciplinary Approaches to Stimulate Wound Healing. Ann. N. Y. Acad. Sci. 2016;1378:137–142. doi: 10.1111/nyas.13158. PubMed DOI PMC
Zeng R., Lin C., Lin Z., Chen H., Lu W., Lin C., Li H. Approaches to Cutaneous Wound Healing: Basics and Future Directions. Cell Tissue Res. 2018;374:217–232. doi: 10.1007/s00441-018-2830-1. PubMed DOI
Wu S., Sun S., Fu W., Yang Z., Yao H., Zhang Z. The Role and Prospects of Mesenchymal Stem Cells in Skin Repair and Regeneration. Biomedicines. 2024;12:743. doi: 10.3390/biomedicines12040743. PubMed DOI PMC
Bagno L.L., Salerno A.G., Balkan W., Hare J.M. Mechanism of Action of Mesenchymal Stem Cells (MSCs): Impact of Delivery Method. Expert Opin. Biol. Ther. 2022;22:449–463. doi: 10.1080/14712598.2022.2016695. PubMed DOI PMC
Saifullah Q., Sharma A. Current Trends on Innovative Technologies in Topical Wound Care forAdvanced Healing and Management. Curr. Drug Res. Rev. 2024;16:319–332. doi: 10.2174/0125899775262048230925054922. PubMed DOI
Gao T., Tian C., Ma Z., Chu Z., Wang Z., Zhang P. Stem Cell Seeded and Silver Nanoparticles Loaded Bilayer PLGA/PVA Dressings for Wound Healing. Macromol. Biosci. 2020;20:2000141. doi: 10.1002/mabi.202000141. PubMed DOI
Lo S., Mahmoudi E., Fauzi M.B. Applications of Drug Delivery Systems, Organic, and Inorganic Nanomaterials in Wound Healing. Discov. Nano. 2023;18:104. doi: 10.1186/s11671-023-03880-y. PubMed DOI PMC
Bellu E., Medici S., Coradduzza D., Cruciani S., Amler E., Maioli M. Nanomaterials in Skin Regeneration and Rejuvenation. Int. J. Mol. Sci. 2021;22:7095. doi: 10.3390/ijms22137095. PubMed DOI PMC
Salem M., Ateya A., Shouman Z., Salama B., Hamed B., Batiha G., Ataya F., Alexiou A., Papadakis M., Abass M. Amelioration of Full-Thickness Cutaneous Wound Healing Using Stem Cell Exosome and Zinc Oxide Nanoparticles in Rats. Heliyon. 2024;10:e38994. doi: 10.1016/j.heliyon.2024.e38994. PubMed DOI PMC
Echalar B., Dostalova D., Palacka K., Javorkova E., Hermankova B., Cervena T., Zajicova A., Holan V., Rossner P. Effects of Antimicrobial Metal Nanoparticles on Characteristics and Function Properties of Mouse Mesenchymal Stem Cells. Toxicol. Vitr. 2023;87:105536. doi: 10.1016/j.tiv.2022.105536. PubMed DOI
Rossner P., Vrbova K., Rossnerova A., Zavodna T., Milcova A., Klema J., Vecera Z., Mikuska P., Coufalik P., Capka L., et al. Gene Expression and Epigenetic Changes in Mice Following Inhalation of Copper(II) Oxide Nanoparticles. Nanomaterials. 2020;10:550. doi: 10.3390/nano10030550. PubMed DOI PMC
Ewels P.A., Peltzer A., Fillinger S., Patel H., Alneberg J., Wilm A., Garcia M.U., Di Tommaso P., Nahnsen S. The Nf-Core Framework for Community-Curated Bioinformatics Pipelines. Nat. Biotechnol. 2020;38:276–278. doi: 10.1038/s41587-020-0439-x. PubMed DOI
Honkova K., Rossnerova A., Chvojkova I., Milcova A., Margaryan H., Pastorkova A., Ambroz A., Rossner P., Jirik V., Rubes J., et al. Genome-Wide DNA Methylation in Policemen Working in Cities Differing by Major Sources of Air Pollution. Int. J. Mol. Sci. 2022;23:1666. doi: 10.3390/ijms23031666. PubMed DOI PMC
Kim J., Deshar B., Hwang M., Shrestha C., Ju E., Bin B.-H., Kim J. Quantum Molecular Resonance Ameliorates Atopic Dermatitis through Suppression of IL36G and SPRR2B. BMB Rep. 2024;58:209–216. doi: 10.5483/BMBRep.2024-0105. PubMed DOI PMC
Eichelberger K.R., Goldman W.E. Manipulating Neutrophil Degranulation as a Bacterial Virulence Strategy. PLoS Pathog. 2020;16:e1009054. doi: 10.1371/journal.ppat.1009054. PubMed DOI PMC
Moll R., Divo M., Langbein L. The Human Keratins: Biology and Pathology. Histochem. Cell Biol. 2008;129:705. doi: 10.1007/s00418-008-0435-6. PubMed DOI PMC
Wang Z., Zhao F., Xu C., Zhang Q., Ren H., Huang X., He C., Ma J., Wang Z. Metabolic Reprogramming in Skin Wound Healing. Burns Trauma. 2024;12:tkad047. doi: 10.1093/burnst/tkad047. PubMed DOI PMC
Kowalczyk A.P., Green K.J. Progress in Molecular Biology and Translational Science. Volume 116. Elsevier; Amsterdam, The Netherlands: 2013. Structure, Function, and Regulation of Desmosomes; pp. 95–118. PubMed PMC
Jere S.W., Houreld N.N., Abrahamse H. Role of the PI3K/AKT (mTOR and GSK3β) Signalling Pathway and Photobiomodulation in Diabetic Wound Healing. Cytokine Growth Factor Rev. 2019;50:52–59. doi: 10.1016/j.cytogfr.2019.03.001. PubMed DOI
Teng Y., Fan Y., Ma J., Lu W., Liu N., Chen Y., Pan W., Tao X. The PI3K/Akt Pathway: Emerging Roles in Skin Homeostasis and a Group of Non-Malignant Skin Disorders. Cells. 2021;10:1219. doi: 10.3390/cells10051219. PubMed DOI PMC
Nicoletti N.F., Marinowic D.R., Perondi D., Budelon Gonçalves J.I., Piazza D., Da Costa J.C., Falavigna A. Non-Cytotoxic Graphene Nanoplatelets Upregulate Cell Proliferation and Self-Renewal Genes of Mesenchymal Stem Cells. Int. J. Mol. Sci. 2024;25:9817. doi: 10.3390/ijms25189817. PubMed DOI PMC
Delavary B.M., Van Der Veer W.M., Van Egmond M., Niessen F.B., Beelen R.H.J. Macrophages in Skin Injury and Repair. Immunobiology. 2011;216:753–762. doi: 10.1016/j.imbio.2011.01.001. PubMed DOI
Lee J.Y., Sullivan K.E. Gamma Interferon and Lipopolysaccharide Interact at the Level of Transcription To Induce Tumor Necrosis Factor Alpha Expression. Infect. Immun. 2001;69:2847–2852. doi: 10.1128/IAI.69.5.2847-2852.2001. PubMed DOI PMC
Facchin B.M., Dos Reis G.O., Vieira G.N., Mohr E.T.B., Da Rosa J.S., Kretzer I.F., Demarchi I.G., Dalmarco E.M. Inflammatory Biomarkers on an LPS-Induced RAW 264.7 Cell Model: A Systematic Review and Meta-Analysis. Inflamm. Res. 2022;71:741–758. doi: 10.1007/s00011-022-01584-0. PubMed DOI
Mahmoud N.N., Hamad K., Al Shibitini A., Juma S., Sharifi S., Gould L., Mahmoudi M. Investigating Inflammatory Markers in Wound Healing: Understanding Implications and Identifying Artifacts. ACS Pharmacol. Transl. Sci. 2024;7:18–27. doi: 10.1021/acsptsci.3c00336. PubMed DOI PMC
McLeod K., Walker J.T., Hamilton D.W. Galectin-3 Regulation of Wound Healing and Fibrotic Processes: Insights for Chronic Skin Wound Therapeutics. J. Cell Commun. Signal. 2018;12:281–287. doi: 10.1007/s12079-018-0453-7. PubMed DOI PMC
Yousaf H., Khan M.I.U., Ali I., Munir M.U., Lee K.Y. Emerging Role of Macrophages in Non-Infectious Diseases: An Update. Biomed. Pharmacother. 2023;161:114426. doi: 10.1016/j.biopha.2023.114426. PubMed DOI
Seeger M.A., Paller A.S. The Roles of Growth Factors in Keratinocyte Migration. Adv. Wound Care. 2015;4:213–224. doi: 10.1089/wound.2014.0540. PubMed DOI PMC
Xue M., Le N.T., Jackson C.J. Targeting Matrix Metalloproteases to Improve Cutaneous Wound Healing. Expert Opin. Ther. Targets. 2006;10:143–155. doi: 10.1517/14728222.10.1.143. PubMed DOI
Gardeazabal L., Izeta A. Elastin and Collagen Fibres in Cutaneous Wound Healing. Exp. Dermatol. 2024;33:e15052. doi: 10.1111/exd.15052. PubMed DOI
Wilgus T.A. Vascular Endothelial Growth Factor and Cutaneous Scarring. Adv. Wound Care. 2019;8:671–678. doi: 10.1089/wound.2018.0796. PubMed DOI PMC