Effect of Cutting Conditions on the Size of Dust Particles Generated during Milling of Carbon Fibre-Reinforced Composite Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS-2024-5456-Influence of process parameters on quality of machining biocomposites systems
Technical University of Liberec
PubMed
39339024
PubMed Central
PMC11435035
DOI
10.3390/polym16182559
PII: polym16182559
Knihovny.cz E-zdroje
- Klíčová slova
- CFRP, dust particles, electron microscopy, milling, respiratory hazards,
- Publikační typ
- časopisecké články MeSH
Conventional dry machining (without process media) of carbon fibre composite materials (CFRP) produces tiny chips/dust particles that float in the air and cause health hazards to the machining operator. The present study investigates the effect of cutting conditions (cutting speed, feed per tooth and depth of cut) during CFRP milling on the size, shape and amount of harmful dust particles. For the present study, one type of cutting tool (CVD diamond-coated carbide) was used directly for machining CFRP. The analysis of harmful dust particles was carried out on a Tescan Mira 3 (Tescan, Brno, Czech Republic) scanning electron microscope and a Keyence VK-X 1000 (Keyence, Itasca, IL, USA) confocal microscope. The results show that with the combination of higher feed per tooth (mm) and lower cutting speed, for specific CFRP materials, the size and shape of harmful dust particles is reduced. Particles ranging in size from 2.2 to 99 μm were deposited on the filters. Smaller particles were retained on the tool body (1.7 to 40 μm). Similar particle sizes were deposited on the machine and in the work area.
Zobrazit více v PubMed
Ke L., Li Y., Li C., Cheng Z., Ma K., Zeng J. Bond Behavior of CFRP-Strengthened Steel Structures and Its Environmental Influence Factors: A Critical Review. Sustain. Struct. 2024;4:000038. doi: 10.54113/j.sust.2024.000038. DOI
Wang H., Sun J., Zhang D., Guo K., Li J. The Effect of Cutting Temperature in Milling of Carbon Fiber Reinforced Polymer Composites. Compos. Part A Appl. Sci. Manuf. 2016;91:380–387. doi: 10.1016/j.compositesa.2016.10.025. DOI
Hejjaji A., Zitoune R., Bouvet C., Nguyen-Dinh N., Salem M. New Tool for Reduction of Harmful Particulate Dispersion and to Improve Machining Quality When Trimming Carbon/Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2020;131:105806. doi: 10.1016/j.compositesa.2020.105806. DOI
Kroisová D., Dvořáčková Š., Knap A., Knápek T. Destruction of Carbon and Glass Fibers during Chip Machining of Composite Systems. Polymers. 2023;15:2888. doi: 10.3390/polym15132888. PubMed DOI PMC
Pelclova D., Ždímal V., Komarc M., Schwarz J., Ondráček J., Ondráčková L., Kostejn M., Vlckova S., Fenclova Z., Dvorackova S., et al. Three-Year Study of Markers of Oxidative Stress in Exhaled Breath Condensate in Workers Producing Nanocomposites, Extended by Plasma and Urine Analysis in Last Two Years. Nanomaterials. 2020;10:2440. doi: 10.3390/nano10122440. PubMed DOI PMC
Ramulu M., Kramlich J. Machining of Fiber Reinforced Composites: Review of Environmental and Health Effects. Int. J. Environ. Conscious Des. Manuf. 2004;11:1–19.
Miller J.L. Ph.D. Thesis. University of Washington; Seattle, WA, USA: 2015. Investigation of Machinability and Dust Emissions in Edge Trimming of Laminated Carbon Fiber Composites.
Rossnerova A., Pelclova D., Ždímal V., Rossner P., Elzeinova F., Vrbova K., Topinka J., Schwarz J., Ondráček J., Kostejn M., et al. The Repeated Cytogenetic Analysis of Subjects Occupationally Exposed to Nanoparticles: A Pilot Study. Mutagenesis. 2019;34:253–263. doi: 10.1093/mutage/gez016. PubMed DOI
Al-Jipouri A., Almurisi S., Al-Japairai K., Bakar L., Doolaanea A.A. Liposomes or Extracellular Vesicles: A Comprehensive Comparison of Both Lipid Bilayer Vesicles for Pulmonary Drug Delivery. Polymers. 2023;15:318. doi: 10.3390/polym15020318. PubMed DOI PMC
Gao T., Zhang Y.B., Li C., Wang Y., Chen Y., An Q., Zhang S., LI H.N., Cao H., Ali H., et al. Fiber-Reinforced Composites in Milling and Grinding: Machining Bottlenecks and Advanced Strategies. Front. Mech. Eng. 2022;17:24. doi: 10.1007/s11465-022-0680-8. DOI
Uhlmann E., Meier P. Carbon Fibre Recycling from Milling Dust for the Application in Short Fibre Reinforced Thermoplastics. Procedia CIRP. 2017;66:277–282. doi: 10.1016/j.procir.2017.03.277. DOI
Haddad M., Zitoune R., Eyma F., Castanie B. Study of the Surface Defects and Dust Generated during Trimming of CFRP: Influence of Tool Geometry, Machining Parameters and Cutting Speed Range. Compos. Part A Appl. Sci. Manuf. 2014;66:142–154. doi: 10.1016/j.compositesa.2014.07.005. DOI
Aamir M., Tolouei-Rad M., Giasin K., Nosrati A. Recent Advances in Drilling of Carbon Fiber Reinforced Polymers for Aerospace Applications: A Review. Int. J. Adv. Manuf. Technol. 2019;105:2289–2308. doi: 10.1007/s00170-019-04348-z. DOI
Iyer A. Master’s Thesis. University of Washington; Seattle, WA, USA: 2015. Characterization of Composite Dust Generated During Milling of Uni-Directional and Random Fiber Composites.
Slamani M., Chatelain J.-F., Hamedanianpour H. Influence of Machining Parameters on Surface Quality during High Speed Edge Trimming of Carbon Fiber Reinforced Polymers. Int. J. Mater. Form. 2019;12:331–353. doi: 10.1007/s12289-018-1419-2. DOI
Workplace Atmospheres—Size Fraction Definitions for Measurement of Airborne Particles. European Committee for Standardization; Brussels, Belgium: 1993.
Knápek T., Kroisová D., Dvorackova Š., Knap A. Destruction of Fibrous Structures During Machining of Carbon Fiber Composites; Proceedings of the 14th International Conference on Nanomaterials—Research & Application, OREA Congress Hotel; Brno, Czech Republic. 19–21 October 2022; pp. 242–248.