Destruction of Carbon and Glass Fibers during Chip Machining of Composite Systems
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
37447532
PubMed Central
PMC10346565
DOI
10.3390/polym15132888
PII: polym15132888
Knihovny.cz E-resources
- Keywords
- carbon fibers, composite systems, destruction, glass fibers, machining,
- Publication type
- Journal Article MeSH
Composite materials with carbon and glass fibers in an epoxy matrix are widely used systems due to their excellent mechanical parameters, and machining is a standard finishing operation in their manufacture. Previous studies focused exclusively on the characteristics of the fibers released into the air. This work aimed to analyze the nature of the material waste that remains on the work surface after machining. The dust on the work surface is made up of fibers and a polymer matrix, and due to its dimensions and chemical stability, it is a potentially dangerous inhalable material currently treated as regular waste. The smallest sizes of destroyed carbon fibers were generated during drilling and grinding (0.1 μm), and the smallest glass fiber particles were generated during milling (0.05 μm). Due to their nature, carbon fibers break by a tough fracture, and glass fibers by a brittle fracture. In both cases, the rupture of the fibers was perpendicular to or at an angle to the longitudinal axis of the fibers. The average lengths of destroyed carbon fibers from the tested processes ranged from 15 to 20 µm and 30 to 60 µm for glass fibers.
See more in PubMed
Diefendorf R.J., Tokarsky E. High-Performance Carbon Fibers. Polym. Eng. Sci. 1975;15:150–159. doi: 10.1002/pen.760150306. DOI
Mallick P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, Third Edition. 3rd ed. CRC Press; Boca Raton, FL, USA: 2007.
Dresselhaus M.S. Fifty Years in Studying Carbon-Based Materials. Phys. Scr. 2012;2012:014002. doi: 10.1088/0031-8949/2012/T146/014002. DOI
Boughdiri I., Giasin K., Mabrouki T., Zitoune R. Effect of Cutting Parameters on Thrust Force, Torque, Hole Quality and Dust Generation during Drilling of GLARE 2B Laminates. Compos. Struct. 2021;261:113562. doi: 10.1016/j.compstruct.2021.113562. DOI
Guo R., Li C., Xian G. Water Absorption and Long-Term Thermal and Mechanical Properties of Carbon/Glass Hybrid Rod for Bridge Cable. Eng. Struct. 2023;274:115176. doi: 10.1016/j.engstruct.2022.115176. DOI
Xian G., Guo R., Li C., Hong B. Mechanical Properties of Carbon/Glass Fiber Reinforced Polymer Plates with Sandwich Structure Exposed to Freezing-Thawing Environment: Effects of Water Immersion, Bending Loading and Fiber Hybrid Mode. Mech. Adv. Mater. Struct. 2023;30:814–834. doi: 10.1080/15376494.2021.2024927. DOI
Caggiano A. Machining of Fibre Reinforced Plastic Composite Materials. Materials. 2018;11:442. doi: 10.3390/ma11030442. PubMed DOI PMC
Komanduri R. Machining of Fiber-Reinforced Composites. Mach. Sci. Technol. 1997;1:113–152. doi: 10.1080/10940349708945641. DOI
El-Sonbaty I., Khashaba U.A., Machaly T. Factors Affecting The Machinability Of Gfr/Epoxy Composites. Compos. Struct. 2004;63:329–338. doi: 10.1016/S0263-8223(03)00181-8. DOI
Uhlmann E., Sammler F., Richarz S., Heitmüller F., Bilz M. Machining of Carbon Fibre Reinforced Plastics. Procedia CIRP. 2014;24:19–24. doi: 10.1016/j.procir.2014.07.135. DOI
Uhlmann E., Sammler F., Richarz S., Reucher G., Hufschmied R., Frank A., Stawiszynski B., Protz F. Machining of Carbon and Glass Fibre Reinforced Composites. Procedia CIRP. 2016;46:63–66. doi: 10.1016/j.procir.2016.03.197. DOI
Altin Karataş M., Gökkaya H. A Review on Machinability of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) Composite Materials. Def. Technol. 2018;14:318–326. doi: 10.1016/j.dt.2018.02.001. DOI
Hintze W., Hartmann D., Schütte C. Occurrence and Propagation of Delamination during the Machining of Carbon Fibre Reinforced Plastics (CFRPs)—An Experimental Study. Compos. Sci. Technol. 2011;71:1719–1726. doi: 10.1016/j.compscitech.2011.08.002. DOI
Boatman E.S., Covert D., Kalman D., Luchtel D., Omenn G.S. Physical, Morphological, and Chemical Studies of Dusts Derived from the Machining of Composite-Epoxy Materials. Environ. Res. 1988;45:242–255. doi: 10.1016/S0013-9351(88)80050-1. PubMed DOI
Luchtel D.L., Martin T.R., Boatman E.S. Response of the Rat Lung to Respirable Fractions of Composite Fiber-Epoxy Dusts. Environ. Res. 1989;48:57–69. doi: 10.1016/S0013-9351(89)80085-4. PubMed DOI
Azmi A. Chip Formation Studies in Machining Fibre Reinforced Polymer Composites. Int. J. Mater. Prod. Technol. 2013;46:32–46. doi: 10.1504/IJMPT.2013.052790. DOI
Kehren D., Simonow B., Bäger D., Dziurowitz N., Wenzlaff D., Thim C., Neuhoff J., Meyer-Plath A., Plitzko S. Release of Respirable Fibrous Dust from Carbon Fibers Due to Splitting along the Fiber Axis. Aerosol Air Qual. Res. 2019;19:2185–2195. doi: 10.4209/aaqr.2019.03.0149. DOI
Haddad M., Zitoune R., Eyma F., Castanie B. Study of the Surface Defects and Dust Generated during Trimming of CFRP: Influence of Tool Geometry, Machining Parameters and Cutting Speed Range. Compos. Part A Appl. Sci. Manuf. 2014;66:142–154. doi: 10.1016/j.compositesa.2014.07.005. DOI
Shyha I., Huo D., editors. Advances in Machining of Composite Materials: Conventional and Non-Conventional Processes. Springer International Publishing; Cham, Switzerland: 2021. Engineering Materials.
Ramulu M., Kramlich J. Machining of Fiber Reinforced Composites: Review of Environmental and Health Effects. Int. J. Environ. Conscious Des. Manuf. 2004;11:1–19.
Ahmad J. Machining of Polymer Composites. Springer; Boston, MA, USA: 2009.
Warheit D.B., Hansen J.F., Carakostas M.C., Hartsky M.A. Acute Inhalation Toxicity Studies in Rats with a Respirable-Sized Experimental Carbon Fibre: Pulmonary Biochemical and Cellular Effects. Ann. Occup. Hyg. 1994;38:769–776. doi: 10.1093/annhyg/38.inhaled_particles_VII.769. DOI
Wang J., Schlagenhauf L., Setyan A. Transformation of the Released Asbestos, Carbon Fibers and Carbon Nanotubes from Composite Materials and the Changes of Their Potential Health Impacts. J. Nanobiotechnol. 2017;15:15. doi: 10.1186/s12951-017-0248-7. PubMed DOI PMC
Mazumder M.K., Chang R.J., Bond R.L. Aerodynamic and Morphological Properties of Carbon-Fiber Aerosols. Aerosol Sci. Technol. 1982;1:427–440. doi: 10.1080/02786828208958606. DOI
Thompson S.A. Toxicology of Carbon Fibers; Proceedings of the Occupational Health Aspects of Advanced Composite Technology in the Aerospace Industry, Health Effects and Exposure Considerations; Dayton, OH, USA. 6–9 February 1989; pp. 164–176.
The WHO/EURO Man-Made Mineral Fiber Reference Scheme By the WHO/EURO Technical Committee for Monitoring and Evaluating MMMF. Scand. J. Work Environ. Health. 1985;11:123–129. doi: 10.5271/sjweh.2251. PubMed DOI
Determination of Airborne Fibre Number Concentrations. [(accessed on 10 May 2023)]. Available online: https://www.who.int/publications-detail-redirect/9241544961.
Iyer A. Ph.D. Thesis. University of Washington; Seattle, WA, USA: 2015. Characterization of Composite Dust Generated During Milling of Uni-Directional and Random Fiber Composites.
Evropská Agentura pro Bezpečnost a Ochranu Zdraví při Práci|Evropská Unie. [(accessed on 10 May 2023)]. Available online: https://european-union.europa.eu/institutions-law-budget/institutions-and-bodies/search-all-eu-institutions-and-bodies/eu-osha_cs.
Národní Institut pro Zdraví a Bezpečnost Při Práci (USA)|Safety and Health at Work EU-OSHA. [(accessed on 10 May 2023)]. Available online: https://osha.europa.eu/cs/tools-and-resources/eu-osha-thesaurus/term/08561c.
Homepage|Mine Safety and Health Administration (MSHA) [(accessed on 10 May 2023)]; Available online: https://www.msha.gov/
Holt P.F., Horne M. Dust from Carbon Fibre. Env. Res. 1978;17:276–283. doi: 10.1016/0013-9351(78)90030-0. PubMed DOI
Miller J.L. Ph.D. Thesis. University of Washington; Seattle, WA, USA: 2014. Investigation of Machinability and Dust Emissions in Edge Trimming of Laminated Carbon Fiber Composites.
Li H.N., Wang J.P., Wu C.Q., Zhao Y.J., Xu J., Liu X., Zhu W.Q. Damage Behaviors of Unidirectional CFRP in Orthogonal Cutting: A Comparison between Single- and Multiple-Pass Strategies. Compos. Part B Eng. 2020;185:107774. doi: 10.1016/j.compositesb.2020.107774. DOI
Dvořáčková Š., Kroisová D. Thermal Expansion of Composite System Epoxy Resin/Recycled Carbon Fibers. Mater. Sci. Forum. 2020;994:162–169. doi: 10.4028/www.scientific.net/MSF.994.162. DOI
Knap A., Dvořáčková Š., Knápek T. Study of the Machining Process of GFRP Materials by Milling Technology with Coated Tools. Coatings. 2022;12:1354. doi: 10.3390/coatings12091354. DOI
Knápek T., Dvořáčková Š., Knap A. Wear Study of Coated Mills during Circumferential Milling of Carbon Fiber-Reinforced Composites and Their Influence on the Sustainable Quality of the Machined Surface. Coatings. 2022;12:1379. doi: 10.3390/coatings12101379. DOI
Knápek T., Kroisová D., Dvorackova Š., Knap A. Destruction of Fibrous Structures During Machining of Carbon Fiber Composites; Proceedings of the 14th International Conference on Nanomaterials—Research & Application, OREA Congress Hotel; Brno, Czech Republic. 19–21 October 2022; pp. 242–248.
2014. [(accessed on 10 May 2023)]. Available online: https://www.zdravotnickydenik.cz/wp-content/uploads/2020/04/Shrnuti-analyzy-respiratoru-dle-norem-Porta-Medica.pdf.
Prašnost Na Pracovišti Definice, Rizika, Škodlivost a Prevence Proti Prachu. [(accessed on 10 May 2023)]. Available online: https://www.bozp.cz/aktuality/prasnost-na-pracovisti/
An Experimental Investigation into Trochoidal Milling for High-Quality GFRP Machining
Elimination of Delamination during the Drilling of Biocomposite Materials with Flax Fibers