Thermomechanical and Structural Analysis of Manufactured Composite Based on Polyamide and Aluminum Recycled Material
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
39408452
PubMed Central
PMC11478770
DOI
10.3390/polym16192742
PII: polym16192742
Knihovny.cz E-resources
- Keywords
- DSC and DMTA testing, aluminum filler, machining, polymer composites, roughness, surface integrity parameters,
- Publication type
- Journal Article MeSH
The paper presents an analysis of the filler's effect on the machining process and on changes in the thermomechanical properties of polymer composites based on aluminum chips. Composite research samples with a polymer matrix in the form of polyamide 6 were made by the pressing method. Comparative studies were carried out on the changes in thermomechanical properties and structure of the obtained molders with different filler contents and different fractions after the machining process. In order to determine the changes in thermal and mechanical properties, analysis was carried out using the differential scanning calorimetry (DSC) method, thermal analysis of dynamic mechanical properties (DMTA) and a detailed stereometric analysis of the surface. After mechanical processing, roughness amplitude parameters and volumetric functional parameters were determined. In order to analyze the structure, tomographic examinations of the manufactured composite were conducted. In relation to the polymer matrix, a significant increase in the storage modulus of the composites was noted in the entire temperature range of the study. An increase in the enthalpy of melting of the matrix was noted in composites with a lower filler content and a shift in the melting range of the crystalline phase. Significant differences were noted in the study of the composite surfaces in the case of using fillers obtained after machining with different fractions. The dependencies of the functional and amplitude parameters of the surfaces after machining of composite samples prove the change in the functional properties of the surface. The use of aluminum chips in the composite significantly changed the surface geometry.
See more in PubMed
De Fazio D., Boccarusso L., Formisano A., Viscusi A., Durante M. A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields. J. Mar. Sci. Eng. 2023;11:851. doi: 10.3390/jmse11040851. DOI
Jung H., Shin G., Kwak H., Hao T.M., Jegal J., Kim H.J., Jeon H., Park J., Oh D.X. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere. 2023;320:138089. doi: 10.1016/j.chemosphere.2023.138089. PubMed DOI
Balu R., Dutta N.K., Roy Choudhury N. Plastic Waste Upcycling: A Sustainable Solution for Waste Management, Product Development, and Circular Economy. Polymers. 2022;14:4788. doi: 10.3390/polym14224788. PubMed DOI PMC
Kumar N.G., Rajesh K., Rama M., Durga Rao K.P., Bharath S., Manikanta J.E. A review on mechanical properties of hybrid polymer composites. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.05.059. in press . DOI
Arunachalam S.J., Saravanan R. Study on filler reinforcement in polymer matrix composites—A review. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.06.102. in press . DOI
Huseynov O., Hasanov S., Fidan I. Influence of the matrix material on the thermal properties of the short carbon fiber reinforced polymer composites manufactured by material extrusion. J. Manuf. Process. 2023;92:521–533. doi: 10.1016/j.jmapro.2023.02.055. DOI
Pandit P.P., Liu C., Iacono S., Corti G., Hu Y. Microstructural Characterization and Property of Carbon Fiber Reinforced High-Density Polyethylene Composites Fabricated by Fused Deposition Modeling. Materials. 2023;16:180. doi: 10.3390/ma16010180. PubMed DOI PMC
Pinto G., Jiménez-Martín A. Conducting aluminium-filled nylon 6 composites. Polym. Compos. 2001;22:65–70. doi: 10.1002/pc.10517. DOI
Osman A.F., Mariatti M. Properties of Aluminum Filled Polypropylene Composites. Polym. Polym. Compos. 2006;14:623–633. doi: 10.1177/096739110601400608. DOI
Schricker K., Bergmann J.P., Hopfeld M., Spie L. Effect of thermoplastic morphology on mechanical properties in laser-assisted joining of polyamide 6 with aluminum. Weld World. 2021;65:699–711. doi: 10.1007/s40194-020-01048-1. DOI
Dan-asabe B., Adeotio O., Samuel B.O. Development, characterization, and modeling of aluminum chips-gabbro filler polystyrene hybrid composite using mixture design. Mater. Chem. Phys. 2023;297:127235. doi: 10.1016/j.matchemphys.2022.127235. DOI
Anis A., Elnour A.Y., Alam M.A., Al-Zahrani S.M., AlFayez F., Bashir Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers. 2020;12:2038. doi: 10.3390/polym12092038. PubMed DOI PMC
Martin M., Hanagud S., Thadhani N.N. Mechanical behavior of nickel+aluminum powder-reinforced epoxy composites. Mater. Sci. Eng. A. 2007;443:209–218. doi: 10.1016/j.msea.2006.08.106. DOI
Bishay I.K., Abd-El-Messieh S.L., Mansour S.H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminium powder. Mater. Des. 2011;32:62–68. doi: 10.1016/j.matdes.2010.06.035. DOI
Suhas U., Shashidhara K.N., Bharath L. Mechanical Characterization of Copper and Aluminium Powder Reinforced Epoxy Polymer Composites. Int. J. Eng. Res. Technol. 2023;12 doi: 10.17577/IJERTV12IS030071. DOI
Alhamidi A., Anis A., Bashir Z., Alam M.A., Al-Zahrani S.M. Studies on the Effect of the Addition of Nano-Spherical Particles of Aluminum on the Thermal, Mechanical, and Morphological Properties of PBT–PET Blend Composites. Polymers. 2023;15:3625. doi: 10.3390/polym15173625. PubMed DOI PMC
Dasture M.D., Kelkar D.S. Aluminium-filled low-density polyethylene structural, morphological, and mechanical properties. J. Appl. Polym. Sci. 2007;106:2436–2441. doi: 10.1002/app.26847. DOI
Ananth G., Smith R.A., Kumar A.A., Dakshna S., Harsath S. Fabrication of aluminium polymer composite. Int. J. Adv. Res. Innov. Ideas Educ. 2023;9:1598–1620.
Zhou S., Hrymak A.N. Injection Molding of Polymers and Polymer Composites. Polymers. 2024;16:1796. doi: 10.3390/polym16131796. PubMed DOI PMC
Xiao K.Q., Zhang L.C. The role of viscous deformation in the machining of polymers. Int. J. Mechancial Sci. 2002;44:2317–2336. doi: 10.1016/S0020-7403(02)00178-9. DOI
Pierończyk J., Biało D. Selected problems of electrodischarge machining of aluminum matrix composites. Compos. Theory Pract. 2001;1:211–214.
Mohit H., Rangappa M.S., Siengchin S., Gorbatyuk S., Manimaran P., Kumari C.A., Khan A., Doddamani M. A comprehensive review on performance and machinability of plant fiber polymer composites. Polym. Compos. 2022;43:608. doi: 10.1002/pc.26403. DOI
Sheikh-Ahmad J., Davim J.P. 5—Tool wear in machining processes for composites. In: Hocheng H., editor. Woodhead Publishing Series in Composites Science and Engineering, Machining Technology for Composite Materials. Woodhead Publishing; Cambridge, UK: 2012. pp. 116–153. DOI
Ahmad J. Machining of Polymer Composites. Springer; New York, NY, USA: 2009.
Wang D., Onawumi P.Y., Ismail S.O., Dhakal H.N., Popov I., Silberschmidt V.V., Roy A. Machinability of natural-fibre-reinforced polymer composites: Conventional vs ultrasonically-assisted machining. Compos. Part A Appl. Sci. Manuf. 2019;119:188–195. doi: 10.1016/j.compositesa.2019.01.028. DOI
Teti R. Machining of Composite Materials. CIRP Ann. 2002;51:611–634. doi: 10.1016/S0007-8506(07)61703-X. DOI
Pecat O., Rentsch R., Brinksmeier E. Influence of Milling Process Parameters on the Surface Integrity of CFRP; Proceedings of the Fifth CIRP Conference on High Performance Cutting 2012; Zurich, Switzerland. 4–7 June 2012; pp. 466–470. DOI
Han X., Xu D., Axinte D., Liao Z., Li H.N. On understanding the specific cutting mechanisms governing the workpiece surface integrity in metal matrix composites machining. J. Mater. Process. Technol. 2021;88:116875. doi: 10.1016/j.jmatprotec.2020.116875. DOI
Dvořáčková Š., Kroisová D., Knápek T., Váňa M. Effect of Cutting Conditions on the Size of Dust Particles Generated during Milling of Carbon Fibre-Reinforced Composite Materials. Polymers. 2024;16:2559. doi: 10.3390/polym16182559. PubMed DOI PMC
Aluminium and Aluminium Alloys—Chemical Composition and form of Wrought Products—Part 1: Numerical Designation System. European Committee for Standaridization; Brussels, Belgium: 2004.
Differential Scanning Calorimetry (DSC)—Part 3: De-Termination of Temperature and Enthalpy of Melting and Crystallization. ISO; Warsaw, Poland: 2018.
Plastics—Determination of Dynamic Mechanical Properties—Part 1: General Principles. International Organization for Standardization; Geneva, Switzerland: 2019.
Tool shanks with 7/24 taper for automatic tool changers: Part 1: Dimensions and designation of shanks of forms A, AD, AF, U, UD and UF. ISO; Geneva, Switzerland: 2007.
Product Catalog, Hoffmann-Group. [(accessed on 3 August 2024)]. Available online: https://www.hoffmann-group.com/GB/en/houk/
Geometrical Product Specifications (GPS)—Surface Texture: Areal Part 2: Terms, Definitions and Surface Texture Parameters. ISO; Geneva, Switzerland: 2021.
Ratajczyk E. Tomografia komputerowa CT w zastosowaniach przemysłowych. Cz. I Idea pomiarów, główne zespoły i ich funkcje. Mechanik. 2011;2:111–117.
Gnatowski A., Koszkul J. Influence of Soaking on Given Physical Properties and Structure of PA/PP Mixtures. J. Polym. Eng. 2005;25:149–164. doi: 10.1515/POLYENG.2005.25.2.149. DOI
Uematsu H., Kawasaki T., Koizumi K., Yamaguchi A., Sugihara S., Yamane M., Kawabe K., Ozaki Y., Tanoue S. Relationship between crystalline structure of polyamide 6 within carbon fibers and their mechanical properties studied using Micro-Raman spectroscopy. Polymer. 2021;223:123711. doi: 10.1016/j.polymer.2021.123711. DOI