• This record comes from PubMed

Thermomechanical and Structural Analysis of Manufactured Composite Based on Polyamide and Aluminum Recycled Material

. 2024 Sep 27 ; 16 (19) : . [epub] 20240927

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The paper presents an analysis of the filler's effect on the machining process and on changes in the thermomechanical properties of polymer composites based on aluminum chips. Composite research samples with a polymer matrix in the form of polyamide 6 were made by the pressing method. Comparative studies were carried out on the changes in thermomechanical properties and structure of the obtained molders with different filler contents and different fractions after the machining process. In order to determine the changes in thermal and mechanical properties, analysis was carried out using the differential scanning calorimetry (DSC) method, thermal analysis of dynamic mechanical properties (DMTA) and a detailed stereometric analysis of the surface. After mechanical processing, roughness amplitude parameters and volumetric functional parameters were determined. In order to analyze the structure, tomographic examinations of the manufactured composite were conducted. In relation to the polymer matrix, a significant increase in the storage modulus of the composites was noted in the entire temperature range of the study. An increase in the enthalpy of melting of the matrix was noted in composites with a lower filler content and a shift in the melting range of the crystalline phase. Significant differences were noted in the study of the composite surfaces in the case of using fillers obtained after machining with different fractions. The dependencies of the functional and amplitude parameters of the surfaces after machining of composite samples prove the change in the functional properties of the surface. The use of aluminum chips in the composite significantly changed the surface geometry.

See more in PubMed

De Fazio D., Boccarusso L., Formisano A., Viscusi A., Durante M. A Review on the Recycling Technologies of Fibre-Reinforced Plastic (FRP) Materials Used in Industrial Fields. J. Mar. Sci. Eng. 2023;11:851. doi: 10.3390/jmse11040851. DOI

Jung H., Shin G., Kwak H., Hao T.M., Jegal J., Kim H.J., Jeon H., Park J., Oh D.X. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. Chemosphere. 2023;320:138089. doi: 10.1016/j.chemosphere.2023.138089. PubMed DOI

Balu R., Dutta N.K., Roy Choudhury N. Plastic Waste Upcycling: A Sustainable Solution for Waste Management, Product Development, and Circular Economy. Polymers. 2022;14:4788. doi: 10.3390/polym14224788. PubMed DOI PMC

Kumar N.G., Rajesh K., Rama M., Durga Rao K.P., Bharath S., Manikanta J.E. A review on mechanical properties of hybrid polymer composites. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.05.059. in press . DOI

Arunachalam S.J., Saravanan R. Study on filler reinforcement in polymer matrix composites—A review. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.06.102. in press . DOI

Huseynov O., Hasanov S., Fidan I. Influence of the matrix material on the thermal properties of the short carbon fiber reinforced polymer composites manufactured by material extrusion. J. Manuf. Process. 2023;92:521–533. doi: 10.1016/j.jmapro.2023.02.055. DOI

Pandit P.P., Liu C., Iacono S., Corti G., Hu Y. Microstructural Characterization and Property of Carbon Fiber Reinforced High-Density Polyethylene Composites Fabricated by Fused Deposition Modeling. Materials. 2023;16:180. doi: 10.3390/ma16010180. PubMed DOI PMC

Pinto G., Jiménez-Martín A. Conducting aluminium-filled nylon 6 composites. Polym. Compos. 2001;22:65–70. doi: 10.1002/pc.10517. DOI

Osman A.F., Mariatti M. Properties of Aluminum Filled Polypropylene Composites. Polym. Polym. Compos. 2006;14:623–633. doi: 10.1177/096739110601400608. DOI

Schricker K., Bergmann J.P., Hopfeld M., Spie L. Effect of thermoplastic morphology on mechanical properties in laser-assisted joining of polyamide 6 with aluminum. Weld World. 2021;65:699–711. doi: 10.1007/s40194-020-01048-1. DOI

Dan-asabe B., Adeotio O., Samuel B.O. Development, characterization, and modeling of aluminum chips-gabbro filler polystyrene hybrid composite using mixture design. Mater. Chem. Phys. 2023;297:127235. doi: 10.1016/j.matchemphys.2022.127235. DOI

Anis A., Elnour A.Y., Alam M.A., Al-Zahrani S.M., AlFayez F., Bashir Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers. 2020;12:2038. doi: 10.3390/polym12092038. PubMed DOI PMC

Martin M., Hanagud S., Thadhani N.N. Mechanical behavior of nickel+aluminum powder-reinforced epoxy composites. Mater. Sci. Eng. A. 2007;443:209–218. doi: 10.1016/j.msea.2006.08.106. DOI

Bishay I.K., Abd-El-Messieh S.L., Mansour S.H. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminium powder. Mater. Des. 2011;32:62–68. doi: 10.1016/j.matdes.2010.06.035. DOI

Suhas U., Shashidhara K.N., Bharath L. Mechanical Characterization of Copper and Aluminium Powder Reinforced Epoxy Polymer Composites. Int. J. Eng. Res. Technol. 2023;12 doi: 10.17577/IJERTV12IS030071. DOI

Alhamidi A., Anis A., Bashir Z., Alam M.A., Al-Zahrani S.M. Studies on the Effect of the Addition of Nano-Spherical Particles of Aluminum on the Thermal, Mechanical, and Morphological Properties of PBT–PET Blend Composites. Polymers. 2023;15:3625. doi: 10.3390/polym15173625. PubMed DOI PMC

Dasture M.D., Kelkar D.S. Aluminium-filled low-density polyethylene structural, morphological, and mechanical properties. J. Appl. Polym. Sci. 2007;106:2436–2441. doi: 10.1002/app.26847. DOI

Ananth G., Smith R.A., Kumar A.A., Dakshna S., Harsath S. Fabrication of aluminium polymer composite. Int. J. Adv. Res. Innov. Ideas Educ. 2023;9:1598–1620.

Zhou S., Hrymak A.N. Injection Molding of Polymers and Polymer Composites. Polymers. 2024;16:1796. doi: 10.3390/polym16131796. PubMed DOI PMC

Xiao K.Q., Zhang L.C. The role of viscous deformation in the machining of polymers. Int. J. Mechancial Sci. 2002;44:2317–2336. doi: 10.1016/S0020-7403(02)00178-9. DOI

Pierończyk J., Biało D. Selected problems of electrodischarge machining of aluminum matrix composites. Compos. Theory Pract. 2001;1:211–214.

Mohit H., Rangappa M.S., Siengchin S., Gorbatyuk S., Manimaran P., Kumari C.A., Khan A., Doddamani M. A comprehensive review on performance and machinability of plant fiber polymer composites. Polym. Compos. 2022;43:608. doi: 10.1002/pc.26403. DOI

Sheikh-Ahmad J., Davim J.P. 5—Tool wear in machining processes for composites. In: Hocheng H., editor. Woodhead Publishing Series in Composites Science and Engineering, Machining Technology for Composite Materials. Woodhead Publishing; Cambridge, UK: 2012. pp. 116–153. DOI

Ahmad J. Machining of Polymer Composites. Springer; New York, NY, USA: 2009.

Wang D., Onawumi P.Y., Ismail S.O., Dhakal H.N., Popov I., Silberschmidt V.V., Roy A. Machinability of natural-fibre-reinforced polymer composites: Conventional vs ultrasonically-assisted machining. Compos. Part A Appl. Sci. Manuf. 2019;119:188–195. doi: 10.1016/j.compositesa.2019.01.028. DOI

Teti R. Machining of Composite Materials. CIRP Ann. 2002;51:611–634. doi: 10.1016/S0007-8506(07)61703-X. DOI

Pecat O., Rentsch R., Brinksmeier E. Influence of Milling Process Parameters on the Surface Integrity of CFRP; Proceedings of the Fifth CIRP Conference on High Performance Cutting 2012; Zurich, Switzerland. 4–7 June 2012; pp. 466–470. DOI

Han X., Xu D., Axinte D., Liao Z., Li H.N. On understanding the specific cutting mechanisms governing the workpiece surface integrity in metal matrix composites machining. J. Mater. Process. Technol. 2021;88:116875. doi: 10.1016/j.jmatprotec.2020.116875. DOI

Dvořáčková Š., Kroisová D., Knápek T., Váňa M. Effect of Cutting Conditions on the Size of Dust Particles Generated during Milling of Carbon Fibre-Reinforced Composite Materials. Polymers. 2024;16:2559. doi: 10.3390/polym16182559. PubMed DOI PMC

Aluminium and Aluminium Alloys—Chemical Composition and form of Wrought Products—Part 1: Numerical Designation System. European Committee for Standaridization; Brussels, Belgium: 2004.

Differential Scanning Calorimetry (DSC)—Part 3: De-Termination of Temperature and Enthalpy of Melting and Crystallization. ISO; Warsaw, Poland: 2018.

Plastics—Determination of Dynamic Mechanical Properties—Part 1: General Principles. International Organization for Standardization; Geneva, Switzerland: 2019.

Tool shanks with 7/24 taper for automatic tool changers: Part 1: Dimensions and designation of shanks of forms A, AD, AF, U, UD and UF. ISO; Geneva, Switzerland: 2007.

Product Catalog, Hoffmann-Group. [(accessed on 3 August 2024)]. Available online: https://www.hoffmann-group.com/GB/en/houk/

Geometrical Product Specifications (GPS)—Surface Texture: Areal Part 2: Terms, Definitions and Surface Texture Parameters. ISO; Geneva, Switzerland: 2021.

Ratajczyk E. Tomografia komputerowa CT w zastosowaniach przemysłowych. Cz. I Idea pomiarów, główne zespoły i ich funkcje. Mechanik. 2011;2:111–117.

Gnatowski A., Koszkul J. Influence of Soaking on Given Physical Properties and Structure of PA/PP Mixtures. J. Polym. Eng. 2005;25:149–164. doi: 10.1515/POLYENG.2005.25.2.149. DOI

Uematsu H., Kawasaki T., Koizumi K., Yamaguchi A., Sugihara S., Yamane M., Kawabe K., Ozaki Y., Tanoue S. Relationship between crystalline structure of polyamide 6 within carbon fibers and their mechanical properties studied using Micro-Raman spectroscopy. Polymer. 2021;223:123711. doi: 10.1016/j.polymer.2021.123711. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...