CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27629066
PubMed Central
PMC5024113
DOI
10.1038/srep33308
PII: srep33308
Knihovny.cz E-zdroje
- MeSH
- centromera genetika MeSH
- histony genetika MeSH
- houby genetika MeSH
- kodon genetika MeSH
- lidé MeSH
- meióza genetika MeSH
- molekulární evoluce * MeSH
- protein CENP-A genetika MeSH
- rostlinné proteiny genetika MeSH
- sekvenční seřazení MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CENPA protein, human MeSH Prohlížeč
- histony MeSH
- kodon MeSH
- protein CENP-A MeSH
- rostlinné proteiny MeSH
The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive.
Zobrazit více v PubMed
Malik H. S. & Henikoff S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157, 1293–1298 (2001). PubMed PMC
Talbert P. B., Masuelli R., Tyagi A. P., Comai L. & Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14, 1053–1066 (2002). PubMed PMC
Cooper J. L. & Henikoff S. Adaptive evolution of the histone fold domain in centromeric histones. Mol. Biol. Evol. 21, 1712–1718 (2004). PubMed
Hirsch C. D., Wu Y., Yan H. & Jiang J. Lineage-Specific Adaptive Evolution of the Centromeric Protein CENH3 in Diploid and Allotetraploid Oryza Species. Mol. Biol. Evol. 26, 2877–2885 (2009). PubMed
Schueler M. G., Swanson W., Thomas P. J., Green E. D. & Progra N. C. S. Adaptive Evolution of Foundation Kinetochore Proteins in Primates. Mol. Biol. Evol. 27, 1585–1597 (2010). PubMed PMC
Zedek F. & Bureš P. Evidence for Centromere Drive in the Holocentric Chromosomes of Caenorhabditis. Plos One 7, e30496 (2012). PubMed PMC
Beck E. A. & Llopart A. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup. Sci Rep 5, 17197 (2015). PubMed PMC
Neumann P. et al.. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species. Mol Biol Evol, doi: 10.1093/molbev/msv070 (2015). PubMed DOI PMC
Henikoff S., Ahmad K. & Malik H. S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001). PubMed
Malik H. S. & Henikoff S. Major Evolutionary Transitions in Centromere Complexity. Cell 138, 1067–1082 (2009). PubMed
Pardo-Manuel de Villena F. & Sapienza C. Female meiosis drives karyotypic evolution in mammals. Genetics 159, 1179–1189 (2001). PubMed PMC
Yoshida K. & Kitano J. The contribution of female meiotic drive to the evolution of neo-sex chromosomes. Evolution 66, 3198–3208 (2012). PubMed PMC
Molina W. F., Martinez P. A., Bertollo L. A. & Bidau C. J. Evidence for meiotic drive as an explanation for karyotype changes in fishes. Mar. Genomics 15, 29–34 (2014). PubMed
Roach K. C., Ross B. D. & Malik H. S. Adaptive Evolution of Centromeric Proteins. ELS, doi: 10.1002/9780470015902.a0022868. DOI
Talbert P. B., Bryson T. D. & Henikoff S. Adaptive evolution of centromere proteins in plants and animals. J. Biol. 3, 18 (2004). PubMed PMC
Baker R. E. & Rogers K. Phylogenetic Analysis of Fungal Centromere H3 Proteins. Genetics 174, 1481–1492 (2006). PubMed PMC
Talbert P. B., Bayes J. J. & Henikoff S. Evolution of centromeres and kinetochores: A two-part fugue in The Kinetochore (eds De Wulf P. & Earnshaw W. C.) 193–230 (Springer: Berlin, , 2008).
Elde N. C., Roach K. C., Yao M. C. & Malik H. S. Absence of positive selection on centromeric histones in Tetrahymena suggests unsuppressed centromere: drive in lineages lacking male meiosis. J. Mol. Evol. 72, 510–520 (2011). PubMed PMC
Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J. & Wheeler D. L. GenBank. Nucleic Acids Research 33, (Database issue), D34–D38 (2005). PubMed PMC
Grigoriev I. V. et al.. The Genome Portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 40, (Database issue), D26–D32 (2012). PubMed PMC
Nordberg H. et al.. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014). PubMed PMC
Redelings B. D. & Suchard M. A. Joint Bayesian Estimation of Alignment and Phylogeny. Syst. Biol. 54, 401–418 (2005). PubMed
Redelings B. D. Erasing Errors Due to Alignment Ambiguity When Estimating Positive Selection. Mol. Biol. Evol. 31, 1979–1993 (2014). PubMed PMC
Kosakovsky Pond S. L. et al.. A random effects branch-site model for detecting episodic diversifying selection. Mol. Biol. Evol. 28, 3033–3043 (2011). PubMed PMC
Murrell B. et al.. Detecting individual sites subject to episodic diversifying selection. PLoS Genetics 8, e1002764 (2012). PubMed PMC
Delport W., Poon A. F., Frost S. D. & Kosakovsky Pond S. L. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26, 2455–2457 (2010). PubMed PMC
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). PubMed
Hedges S. B., Dudley J. & Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006). PubMed
Hedges S. B., Marin J., Suleski M., Paymer M. & Kumar S. Tree of Life Reveals Clock-Like Speciation and Diversification. Mol Biol Evol 32, 835–845 (2015). PubMed PMC
Orme D. et al.. Caper: Comparative Analyses of Phylogenetics and Evolution in R. URL: http://cran.r-project.org/web/packages/caper/caper.pdf (2012) (Date of access: 01/03/2016).
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL: http://www.R-project.org/ (2013).
Yang Z. & dos Reis M. Statistical properties of the branch-site test of positive selection. Mol Biol Evol 28, 1217–1228 (2011). PubMed
Schneider K. L., Xie Z., Wolfgruber T. K. & Presting G. G. Inbreeding drives maize centromere evolution. PNAS 113, E987–E996 (2016). PubMed PMC
Bensasson D., Zarowiecki M., Burt A. & Koufopanou V. Rapid evolution of yeast centromeres in the absence of drive. Genetics 178, 2161–2167 (2008). PubMed PMC
Bensasson D. Evidence for a high mutation rate at rapidly evolving yeast centromeres. BMC Evol Biol 11, 211 (2011). PubMed PMC
Bureš P. & Zedek F. Holokinetic drive: Centromere drive in chromosomes without centromeres. Evolution 68, 2412–2420 (2014) PubMed
Zedek F. & Bureš P. Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive. Annals of Botany, doi: 10.1093/aob/mcw186 (in press). PubMed PMC
Centromere drive may propel the evolution of chromosome and genome size in plants
Kinetochore size scales with chromosome size in bimodal karyotypes of Agavoideae
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae