CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model

. 2016 Sep 15 ; 6 () : 33308. [epub] 20160915

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27629066

The centromere drive model explaining rapid evolution of eukaryotic centromeres predicts higher frequency of positive selection acting on centromeric histone H3 (CenH3) in clades with asymmetric meiosis compared to the clades with only symmetric meiosis. However, despite the impression one might get from the literature, this key prediction of the centromere drive model has not only never been confirmed, but it has never been tested, because all the previous studies dealt only with the presence or absence instead of the frequency of positive selection. To provide evidence for or against different frequencies of positively selected CenH3 in asymmetrics and symmetrics, we have inferred the selective pressures acting on CenH3 in seventeen eukaryotic clades, including plants, animals, fungi, ciliates and apicomplexa, using codon-substitution models, and compared the inferred frequencies between asymmetrics and symmetrics in a quantitative manner. We have found that CenH3 has been evolving adaptively much more frequently in clades with asymmetric meiosis compared with clades displaying only symmetric meiosis which confirms the prediction of centromere drive model. Our findings indicate that the evolution of asymmetric meiosis required CenH3 to evolve adaptively more often to counterbalance the negative consequences of centromere drive.

Zobrazit více v PubMed

Malik H. S. & Henikoff S. Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157, 1293–1298 (2001). PubMed PMC

Talbert P. B., Masuelli R., Tyagi A. P., Comai L. & Henikoff S. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14, 1053–1066 (2002). PubMed PMC

Cooper J. L. & Henikoff S. Adaptive evolution of the histone fold domain in centromeric histones. Mol. Biol. Evol. 21, 1712–1718 (2004). PubMed

Hirsch C. D., Wu Y., Yan H. & Jiang J. Lineage-Specific Adaptive Evolution of the Centromeric Protein CENH3 in Diploid and Allotetraploid Oryza Species. Mol. Biol. Evol. 26, 2877–2885 (2009). PubMed

Schueler M. G., Swanson W., Thomas P. J., Green E. D. & Progra N. C. S. Adaptive Evolution of Foundation Kinetochore Proteins in Primates. Mol. Biol. Evol. 27, 1585–1597 (2010). PubMed PMC

Zedek F. & Bureš P. Evidence for Centromere Drive in the Holocentric Chromosomes of Caenorhabditis. Plos One 7, e30496 (2012). PubMed PMC

Beck E. A. & Llopart A. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup. Sci Rep 5, 17197 (2015). PubMed PMC

Neumann P. et al.. Centromeres Off the Hook: Massive Changes in Centromere Size and Structure Following Duplication of CenH3 Gene in Fabeae Species. Mol Biol Evol, doi: 10.1093/molbev/msv070 (2015). PubMed DOI PMC

Henikoff S., Ahmad K. & Malik H. S. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science 293, 1098–1102 (2001). PubMed

Malik H. S. & Henikoff S. Major Evolutionary Transitions in Centromere Complexity. Cell 138, 1067–1082 (2009). PubMed

Pardo-Manuel de Villena F. & Sapienza C. Female meiosis drives karyotypic evolution in mammals. Genetics 159, 1179–1189 (2001). PubMed PMC

Yoshida K. & Kitano J. The contribution of female meiotic drive to the evolution of neo-sex chromosomes. Evolution 66, 3198–3208 (2012). PubMed PMC

Molina W. F., Martinez P. A., Bertollo L. A. & Bidau C. J. Evidence for meiotic drive as an explanation for karyotype changes in fishes. Mar. Genomics 15, 29–34 (2014). PubMed

Roach K. C., Ross B. D. & Malik H. S. Adaptive Evolution of Centromeric Proteins. ELS, doi: 10.1002/9780470015902.a0022868. DOI

Talbert P. B., Bryson T. D. & Henikoff S. Adaptive evolution of centromere proteins in plants and animals. J. Biol. 3, 18 (2004). PubMed PMC

Baker R. E. & Rogers K. Phylogenetic Analysis of Fungal Centromere H3 Proteins. Genetics 174, 1481–1492 (2006). PubMed PMC

Talbert P. B., Bayes J. J. & Henikoff S. Evolution of centromeres and kinetochores: A two-part fugue in The Kinetochore (eds De Wulf P. & Earnshaw W. C.) 193–230 (Springer: Berlin, , 2008).

Elde N. C., Roach K. C., Yao M. C. & Malik H. S. Absence of positive selection on centromeric histones in Tetrahymena suggests unsuppressed centromere: drive in lineages lacking male meiosis. J. Mol. Evol. 72, 510–520 (2011). PubMed PMC

Benson D. A., Karsch-Mizrachi I., Lipman D. J., Ostell J. & Wheeler D. L. GenBank. Nucleic Acids Research 33, (Database issue), D34–D38 (2005). PubMed PMC

Grigoriev I. V. et al.. The Genome Portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 40, (Database issue), D26–D32 (2012). PubMed PMC

Nordberg H. et al.. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014). PubMed PMC

Redelings B. D. & Suchard M. A. Joint Bayesian Estimation of Alignment and Phylogeny. Syst. Biol. 54, 401–418 (2005). PubMed

Redelings B. D. Erasing Errors Due to Alignment Ambiguity When Estimating Positive Selection. Mol. Biol. Evol. 31, 1979–1993 (2014). PubMed PMC

Kosakovsky Pond S. L. et al.. A random effects branch-site model for detecting episodic diversifying selection. Mol. Biol. Evol. 28, 3033–3043 (2011). PubMed PMC

Murrell B. et al.. Detecting individual sites subject to episodic diversifying selection. PLoS Genetics 8, e1002764 (2012). PubMed PMC

Delport W., Poon A. F., Frost S. D. & Kosakovsky Pond S. L. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26, 2455–2457 (2010). PubMed PMC

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007). PubMed

Hedges S. B., Dudley J. & Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006). PubMed

Hedges S. B., Marin J., Suleski M., Paymer M. & Kumar S. Tree of Life Reveals Clock-Like Speciation and Diversification. Mol Biol Evol 32, 835–845 (2015). PubMed PMC

Orme D. et al.. Caper: Comparative Analyses of Phylogenetics and Evolution in R. URL: http://cran.r-project.org/web/packages/caper/caper.pdf (2012) (Date of access: 01/03/2016).

R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. URL: http://www.R-project.org/ (2013).

Yang Z. & dos Reis M. Statistical properties of the branch-site test of positive selection. Mol Biol Evol 28, 1217–1228 (2011). PubMed

Schneider K. L., Xie Z., Wolfgruber T. K. & Presting G. G. Inbreeding drives maize centromere evolution. PNAS 113, E987–E996 (2016). PubMed PMC

Bensasson D., Zarowiecki M., Burt A. & Koufopanou V. Rapid evolution of yeast centromeres in the absence of drive. Genetics 178, 2161–2167 (2008). PubMed PMC

Bensasson D. Evidence for a high mutation rate at rapidly evolving yeast centromeres. BMC Evol Biol 11, 211 (2011). PubMed PMC

Bureš P. & Zedek F. Holokinetic drive: Centromere drive in chromosomes without centromeres. Evolution 68, 2412–2420 (2014) PubMed

Zedek F. & Bureš P. Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive. Annals of Botany, doi: 10.1093/aob/mcw186 (in press). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...