Evidence for centromere drive in the holocentric chromosomes of Caenorhabditis

. 2012 ; 7 (1) : e30496. [epub] 20120123

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22291967

In monocentric organisms with asymmetric meiosis, the kinetochore proteins, such as CENH3 and CENP-C, evolve adaptively to counterbalance the deleterious effects of centromere drive, which is caused by the expansion of centromeric satellite repeats. The selection regimes that act on CENH3 and CENP-C genes have not been analyzed in organisms with holocentric chromosomes, although holocentrism is speculated to have evolved to suppress centromere drive. We tested both CENH3 and CENP-C for positive selection in several species of the holocentric genus Caenorhabditis using the maximum likelihood approach and sliding-window analysis. Although CENP-C did not show any signs of positive selection, positive selection has been detected in the case of CENH3. These results support the hypothesis that centromere drive occurs in Nematoda, at least in the telokinetic meiosis of Caenorhabditis.

Erratum v

PubMed

Zobrazit více v PubMed

Dernburg AF. Here, there, and everywhere: Kinetochore function on holocentric chromosomes. Journal of Cell Biology. 2001;153:F33–F38. PubMed PMC

Jiang JM, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends in Plant Science. 2003;8:570–575. PubMed

Cheng ZK, Dong FG, Langdon T, Shu OY, Buell CR, et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002;14:1691–1704. PubMed PMC

Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nature Structural Biology. 2003;10:882–891. PubMed

Sullivan BA. The Centromere. In: De Wulf P, Earnshaw WC, editors. The Kinetochore: From Molecular Discoveries to Cancer Therapy. Springer New York; 2009. pp. 45–76.

Talbert PB, Bryson TD, Henikoff S. Adaptive evolution of centromere proteins in plants and animals. Journal of biology. 2004;3 PubMed PMC

Talbert PB, Bayes JJ, Henikoff S. Evolution of centromeres and kinetochores: A two-part fugue. In: De Wulf P, Earnshaw WC, editors. The Kinetochore: From Molecular Discoveries to Cancer Therapy. Springer, New York; 2009. pp. 193–229.

Henikoff S, Ahmad K, Malik HS. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. PubMed

Fishman L, Saunders A. Centromere-Associated Female Meiotic Drive Entails Male Fitness Costs in Monkeyflowers. Science. 2008;322:1559–1562. PubMed

Rutkowska J, Badyaev AV. Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Philosophical Transactions of the Royal Society B-Biological Sciences. 2008;363:1675–1686. PubMed PMC

Malik HS, Henikoff S. Major Evolutionary Transitions in Centromere Complexity. Cell. 2009;138:1067–1082. PubMed

Baker RE, Rogers K. Phylogenetic analysis of fungal centromere H3 proteins. Genetics. 2006;174:1481–1492. PubMed PMC

Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, et al. WormBase: a comprehensive resource for nematode research. Nucleic Acids Research. 2010;38:D463–D467. PubMed PMC

Loytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:10557–10562. PubMed PMC

Loytynoja A, Goldman N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008;320:1632–1635. PubMed

Penn O, Privman E, Ashkenazy H, Landan G, Graur D, et al. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research. 2010;38:W23–W28. PubMed PMC

Penn O, Privman E, Landan G, Graur D, Pupko T. An Alignment Confidence Score Capturing Robustness to Guide Tree Uncertainty. Molecular Biology and Evolution. 2010;27:1759–1767. PubMed PMC

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 2011 PubMed PMC

Comeron JM. K-estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics. 1999;15:763–764. PubMed

Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Molecular biology and evolution. 2007;24:1586–1591. PubMed

Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, et al. Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:9003–9008. PubMed PMC

Vermaak D, Hayden HS, Henikoff S. Centromere targeting element within the histone fold domain of Cid. Molecular and Cellular Biology. 2002;22:7553–7561. PubMed PMC

Malik HS, Vermaak D, Henikoff S. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:1449–1454. PubMed PMC

Dawe RK, Henikoff S. Centromeres put epigenetics in the driver's seat. Trends in Biochemical Sciences. 2006;31:662–669. PubMed

Goday C, Pimpinelli S. Centromere organization in meiotic chromosomes of Parascaris univalens. Chromosoma. 1989;98:160–166. PubMed

Dumont J, Oegema K, Desai A. A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nature Cell Biology. 2010;12:894–901. PubMed PMC

Niedermaier J, Moritz KB. Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and programmed breakdown of compound chromosomes. Chromosoma. 2000;109:439–452. PubMed

Surzycki SA, Belknap WR. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:245–249. PubMed PMC

Stein LD, Bao ZR, Blasiar D, Blumenthal T, Brent MR, et al. The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics. Plos Biology. 2003;1:166–192. PubMed PMC

Monen J, Maddox PS, Hyndman F, Oegema K, Desai A. Differential role of CENP-A in the segregation of holocentric C-elegans chromosomes during meiosis and mitosis. Nature Cell Biology. 2005;7:1248–1255. PubMed

Chan RC, Severson AF, Meyer BJ. Condensin restructures chromosomes in preparation for meiotic divisions. Journal of Cell Biology. 2004;167:613–625. PubMed PMC

Shakes DC, Wu JC, Sadler PL, LaPrade K, Moore LL, et al. Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans. Plos Genetics. 2009;5 PubMed PMC

Albertson DG, Rose AM, Villeneuve AM. Chromosome Organization, Mitosis, and Meiosis. 1997. C elegans II: Cold Spring Harbor Laboratory Press. PubMed

Haizel T, Lim YK, Leitch AR, Moore G. Molecular analysis of holocentric centromeres of Luzula species. Cytogenetic and Genome Research. 2005;109:134–143. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...