Evidence for centromere drive in the holocentric chromosomes of Caenorhabditis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22291967
PubMed Central
PMC3264583
DOI
10.1371/journal.pone.0030496
PII: PONE-D-11-18102
Knihovny.cz E-zdroje
- MeSH
- Caenorhabditis elegans genetika metabolismus MeSH
- centromera metabolismus fyziologie MeSH
- chromozomální proteiny, nehistonové genetika metabolismus fyziologie MeSH
- chromozomy metabolismus MeSH
- geneticky modifikované organismy MeSH
- histony genetika fyziologie MeSH
- meióza genetika fyziologie MeSH
- pohyb fyziologie MeSH
- segregace chromozomů genetika fyziologie MeSH
- selekce (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- centromere protein C MeSH Prohlížeč
- chromozomální proteiny, nehistonové MeSH
- histony MeSH
In monocentric organisms with asymmetric meiosis, the kinetochore proteins, such as CENH3 and CENP-C, evolve adaptively to counterbalance the deleterious effects of centromere drive, which is caused by the expansion of centromeric satellite repeats. The selection regimes that act on CENH3 and CENP-C genes have not been analyzed in organisms with holocentric chromosomes, although holocentrism is speculated to have evolved to suppress centromere drive. We tested both CENH3 and CENP-C for positive selection in several species of the holocentric genus Caenorhabditis using the maximum likelihood approach and sliding-window analysis. Although CENP-C did not show any signs of positive selection, positive selection has been detected in the case of CENH3. These results support the hypothesis that centromere drive occurs in Nematoda, at least in the telokinetic meiosis of Caenorhabditis.
Zobrazit více v PubMed
Dernburg AF. Here, there, and everywhere: Kinetochore function on holocentric chromosomes. Journal of Cell Biology. 2001;153:F33–F38. PubMed PMC
Jiang JM, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends in Plant Science. 2003;8:570–575. PubMed
Cheng ZK, Dong FG, Langdon T, Shu OY, Buell CR, et al. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002;14:1691–1704. PubMed PMC
Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nature Structural Biology. 2003;10:882–891. PubMed
Sullivan BA. The Centromere. In: De Wulf P, Earnshaw WC, editors. The Kinetochore: From Molecular Discoveries to Cancer Therapy. Springer New York; 2009. pp. 45–76.
Talbert PB, Bryson TD, Henikoff S. Adaptive evolution of centromere proteins in plants and animals. Journal of biology. 2004;3 PubMed PMC
Talbert PB, Bayes JJ, Henikoff S. Evolution of centromeres and kinetochores: A two-part fugue. In: De Wulf P, Earnshaw WC, editors. The Kinetochore: From Molecular Discoveries to Cancer Therapy. Springer, New York; 2009. pp. 193–229.
Henikoff S, Ahmad K, Malik HS. The centromere paradox: Stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. PubMed
Fishman L, Saunders A. Centromere-Associated Female Meiotic Drive Entails Male Fitness Costs in Monkeyflowers. Science. 2008;322:1559–1562. PubMed
Rutkowska J, Badyaev AV. Meiotic drive and sex determination: molecular and cytological mechanisms of sex ratio adjustment in birds. Philosophical Transactions of the Royal Society B-Biological Sciences. 2008;363:1675–1686. PubMed PMC
Malik HS, Henikoff S. Major Evolutionary Transitions in Centromere Complexity. Cell. 2009;138:1067–1082. PubMed
Baker RE, Rogers K. Phylogenetic analysis of fungal centromere H3 proteins. Genetics. 2006;174:1481–1492. PubMed PMC
Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, et al. WormBase: a comprehensive resource for nematode research. Nucleic Acids Research. 2010;38:D463–D467. PubMed PMC
Loytynoja A, Goldman N. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America. 2005;102:10557–10562. PubMed PMC
Loytynoja A, Goldman N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008;320:1632–1635. PubMed
Penn O, Privman E, Ashkenazy H, Landan G, Graur D, et al. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research. 2010;38:W23–W28. PubMed PMC
Penn O, Privman E, Landan G, Graur D, Pupko T. An Alignment Confidence Score Capturing Robustness to Guide Tree Uncertainty. Molecular Biology and Evolution. 2010;27:1759–1767. PubMed PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 2011 PubMed PMC
Comeron JM. K-estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics. 1999;15:763–764. PubMed
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Molecular biology and evolution. 2007;24:1586–1591. PubMed
Kiontke K, Gavin NP, Raynes Y, Roehrig C, Piano F, et al. Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proceedings of the National Academy of Sciences of the United States of America. 2004;101:9003–9008. PubMed PMC
Vermaak D, Hayden HS, Henikoff S. Centromere targeting element within the histone fold domain of Cid. Molecular and Cellular Biology. 2002;22:7553–7561. PubMed PMC
Malik HS, Vermaak D, Henikoff S. Recurrent evolution of DNA-binding motifs in the Drosophila centromeric histone. Proceedings of the National Academy of Sciences of the United States of America. 2002;99:1449–1454. PubMed PMC
Dawe RK, Henikoff S. Centromeres put epigenetics in the driver's seat. Trends in Biochemical Sciences. 2006;31:662–669. PubMed
Goday C, Pimpinelli S. Centromere organization in meiotic chromosomes of Parascaris univalens. Chromosoma. 1989;98:160–166. PubMed
Dumont J, Oegema K, Desai A. A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nature Cell Biology. 2010;12:894–901. PubMed PMC
Niedermaier J, Moritz KB. Organization and dynamics of satellite and telomere DNAs in Ascaris: implications for formation and programmed breakdown of compound chromosomes. Chromosoma. 2000;109:439–452. PubMed
Surzycki SA, Belknap WR. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:245–249. PubMed PMC
Stein LD, Bao ZR, Blasiar D, Blumenthal T, Brent MR, et al. The genome sequence of Caenorhabditis briggsae: A platform for comparative genomics. Plos Biology. 2003;1:166–192. PubMed PMC
Monen J, Maddox PS, Hyndman F, Oegema K, Desai A. Differential role of CENP-A in the segregation of holocentric C-elegans chromosomes during meiosis and mitosis. Nature Cell Biology. 2005;7:1248–1255. PubMed
Chan RC, Severson AF, Meyer BJ. Condensin restructures chromosomes in preparation for meiotic divisions. Journal of Cell Biology. 2004;167:613–625. PubMed PMC
Shakes DC, Wu JC, Sadler PL, LaPrade K, Moore LL, et al. Spermatogenesis-Specific Features of the Meiotic Program in Caenorhabditis elegans. Plos Genetics. 2009;5 PubMed PMC
Albertson DG, Rose AM, Villeneuve AM. Chromosome Organization, Mitosis, and Meiosis. 1997. C elegans II: Cold Spring Harbor Laboratory Press. PubMed
Haizel T, Lim YK, Leitch AR, Moore G. Molecular analysis of holocentric centromeres of Luzula species. Cytogenetic and Genome Research. 2005;109:134–143. PubMed
Holocentric Chromosomes Probably Do Not Prevent Centromere Drive in Cyperaceae
CenH3 evolution reflects meiotic symmetry as predicted by the centromere drive model
Flow cytometry may allow microscope-independent detection of holocentric chromosomes in plants