Soil nutrient status of KwaZulu-Natal savanna and grassland biomes causes variation in cytokinin functional groups and their levels in above-ground and underground parts of three legumes
Status PubMed-not-MEDLINE Jazyk angličtina Země Indie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34220044
PubMed Central
PMC8212235
DOI
10.1007/s12298-021-01021-2
PII: 1021
Knihovny.cz E-zdroje
- Klíčová slova
- Biomass, Fabaceae, Nitrogen fixation, Nodulation, Phytohormones, Rhizobia,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Cytokinins (CKs) are involved in several developmental stages in the life-cycle of plants. The CK content in plants and their respective organs are susceptible to changes under different environmental conditions. In the current study, we profiled the CK content in the above and underground organs of three legumes (Lessertia frutescens, Mucuna pruriens and Pisum sativum) grown in soils collected from four locations (Ashburton, Bergville, Hluhluwe and Izingolweni) in KwaZulu-Natal province, South Africa. The quantified CK contents in the three legumes were categorized on the basis of their side chains (isoprenoid, aromatic and furfural) and modifications (e.g. free bases and glucosides). Legume and soil types as well as their interaction significantly influenced the concentrations of CKs. Lessertia frutescens, Mucuna pruriens and Pisum sativum had CK content that ranged from 124-653, 170-670 and 69-595 pmol/g DW, respectively. Substantial quantity (> 600 pmol/g DW) of CK were observed in plants grown in Bergville (above-ground part of Lessertia frutescens) and Izingolweni (underground part of Mucuna pruriens) soils. A total of 28 CK derivatives observed in the legumes comprised of isoprenoid (22), aromatic (5) and furfural (1) side-chain CKs. However, the 16 CK derivatives in Mucuna pruriens were isoprenoid-type based on the side-chain. Generally, a higher ratio of cis-zeatin (cZ) relative to the trans-zeatin (tZ) was evident in the above-ground part of Lessertia frutescens and Pisum sativum for the four soil treatments. In terms of functional and physiological importance of the CKs, the free bases (active form) and ribosides (translocation form) were the most abundant CK in Lessertia frutescens and Pisum sativum. However, N-glucoside, a deactivation/detoxicification product was the most dominant CK in Mucuna pruriens from Hluhluwe and Izingolweni soils. The total CKs in the underground parts of the legumes had a positive significant correlation with the total phosphorus and nitrogen content in the plant as well as the soil nitrogen. Overall, the CK profiles of the legumes were strongly influenced by the soil types. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01021-2.
Zobrazit více v PubMed
Adams MA, Buchmann N, Sprent J, Buckley TN, Turnbull TL. Crops, nitrogen, water: are legumes friend, foe, or misunderstood ally? Trends Plant Sci. 2018;23:539–550. doi: 10.1016/j.tplants.2018.02.009. PubMed DOI
Aremu AO, Bairu MW, Szüčová L, Doležal K, Finnie JF, Van Staden J. Assessment of the role of meta-topolins on in vitro produced phenolics and acclimatization competence of micropropagated ‘Williams’ banana. Acta Physiol Plant. 2012;34:2265–2273. doi: 10.1007/s11738-012-1027-6. DOI
Argueso CT, Ferreira FJ, Kieber JJ. Environmental perception avenues: the interaction of cytokinin and environmental response pathways. Plant Cell Environ. 2009;32:1147–1160. doi: 10.1111/j.1365-3040.2009.01940.x. PubMed DOI
Barciszewski J, Massino F, Clark BFC. Kinetin—a multiactive molecule. Int J Biol Macromol. 2007;40:182–192. doi: 10.1016/j.ijbiomac.2006.06.024. PubMed DOI
Biswas PK. Identification of a kinetin-like substance from pea seedlings, Pisum sativum. Nature. 1964;204:297–298. doi: 10.1038/204297a0. DOI
Černý M, Dyčka F, Bobál'ová J, Brzobohatý B. Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. J Exp Bot. 2010;62:921–937. doi: 10.1093/jxb/erq322. PubMed DOI PMC
Chaves das Neves HJ, Pais MSS. Identification of a spathe regreening factor in Zantedeschia aethiopica. Biochem Biophys Res Commun. 1980;95:1387–1392. doi: 10.1016/S0006-291X(80)80051-9. PubMed DOI
Chaves Das Neves HJ, Pais MSS. A new cytokinin from the fruits of Zantedeschia aethiopica. Tetrahedron Lett. 1980;21:4387–4390. doi: 10.1016/S0040-4039(00)77865-8. DOI
Coba de la Peña T, Pueyo JJ. Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron Sustain Dev. 2012;32:65–91. doi: 10.1007/s13593-011-0024-2. DOI
Craine JM, Morrow C, Stock WD. Nutrient concentration ratios and co-limitation in South African grasslands. New Phytol. 2008;179:829–836. doi: 10.1111/j.1469-8137.2008.02513.x. PubMed DOI
Croker SJ, Gaskin P, Hedden P, MacMillan J, MacNeil KAG. Quantitative analysis of gibberellins by isotope dilution mass spectrometry: a comparison of the use of calibration curves, an isotope dilution fit program and arithmetical correction of isotope ratios. Phytochem Anal. 1994;5:74–80. doi: 10.1002/pca.2800050206. DOI
Davies PJ, Horgan R, Heald JK, McGaw BA. Endogenous cytokinins in vegetative shoots of peas. Plant Growth Regul. 1986;4:311–323. doi: 10.1007/BF00024931. DOI
Demina IV, Maity PJ, Nagchowdhury A, Ng JLP, van der Graaff E, Demchenko KN, Roitsch T, Mathesius U, Pawlowski K (2019) Accumulation of and response to auxins in roots and nodules of the actinorhizal plant Datisca glomerata compared to the model legume Medicago truncatula. Front Plant Sci 10. 10.3389/fpls.2019.01085 PubMed PMC
Dobrev PI, Kaminek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI
Downie JA. Legume nodulation. Curr Biol. 2014;24:R184–R190. doi: 10.1016/j.cub.2014.01.028. PubMed DOI
Emery RJN, Leport L, Barton JE, Turner NC, Atkins CA. cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol. 1998;117:1515–1523. doi: 10.1104/pp.117.4.1515. PubMed DOI PMC
Emery RJN, Ma Q, Atkins CA. The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol. 2000;123:1593–1604. doi: 10.1104/pp.123.4.1593. PubMed DOI PMC
Ferguson BJ, Wiebe EM, Emery RJN, Guinel FC. Cytokinin accumulation and an altered ethylene response mediate the pleiotropic phenotype of the pea nodulation mutant R50 (sym16) Can J Bot. 2005;83:989–1000. doi: 10.1139/b05-049. DOI
Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P. Evolution of cytokinin biosynthesis and degradation. J Exp Bot. 2011;62:2431–2452. doi: 10.1093/jxb/err004. PubMed DOI
Gajdošová S, Spíchal L, Kamínek M, Hoyerová K, Novák O, Dobrev PI, Galuszka P, Klíma P, Gaudinová A, Žižková E, Hanuš J, Dančák M, Trávníček B, Pešek B, Krupička M, Vaňková R, Strnad M, Motyka V. Distribution, biological activities, metabolism, and the conceivable function of cis-zeatin-type cytokinins in plants. J Exp Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI
Gaudinová A, Dobrev P, Šolcová B, Novák O, Strnad M, Friedecký D, Motyka V. The involvement of cytokinin oxidase/dehydrogenase and zeatin reductase in regulation of cytokinin levels in pea (Pisum sativum L.) leaves. J Plant Growth Regul. 2005;24:188–200. doi: 10.1007/s00344-005-0043-9. DOI
Gauthier-Coles C, White RG, Mathesius U (2019) Nodulating legumes are distinguished by a sensitivity to cytokinin in the root cortex leading to pseudonodule development. Front Plant Sci 9. 10.3389/fpls.2018.01901 PubMed PMC
Goh DM, Cosme M, Kisiala AB, Mulholland S, Said ZMF, Spíchal L, Emery RJN, Declerck S, Guinel FC (2019) A stimulatory role for cytokinin in the arbuscular mycorrhizal symbiosis of pea. Front Plant Sci 10. 10.3389/fpls.2019.00262 PubMed PMC
Hare PD, Cress WA, Van Staden J. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 1997;23:79–103. doi: 10.1023/a:1005954525087. DOI
Hluska T, Dobrev PI, Tarkowská D, Frébortová J, Zalabák D, Kopečný D, Plíhal O, Kokáš F, Briozzo P, Zatloukal M, Motyka V, Galuszka P. Cytokinin metabolism in maize: Novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. Plant Sci. 2016;247:127–137. doi: 10.1016/j.plantsci.2016.03.014. PubMed DOI
Horgan R, Hewett EW, Purse JG, Wareing PF. A new cytokinin from Populus robusta. Tetrahed Lett. 1973;14:2827–2828. doi: 10.1016/S0040-4039(01)96062-9. DOI
Huang N-K, Chern Y, Fang J-M, Lin C-I, Chen W-P, Lin Y-L. Neuroprotective principles from Gastrodia elata. J Nat Prod. 2007;70:571–574. doi: 10.1021/np0605182. PubMed DOI
Jones JMC, Clairmont L, Macdonald ES, Weiner CA, Emery RJN, Guinel FC. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels. J Exp Bot. 2015;66:4047–4059. doi: 10.1093/jxb/erv201. PubMed DOI PMC
Jones L, Martinková H, Strnad M, Hanke D. Occurrence of aromatic cytokinins in oil palm (Elaeis guineensis Jacq.) J Plant Growth Regul. 1996;15:39–49. doi: 10.1007/BF00213133. DOI
Kamínek M, Březinov A, Gaudinová A, Motyka V, Vaňková R, Zaăímalová E. Purine cytokinins: a proposal of abbreviations. Plant Growth Regul. 2000;32:253–256. doi: 10.1023/a:1010743522048. DOI
Kan L, Nie S, Hu J, Wang S, Bai Z, Wang J, Zhou Y, Jiang J, Zeng Q, Song K. Comparative study on the chemical composition, anthocyanins, tocopherols and carotenoids of selected legumes. Food Chem. 2018;260:317–326. doi: 10.1016/j.foodchem.2018.03.148. PubMed DOI
Kieber JJ, Schaller GE. Cytokinins. Arabidopsis Book. 2014;12:e0168–e0168. doi: 10.1199/tab.0168. PubMed DOI PMC
Kisiala A, Laffont C, Emery RJN, Frugier F. Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol Plant Microbe Interact. 2013;26:1225–1231. doi: 10.1094/mpmi-02-13-0054-r. PubMed DOI
Koprna R, De Diego N, Dundálková L, Spíchal L. Use of cytokinins as agrochemicals. Bioorg Med Chem. 2016;24:484–492. doi: 10.1016/j.bmc.2015.12.022. PubMed DOI
Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. J Integr Plant Biol. 2018;60:632–648. doi: 10.1111/jipb.12653. PubMed DOI
Llorach R, Favari C, Alonso D, Garcia-Aloy M, Andres-Lacueva C, Urpi-Sarda M. Comparative metabolite fingerprinting of legumes using LC-MS-based untargeted metabolomics. Food Res Int. 2019;126:108666. doi: 10.1016/j.foodres.2019.108666. PubMed DOI
Makhaye N, Valentine AJ, Tsvuura Z, Aremu AO, Magadlela A. Variable soil phosphorus effects on nitrogen nutrition, abundance and associated carbon costs of a savanna legume, Vachellia sieberiana grown in soils from varying altitudes. Aust J Bot. 2018;66:347–353. doi: 10.1071/BT18016. DOI
Manson AD, Roberts VG (2000) Analytical methods used by the soil fertility and analytical services section. KZN Agri‐report no. N/A/2001/04, Pietermaritzburg, South Africa
Matiwane SE, Aremu AO, Valentine AJ, Magadlela A. Nutritional status of KwaZulu-Natal soils affects microbe symbiosis, nitrogen utilization and growth of Vigna radiata (L.) R. Walczak South Afr J Bot. 2019;126:115–120. doi: 10.1016/j.sajb.2019.06.007. DOI
Mncwangi NP, Viljoen AM. Quantitative variation of amino acids in Sutherlandia frutescens (Cancer bush)—towards setting parameters for quality control. S Afr J Bot. 2012;82:46–52. doi: 10.1016/j.sajb.2012.06.009. DOI
Moyo M, Aremu AO, Van Staden J. Medicinal plants: An invaluable, dwindling resource in sub-Saharan Africa. J Ethnopharmacol. 2015;174:595–606. doi: 10.1016/j.jep.2015.04.034. PubMed DOI
Müller FL, Raitt LM, Chimphango SBM, Samuels MI, Cupido CF, Boatwright JS, Knight R, Trytsman M. Prioritisation of native legume species for further evaluation as potential forage crops in water-limited agricultural systems in South Africa. Environ Monit Assess. 2017;189:512. doi: 10.1007/s10661-017-6230-x. PubMed DOI
Nandi SK, Letham DS, Palni LMS, Wong OC, Summons RE. 6-benzylaminopurine and its glycosides as naturally occurring cytokinins. Plant Sci. 1989;61:189–196. doi: 10.1016/0168-9452(89)90223-9. DOI
Plačková L, Hrdlička J, Smýkalová I, Cvečková M, Novák O, Griga M, Doležal K. Cytokinin profiling of long-term in vitro pea (Pisum sativum L.) shoot cultures. Plant Growth Regul. 2015;77:125–132. doi: 10.1007/s10725-015-0044-z. DOI
Quesnelle PE, Emery RJN. cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can J Bot. 2007;85:91–103. doi: 10.1139/b06-149. DOI
Reid D, Nadzieja M, Novák O, Heckmann AB, Sandal N, Stougaard J. Cytokinin biosynthesis promotes cortical cell responses during nodule development. Plant Physiol. 2017;175:361–375. doi: 10.1104/pp.17.00832. PubMed DOI PMC
Reverchon F, Xu Z, Blumfield TJ, Chen C, Abdullah KM. Impact of global climate change and fire on the occurrence and function of understorey legumes in forest ecosystems. J Soils Sediments. 2012;12:150–160. doi: 10.1007/s11368-011-0445-1. DOI
Rittenberg D, Foster GL. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem. 1940;133:737–744. doi: 10.1016/S0021-9258(18)73304-8. DOI
Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI
Sakakibara H, Takei K. Identification of cytokinin biosynthesis genes in Arabidopsis: A breakthrough for understanding the metabolic pathway and the regulation in higher plants. J Plant Growth Regul. 2002;21:17–23. doi: 10.1007/s003440010043. PubMed DOI
Sasaki T, Suzaki T, Soyano T, Kojima M, Sakakibara H, Kawaguchi M. Shoot-derived cytokinins systemically regulate root nodulation. Nat Commun. 2014;5:4983. doi: 10.1038/ncomms5983. PubMed DOI
Schäfer M, Brütting C, Meza-Canales ID, Großkinsky DK, Vankova R, Baldwin IT, Meldau S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J Exp Bot. 2015;66:4873–4884. doi: 10.1093/jxb/erv214. PubMed DOI PMC
Silva-Navas J, Conesa CM, Saez A, Navarro-Neila S, Garcia-Mina JM, Zamarreño AM, Baigorri R, Swarup R, del Pozo JC. Role of cis-zeatin in root responses to phosphate starvation. New Phytol. 2019;224:242–257. doi: 10.1111/nph.16020. PubMed DOI
Spíchal L. Cytokinins—recent news and views of evolutionally old molecules. Funct Plant Biol. 2012;39:267–284. doi: 10.1071/FP11276. PubMed DOI
Sprent JI, Ardley JK, James EK. From North to South: a latitudinal look at legume nodulation processes. S Afr J Bot. 2013;89:31–41. doi: 10.1016/j.sajb.2013.06.011. DOI
Stirk W, Novák O, Václavíková K, Tarkowski P, Strnad M, Van Staden J. Spatial and temporal changes in endogenous cytokinins in developing pea roots. Planta. 2008;227:1279–1289. doi: 10.1007/s00425-008-0699-z. PubMed DOI
Stirk WA, Van Staden J. Flow of cytokinins through the environment. Plant Growth Regul. 2010;62:101–116. doi: 10.1007/s10725-010-9481-x. DOI
Strnad M. The aromatic cytokinins. Physiol Plant. 1997;101:674–688. doi: 10.1111/j.1399-3054.1997.tb01052.x. DOI
Strnad M, Hanus J, Vanek T, Kamínek M, Ballantine JA, Fussell B, Hanke DE. Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench., cv. Robusta) Phytochemistry. 1997;45:213–218. doi: 10.1016/S0031-9422(96)00816-3. DOI
Svacinova J, Novak O, Plackova L, Lenobel R, Holik J, Strnad M, Dolezal K. A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods. 2012;8:17. doi: 10.1186/1746-4811-8-17. PubMed DOI PMC
Tan S, Debellé F, Gamas P, Frugier F, Brault M. Diversification of cytokinin phosphotransfer signaling genes in Medicago truncatula and other legume genomes. BMC Genomics. 2019;20:373. doi: 10.1186/s12864-019-5724-z. PubMed DOI PMC
Tanaka M, Takei K, Kojima M, Sakakibara H, Mori H. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance. Plant J. 2006;45:1028–1036. doi: 10.1111/j.1365-313X.2006.02656.x. PubMed DOI
Tarkowská D, Filek M, Biesaga-Kościelniak J, Marcińska I, Macháčková I, Krekule J, Strnad M. Cytokinins in shoot apices of Brassica napus plants during vernalization. Plant Sci. 2012;187:105–112. doi: 10.1016/j.plantsci.2012.02.003. PubMed DOI
Tarkowská D, Filek M, Krekule J, Biesaga-Kościelniak J, Marciñska I, Popielarska-Konieczna M, Strnad M. The dynamics of cytokinin changes after grafting of vegetative apices on flowering rapeseed plants. Plants. 2019;8:78. doi: 10.3390/plants8040078. PubMed DOI PMC
Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science. 2007;315:104–107. doi: 10.1126/science.1132397. PubMed DOI
Trytsman M, Westfall RH, Breytenbach PJJ, Calitz FJ, van Wyk AE. Diversity and biogeographical patterns of legumes (Leguminosae) indigenous to southern Africa. PhytoKeys. 2016;70:53–96. doi: 10.3897/phytokeys.70.9147. PubMed DOI PMC
Vanlauwe B, Hungria M, Kanampiu F, Giller KE. The role of legumes in the sustainable intensification of African smallholder agriculture: Lessons learnt and challenges for the future. Agr Ecosyst Environ. 2019;284:106583. doi: 10.1016/j.agee.2019.106583. PubMed DOI PMC
Varshney RK, Mohan SM, Gaur PM, Gangarao NVPR, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj C, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CLL. Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv. 2013;31:1120–1134. doi: 10.1016/j.biotechadv.2013.01.001. PubMed DOI
Wang J, Liu J, Ling W, Huang Q, Gao Y. Composite of PAH-degrading endophytic bacteria reduces contamination and health risks caused by PAHs in vegetables. Sci Total Environ. 2017;598:471–478. doi: 10.1016/j.scitotenv.2017.04.126. PubMed DOI
Werbrouck SPO, Van der Jeugt B, Dewitte W, Prinsen E, Van Onckelen HA, Debergh PC. The metabolism of benzyladenine in Spathiphyllum floribundum ‘Schott Petite’ in relation to acclimatisation problems. Plant Cell Rep. 1995;14:662–665. doi: 10.1007/BF00232734. PubMed DOI
Weremczuk-Jeżyna I, Kuźma Ł, Kiss AK, Grzegorczyk-Karolak I. Effect of cytokinins on shoots proliferation and rosmarinic and salvianolic acid B production in shoot culture of Dracocephalum forrestii W. W Smith. Acta Physiol Plant. 2018;40:189. doi: 10.1007/s11738-018-2763-z. DOI
Yahara T, Javadi F, Onoda Y, de Queiroz LP, Faith DP, Prado DE, Akasaka M, Kadoya T, Ishihama F, Davies S, Slik JWF, Yi T, Ma K, Bin C, Darnaedi D, Pennington RT, Tuda M, Shimada M, Ito M, Egan AN, Buerki S, Raes N, Kajita T, Vatanparast M, Mimura M, Tachida H, Iwasa Y, Smith GF, Victor JE, Nkonki T. Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon. 2013;62:249–266. doi: 10.12705/622.12. DOI
Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: Prospective way to improve agricultural traits of crop plants. Biotechnol Adv. 2013;31:97–117. doi: 10.1016/j.biotechadv.2011.12.003. PubMed DOI