A Stimulatory Role for Cytokinin in the Arbuscular Mycorrhizal Symbiosis of Pea
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30915091
PubMed Central
PMC6423060
DOI
10.3389/fpls.2019.00262
Knihovny.cz E-zdroje
- Klíčová slova
- AM symbiosis, INCYDE, PI-55, Pisum sativum L., Rhizophagus irregularis, cytokinin, legume, plant hormone,
- Publikační typ
- časopisecké články MeSH
The arbuscular mycorrhizal (AM) symbiosis between terrestrial plants and AM fungi is regulated by plant hormones. For most of these, a role has been clearly assigned in this mutualistic interaction; however, there are still contradictory reports for cytokinin (CK). Here, pea plants, the wild type (WT) cv. Sparkle and its mutant E151 (Pssym15), were inoculated with the AM fungus Rhizophagus irregularis. E151 has previously been characterized as possessing high CK levels in non-mycorrhizal (myc-) roots and exhibiting high number of fungal structures in mycorrhizal (myc+) roots. Myc- and myc+ plants were treated 7, 9, and 11 days after inoculation (DAI) with synthetic compounds known to alter CK status. WT plants were treated with a synthetic CK [6-benzylaminopurine (BAP)] or the CK degradation inhibitor INCYDE, whereas E151 plants were treated with the CK receptor antagonist PI-55. At 13 DAI, plant CK content was analyzed by mass spectrometry. The effects of the synthetic compounds on AM colonization were assessed at 28 (WT) or 35 (E151) DAI via a modified magnified intersections method. The only noticeable difference seen between myc- and myc+ plants in terms of CK content was in the levels of nucleotides (NTs). Whereas WT plants responded to fungi by lowering their NT levels, E151 plants did not. Since NTs are thought to be converted into active CK forms, this result suggests that active CKs were synthesized more effectively in WT than in E151. In general, myc+ and myc- WT plants responded similarly to INCYDE by lowering significantly their NT levels and increasing slightly their active CK levels; these responses were less obvious in BAP-treated WT plants. In contrast, the response of E151 plants to PI-55 depended on the plant mycorrhizal status. Whereas treated myc- plants exhibited high NT and low active CK levels, treated myc+ plants displayed low levels of both NTs and active CKs. Moreover, treated WT plants were more colonized than treated E151 plants. We concluded that CKs have a stimulatory role in AM colonization because increased active CK levels were paralleled with increased AM colonization while decreased CK levels corresponded to reduced AM colonization.
Biology Trent University Peterborough ON Canada
Zobrazit více v PubMed
Adolfsson L., Nziengui H., Abreu I. N., Šimura J., Beebo A., Herdean A., et al. (2017). Enhanced secondary- and hormone metabolism in leaves of arbuscular mycorrhizal Medicago truncatula. Plant Physiol. 175 392–411. 10.1104/pp.16.01509 PubMed DOI PMC
Akiyama K., Matsuzaki K.-I., Hayashi H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435 824–827. 10.1038/nature03608 PubMed DOI
Allen M. F., Moore T. S., Jr., Christensen M. (1980). Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can. J. Bot. 58 371–374. 10.1139/b80-038 DOI
Aremu A. O., Stirk W. A., Masondo N. A., Plačkova L., Novák O., Pěnčik A., et al. (2015). Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on in vitro organogenesis, phytohormone accumulation, phytochemical content and antioxidant activity. Plant Sci. 238 81–94. 10.1016/j.plantsci.2015.05.018 PubMed DOI
Ariel F., Brault-Hernandez M., Laffont C., Huault E., Brault M., Plet J., et al. (2012). Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. Plant Cell 24 3838–3852. 10.1105/tpc.112.103267 PubMed DOI PMC
Audet P., Charest C. (2010). Identification of constraining experimental-design factors in mycorrhizal pot-growth studies. J. Bot. 2010:718013 10.1155/2010/718013 DOI
Baas R., Kuiper D. (1989). Effects of vesicular-arbuscular mycorrhizal infection and phosphate on Plantago major ssp. pleiosperma in relation to internal cytokinin concentrations. Physiol. Plant 76 211–215. 10.1111/j.1399-3054.1989.tb05634.x DOI
Bedini A., Mercy L., Schneider C., Franken P., Lucic-Mercy E. (2018). Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defense triggering the endomycorrhizal symbiosis behavior. Front. Plant Sci. 9:1800. 10.3389/fpls.2018.01800 PubMed DOI PMC
Bompadre M. J., Fernández Bidondo L., Silvani V. A., Colombo R. P., Pérgola M., Pardo A. G., et al. (2015). Combined effects of arbuscular mycorrhizal fungi and exogenous cytokinins on pomegranate (Punica granatum) under two contrasting water availability conditions. Symbiosis 65 55–63. 10.1007/s13199-015-0318-2 DOI
Bravo A., Brands M., Wewer V., Dörmann P., Harrison M. J. (2017). Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. New Phytol. 214 1631–1645. 10.1111/nph.14533 PubMed DOI
Bucher M., Hause B., Krajinski F., Küster H. (2014). Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytol. 204 833–840. 10.1111/nph.12862 PubMed DOI
Coba de la Peña T., Cárcamo C. B., Almonacid L., Zaballos A., Lucas M. M., Balemenos D., et al. (2008). A cytokinin receptor homologue is induced during root nodule organogenesis and senescence in Lupinus albus L. Plant Physiol. Biochem. 46 219–225. 10.1016/j.plaphy.2007.10.021 PubMed DOI
Cosme M., Ramireddy E., Franken P., Schmülling T., Wurst S. (2016). Shoot and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. Mycorrhiza 26 709–720. 10.1007/s00572-016-0706-3 PubMed DOI PMC
Cosme M., Wurst S. (2013). Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol. Biochem. 57 436–443. 10.1016/j.soilbio.2012.09.024 DOI
Danneberg G., Latus C., Zimmer W., Hundeshagen B., Schneider-Poetsch H., Bothe H. (1992). Influence of vesicular-arbuscular mycorrhiza on phytohormones balances in maize (Zea mays L.). J. Plant Physiol. 141 33–39. 10.1016/S0176-1617(11)80848-5 DOI
Das D., Gutjahr C. (2019). “Role of phytohormones in arbuscular mycorrhiza development. Chapter 7” in The model legume Medicago truncatula ed. de Bruijn F. (Hoboken, NJ: John Wiley and Sons Ltd; ).
Declerck S., Strullu D. G., Plenchette C. (1998). Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90 579–585. 10.1080/00275514.1998.12026946 DOI
Dickson S., Smith F. A., Smith S. E. (2007). Structural differences in arbuscular mycorrhizal symbioses; more than 100 years after gallaud, where next? Mycorrhiza 17 375–393. 10.1007/s00572-007-0130-9 PubMed DOI
Dixon R. K., Garrett H. E., Cox G. S. (1988). Cytokinins in the root pressure exudate of Citrus jambhiri lush. colonized by vesicular-arbuscular mycorrhizae. Tree Physiol. 4 9–18. 10.1093/treephys/4.1.9 PubMed DOI
Drüge U., Schönbeck F. (1992). Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J. Plant Physiol. 141 40–48. 10.1016/S0176-1617(11)80849-7 DOI
Farrow S. C., Emery R. J. N. (2012). Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. Plant Methods 8:42. 10.1186/1746-4811-8-42 PubMed DOI PMC
Foo E., Ross J. J., Jones W. T., Reid J. B. (2013). Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann. Bot. 111 769–779. 10.1093/aob/mct041 PubMed DOI PMC
Franson R. L., Bethlenfalvay G. J. (1989). Infection unit method of vesicular-arbuscular mycorrhizal propagules determination. Soil Sci. Soc. Amer. J. 53 754–756. 10.2136/sssaj1989.03615995005300030020x DOI
Fusconi A. (2014). Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann. Bot. 113 19–33. 10.1093/aob/mct258 PubMed DOI PMC
Gaude N., Bortfeld S., Duensing N., Lohse M., Krajinski F. (2012). Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J. 69 510–528. 10.1111/j.1365-313X.2011.04810.x PubMed DOI
Ginzberg I., David R., Shaul O., Elad Y., Wininger S., Ben-Dor B., et al. (1998). Glomus intraradices colonization regulates gene expression in tobacco toots. Symbiosis 25 145–157.
Giovannetti M., Mosse B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84 489–500. 10.1111/j.1469-8137.1980.tb04556.x DOI
Glenn M. G., Chew F. S., Williams P. H. (1985). Hyphal penetration of Brassica (Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol. 99 463–472. 10.1111/j.1469-8137.1985.tb03673.x DOI
Goicoechea N., Dolézal K., Antolin M. C., Strnad M., Sánchez-Diaz M. (1995). Influence of mycorrhiza and Rhizobium on cytokinin content in drought-stressed alfalfa. J. Exp. Bot. 46 1543–1549. 10.1093/jxb/46.10.1543 DOI
Gonzalez-Rizzo S., Crespi M., Frugier F. (2006). The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18 2680–2693. 10.1105/tpc.106.043778 PubMed DOI PMC
Gryndler M., Hršelová H., Chvátalová I., Jansa J. (1998). The effect of selected plant hormones on in vitro proliferation of hyphae of Glomus fistulosum. Biol. Plant 41 255–263. 10.1023/A:1001874832669 DOI
Guether M., Neuhaüser B., Balestrini R., Dynowski M., Ludewig U., Bonfante P. (2009). A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol. 150 73–83. 10.1104/pp.109.136390 PubMed DOI PMC
Gutjahr C. (2014). Phytohormone signaling in arbuscular mycorrhiza development. Curr. Opin. Plant Biol. 20 26–34. 10.1016/j.pbi.2014.04.003 PubMed DOI
Harrison M. J., Dewbre G. R., Liu J. (2002). A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14 2413–2429. 10.1105/tpc.004861 PubMed DOI PMC
Helber N., Wippel K., Sauer N., Schaarschmidt S., Hause B., Requena N. (2011). A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23 3812–3823. 10.1105/tpc.111.089813 PubMed DOI PMC
Held M., Hou H., Miri M., Huynh C., Ross L., Hossain M. S., et al. (2014). Lotus japonicus cytokinin receptors work partially redundantly to mediate nodule formation. Plant Cell 26 678–694. 10.1105/tpc.113.119382 PubMed DOI PMC
Higuchi M., Pischke M. S., Mähönen A. P., Miyawaki K., Hashimoto Y., Seki M., et al. (2004). In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. 101 8821–8826. 10.1073/pnas.0402887101 PubMed DOI PMC
Jardinaud M.-F., Boivin S., Rodde N., Catrice O., Kisiala A., Lepage A., et al. (2016). A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis. Plant Physiol. 171 2256–2276. 10.1104/pp.16.00711 PubMed DOI PMC
Jones J. M. C., Clairmont L., Macdonald E. S., Weiner C. A., Emery R. J. N., Guinel F. C. (2015). E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels. J. Exp. Bot. 66 4047–4059. 10.1093/jxb/erv201 PubMed DOI PMC
Kieber J. J., Schaller G. E. (2010). The perception of cytokinin: a story 50 years in the making. Plant Physiol. 154 487–492. 10.1104/pp.110.161596 PubMed DOI PMC
Kneen B. E., Weeden N. F., LaRue T. A. (1994). Non-nodulating mutants of Pisum sativum (L.) cv. Spark. J. Hered. 85 129–133. 10.1093/oxfordjournals.jhered.a111410 PubMed DOI
Knott C. M. (1987). A key for stages of development of the pea (Pisum sativum). Ann. Appl. Biol. 111 233–244. 10.1111/j.1744-7348.1987.tb01450.x DOI
Ko D., Kang J., Kiba T., Park J., Kojima M., Do J., et al. (2014). Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl. Acad. Sci. 111 7150–7155. 10.1073/pnas.1321519111 PubMed DOI PMC
Lace B., Ott T. (2018). Commonalities and differences in controlling multipartite intracellular infections of legume roots by symbiotic microbes. Plant Cell Physiol. 59 666–677. 10.1093/pcp/pcy043 PubMed DOI
Laffont C., Rey T., André O., Novero M., Kazmierczak T., Debellé F., et al. (2015). The CRE1 cytokinin pathway is differentially recruited depending on Medicago truncatula root environments and negatively regulates resistance to a pathogen. PLosOne 10:e0116819. 10.1371/journal.pone.0116819 PubMed DOI PMC
Liao D., Wang S., Cui M., Liu J., Chen A., Xu G. (2018). Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. Int. J. Mol. Sci. 19:3146. 10.3390/ijms19103146 PubMed DOI PMC
Lomin S. N., Myakushina Y. A., Kolachevskaya O. O., Getman I. A., Arkhipov D. V., Savelleva E. M., et al. (2018). Cytokinin perception in potato: new features of canonical players. J. Exp. Bot. 69 3839–3853. 10.1093/jxb/ery199 PubMed DOI PMC
Long C., Held M., Hayward A., Nisler J., Spíchal L., Emery R. J. N., et al. (2012). Seed development, seed germination and seedling growth in the R50 (sym16) pea mutant are not directly linked to altered cytokinin homeostasis. Physiol. Plant. 145 341–359. 10.1111/j.1399-3054.2012.01594.x PubMed DOI
MacColl K. (2017). An Assessment of How Plant and Mycorrhizal Communities Have Been Affected Along a Mine-Impacted Watershed in the Northwest Territories. MSc. Thesis. Waterloo ON: Wilfrid Laurier University.
McGonigle T. P., Miller M. H., Evans D. G., Fairchild G. L., Swan J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol. 115 495–501. 10.1111/j.1469-8137.1990.tb00476.x PubMed DOI
Murray J. D., Karas B. J., Sato S., Tabata S., Amyot L., Szczyglowski K. (2007). A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315 101–104. 10.1126/science.1132514 PubMed DOI
Plet J., Wasson A., Ariel F., Le Signor C., Baker D., Mathesius U., et al. (2011). MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 65 622–633. 10.1111/j.1365-313X.2010.04447 PubMed DOI
Pozo M. J., López-Ráez J. A., Azcón-Aguilar C., García-Garrido J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytol. 205 1431–1436. 10.1111/nph.13252 PubMed DOI
Quesnelle P. E., Emery R. J. N. (2007). Cis-cytokinins that predominate Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can. J. Bot. 85 91–103. 10.1139/b06-149 DOI
R Core Team. (2017). Integrated Development for R. Boston, MA: RStudio, Inc.
Rausch C., Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., et al. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414 464–470. 10.1038/35106601 PubMed DOI
Resendes C. M., Geil R. D., Guinel F. C. (2001). Mycorrhizal development in a low nodulating pea mutant. New Phytol. 150 563–572. 10.1046/j.1469-8137.2001.00131.x DOI
Riefler M., Novak O., Strnad M., Schmülling T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18 40–54. 10.1105/tpc.105.037796 PubMed DOI PMC
Romanov G. A., Lomin S. N., Schmülling T. (2006). Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J. Exp. Bot. 57 4051–4058. 10.1093/jxb/erl179 PubMed DOI
Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57 431–449. 10.1146/annurev.arplant.57.032905.105231 PubMed DOI
Schmidt C. S., Mrnka L., Frantik T., Motyka V., Dobrev P. I., Vosátka M. (2017). Combined effects of fungal inoculants and the cytokinin-like growth regulator thidiazuron on growth, phytohormone contents and endophytic root fungi in Miscanthus × giganteus. Plant Physiol. Biochem. 120 120–131. 10.1016/j.plaphy.2017.09.016 PubMed DOI
Shaul-Keinan O., Gadkar V., Ginzberg I., Grünzweig J. M., Chet I., Elad Y., et al. (2002). Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol. 154 501–507. 10.1046/j.1469-8137.2002.00388.x PubMed DOI
Skalický V., Kubeš M., Napier R., Novák O. (2018). Auxins and cytokinins–The role of subcellular organization on homeostasis. Int. J. Mol. Sci. 19:3115. 10.3390/ijms19103115 PubMed DOI PMC
Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis. London: Academic Press.
Spíchal L. (2012). Cytokinins – recent news and views of evolutionally old molecules. Funct. Plant Biol. 39 267–284. 10.1071/FP11276 PubMed DOI
Spíchal L., Rakova N. Y., Riefler M., Mizuno T., Romanov G. A., Strnad M., et al. (2004). Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant Cell Physiol. 45 1299–1305. 10.1093/pcp/pch132 PubMed DOI
Spíchal L., Werner T., Popa I., Riefler M., Schmülling T., Strnad M. (2009). The purine derivative PI-55 blocks cytokinin action via receptor inhibition. FEBS J. 276 244–253. 10.1111/j.1742-4658.2008.06777.x PubMed DOI
Torelli A., Trotta A., Acerbi L., Arcidiacono G., Berta G., Branca C. (2000). IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226 29–35. 10.1023/A:1026430019738 DOI
van Rhijn P., Fang Y., Galili S., Shaul O., Atzmon N., Wininger S., et al. (1997). Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved. Proc. Natl. Acad. Sci. 94 5467–5472. 10.1073/pnas.94.10.5467 PubMed DOI PMC
Vierheilig H., Coughlan A. P., Wyss U., Piché Y. (1998). Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl. Environ. Microbiol. 64 5004–5007. PubMed PMC
Werner T., Schmülling Y. (2009). Cytokinin action in plant development. Curr. Opin. Plant Biol. 12 527–538. 10.1016/j.pbi.2009.07.002 PubMed DOI
Yurkov A., Veselova S., Jacobi L., Stepanova G., Yemelyanov V., Kudoyarova G., et al. (2017). The effect of inoculation with arbuscular mycorrhizal fungus Rhizophagus irregularis on cytokinin content in a highly mycotrophic Medicago lupulina line under low phosphorus level in the soil. Plant Soil Environ. 63 519–524. 10.17221/617/2017-PSE DOI
Zatloukal M., Gemrotová M., Doležal K., Havlíček L., Spíchal L., Strnad M. (2008). Novel potent inhibitors of A. thaliana cytokinin oxidase/dehydrogenase. Bioorg. Med. Chem. 16 9268–9275. 10.1016/j.bmc.2008.09.008 PubMed DOI
Zhang K., Novak O., Wei Z., Gou M., Zhang X., Yu Y., et al. (2014). Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 5:3274. 10.1038/mcomms427 PubMed DOI
Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes