A Stimulatory Role for Cytokinin in the Arbuscular Mycorrhizal Symbiosis of Pea
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30915091
PubMed Central
PMC6423060
DOI
10.3389/fpls.2019.00262
Knihovny.cz E-zdroje
- Klíčová slova
- AM symbiosis, INCYDE, PI-55, Pisum sativum L., Rhizophagus irregularis, cytokinin, legume, plant hormone,
- Publikační typ
- časopisecké články MeSH
The arbuscular mycorrhizal (AM) symbiosis between terrestrial plants and AM fungi is regulated by plant hormones. For most of these, a role has been clearly assigned in this mutualistic interaction; however, there are still contradictory reports for cytokinin (CK). Here, pea plants, the wild type (WT) cv. Sparkle and its mutant E151 (Pssym15), were inoculated with the AM fungus Rhizophagus irregularis. E151 has previously been characterized as possessing high CK levels in non-mycorrhizal (myc-) roots and exhibiting high number of fungal structures in mycorrhizal (myc+) roots. Myc- and myc+ plants were treated 7, 9, and 11 days after inoculation (DAI) with synthetic compounds known to alter CK status. WT plants were treated with a synthetic CK [6-benzylaminopurine (BAP)] or the CK degradation inhibitor INCYDE, whereas E151 plants were treated with the CK receptor antagonist PI-55. At 13 DAI, plant CK content was analyzed by mass spectrometry. The effects of the synthetic compounds on AM colonization were assessed at 28 (WT) or 35 (E151) DAI via a modified magnified intersections method. The only noticeable difference seen between myc- and myc+ plants in terms of CK content was in the levels of nucleotides (NTs). Whereas WT plants responded to fungi by lowering their NT levels, E151 plants did not. Since NTs are thought to be converted into active CK forms, this result suggests that active CKs were synthesized more effectively in WT than in E151. In general, myc+ and myc- WT plants responded similarly to INCYDE by lowering significantly their NT levels and increasing slightly their active CK levels; these responses were less obvious in BAP-treated WT plants. In contrast, the response of E151 plants to PI-55 depended on the plant mycorrhizal status. Whereas treated myc- plants exhibited high NT and low active CK levels, treated myc+ plants displayed low levels of both NTs and active CKs. Moreover, treated WT plants were more colonized than treated E151 plants. We concluded that CKs have a stimulatory role in AM colonization because increased active CK levels were paralleled with increased AM colonization while decreased CK levels corresponded to reduced AM colonization.
Biology Trent University Peterborough ON Canada
Zobrazit více v PubMed
Adolfsson L., Nziengui H., Abreu I. N., Šimura J., Beebo A., Herdean A., et al. (2017). Enhanced secondary- and hormone metabolism in leaves of arbuscular mycorrhizal PubMed DOI PMC
Akiyama K., Matsuzaki K.-I., Hayashi H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. PubMed DOI
Allen M. F., Moore T. S., Jr., Christensen M. (1980). Phytohormone changes in DOI
Aremu A. O., Stirk W. A., Masondo N. A., Plačkova L., Novák O., Pěnčik A., et al. (2015). Dissecting the role of two cytokinin analogues (INCYDE and PI-55) on PubMed DOI
Ariel F., Brault-Hernandez M., Laffont C., Huault E., Brault M., Plet J., et al. (2012). Two direct targets of cytokinin signaling regulate symbiotic nodulation in PubMed DOI PMC
Audet P., Charest C. (2010). Identification of constraining experimental-design factors in mycorrhizal pot-growth studies. DOI
Baas R., Kuiper D. (1989). Effects of vesicular-arbuscular mycorrhizal infection and phosphate on DOI
Bedini A., Mercy L., Schneider C., Franken P., Lucic-Mercy E. (2018). Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defense triggering the endomycorrhizal symbiosis behavior. PubMed DOI PMC
Bompadre M. J., Fernández Bidondo L., Silvani V. A., Colombo R. P., Pérgola M., Pardo A. G., et al. (2015). Combined effects of arbuscular mycorrhizal fungi and exogenous cytokinins on pomegranate ( DOI
Bravo A., Brands M., Wewer V., Dörmann P., Harrison M. J. (2017). Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. PubMed DOI
Bucher M., Hause B., Krajinski F., Küster H. (2014). Through the doors of perception to function in arbuscular mycorrhizal symbioses. PubMed DOI
Coba de la Peña T., Cárcamo C. B., Almonacid L., Zaballos A., Lucas M. M., Balemenos D., et al. (2008). A cytokinin receptor homologue is induced during root nodule organogenesis and senescence in PubMed DOI
Cosme M., Ramireddy E., Franken P., Schmülling T., Wurst S. (2016). Shoot and root-borne cytokinin influences arbuscular mycorrhizal symbiosis. PubMed DOI PMC
Cosme M., Wurst S. (2013). Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. DOI
Danneberg G., Latus C., Zimmer W., Hundeshagen B., Schneider-Poetsch H., Bothe H. (1992). Influence of vesicular-arbuscular mycorrhiza on phytohormones balances in maize ( DOI
Das D., Gutjahr C. (2019). “Role of phytohormones in arbuscular mycorrhiza development. Chapter 7” in
Declerck S., Strullu D. G., Plenchette C. (1998). Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. DOI
Dickson S., Smith F. A., Smith S. E. (2007). Structural differences in arbuscular mycorrhizal symbioses; more than 100 years after gallaud, where next? PubMed DOI
Dixon R. K., Garrett H. E., Cox G. S. (1988). Cytokinins in the root pressure exudate of PubMed DOI
Drüge U., Schönbeck F. (1992). Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax ( DOI
Farrow S. C., Emery R. J. N. (2012). Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. PubMed DOI PMC
Foo E., Ross J. J., Jones W. T., Reid J. B. (2013). Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. PubMed DOI PMC
Franson R. L., Bethlenfalvay G. J. (1989). Infection unit method of vesicular-arbuscular mycorrhizal propagules determination. DOI
Fusconi A. (2014). Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? PubMed DOI PMC
Gaude N., Bortfeld S., Duensing N., Lohse M., Krajinski F. (2012). Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. PubMed DOI
Ginzberg I., David R., Shaul O., Elad Y., Wininger S., Ben-Dor B., et al. (1998).
Giovannetti M., Mosse B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. DOI
Glenn M. G., Chew F. S., Williams P. H. (1985). Hyphal penetration of DOI
Goicoechea N., Dolézal K., Antolin M. C., Strnad M., Sánchez-Diaz M. (1995). Influence of mycorrhiza and DOI
Gonzalez-Rizzo S., Crespi M., Frugier F. (2006). The PubMed DOI PMC
Gryndler M., Hršelová H., Chvátalová I., Jansa J. (1998). The effect of selected plant hormones on in vitro proliferation of hyphae of DOI
Guether M., Neuhaüser B., Balestrini R., Dynowski M., Ludewig U., Bonfante P. (2009). A mycorrhizal-specific ammonium transporter from PubMed DOI PMC
Gutjahr C. (2014). Phytohormone signaling in arbuscular mycorrhiza development. PubMed DOI
Harrison M. J., Dewbre G. R., Liu J. (2002). A phosphate transporter from PubMed DOI PMC
Helber N., Wippel K., Sauer N., Schaarschmidt S., Hause B., Requena N. (2011). A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus PubMed DOI PMC
Held M., Hou H., Miri M., Huynh C., Ross L., Hossain M. S., et al. (2014). PubMed DOI PMC
Higuchi M., Pischke M. S., Mähönen A. P., Miyawaki K., Hashimoto Y., Seki M., et al. (2004). In planta functions of the PubMed DOI PMC
Jardinaud M.-F., Boivin S., Rodde N., Catrice O., Kisiala A., Lepage A., et al. (2016). A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the PubMed DOI PMC
Jones J. M. C., Clairmont L., Macdonald E. S., Weiner C. A., Emery R. J. N., Guinel F. C. (2015). E151 (sym15), a pleiotropic mutant of pea ( PubMed DOI PMC
Kieber J. J., Schaller G. E. (2010). The perception of cytokinin: a story 50 years in the making. PubMed DOI PMC
Kneen B. E., Weeden N. F., LaRue T. A. (1994). Non-nodulating mutants of DOI
Knott C. M. (1987). A key for stages of development of the pea ( DOI
Ko D., Kang J., Kiba T., Park J., Kojima M., Do J., et al. (2014). PubMed DOI PMC
Lace B., Ott T. (2018). Commonalities and differences in controlling multipartite intracellular infections of legume roots by symbiotic microbes. PubMed DOI
Laffont C., Rey T., André O., Novero M., Kazmierczak T., Debellé F., et al. (2015). The CRE1 cytokinin pathway is differentially recruited depending on PubMed DOI PMC
Liao D., Wang S., Cui M., Liu J., Chen A., Xu G. (2018). Phytohormones regulate the development of arbuscular mycorrhizal symbiosis. PubMed DOI PMC
Lomin S. N., Myakushina Y. A., Kolachevskaya O. O., Getman I. A., Arkhipov D. V., Savelleva E. M., et al. (2018). Cytokinin perception in potato: new features of canonical players. PubMed DOI PMC
Long C., Held M., Hayward A., Nisler J., Spíchal L., Emery R. J. N., et al. (2012). Seed development, seed germination and seedling growth in the R50 (sym16) pea mutant are not directly linked to altered cytokinin homeostasis. PubMed DOI
MacColl K. (2017).
McGonigle T. P., Miller M. H., Evans D. G., Fairchild G. L., Swan J. A. (1990). A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. PubMed DOI
Murray J. D., Karas B. J., Sato S., Tabata S., Amyot L., Szczyglowski K. (2007). A cytokinin perception mutant colonized by PubMed DOI
Plet J., Wasson A., Ariel F., Le Signor C., Baker D., Mathesius U., et al. (2011). MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in PubMed DOI
Pozo M. J., López-Ráez J. A., Azcón-Aguilar C., García-Garrido J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. PubMed DOI
Quesnelle P. E., Emery R. J. N. (2007). Cis-cytokinins that predominate DOI
R Core Team. (2017).
Rausch C., Daram P., Brunner S., Jansa J., Laloi M., Leggewie G., et al. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. PubMed DOI
Resendes C. M., Geil R. D., Guinel F. C. (2001). Mycorrhizal development in a low nodulating pea mutant. DOI
Riefler M., Novak O., Strnad M., Schmülling T. (2006). PubMed DOI PMC
Romanov G. A., Lomin S. N., Schmülling T. (2006). Biochemical characteristics and ligand-binding properties of PubMed DOI
Sakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. PubMed DOI
Schmidt C. S., Mrnka L., Frantik T., Motyka V., Dobrev P. I., Vosátka M. (2017). Combined effects of fungal inoculants and the cytokinin-like growth regulator thidiazuron on growth, phytohormone contents and endophytic root fungi in PubMed DOI
Shaul-Keinan O., Gadkar V., Ginzberg I., Grünzweig J. M., Chet I., Elad Y., et al. (2002). Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with PubMed DOI
Skalický V., Kubeš M., Napier R., Novák O. (2018). Auxins and cytokinins–The role of subcellular organization on homeostasis. PubMed DOI PMC
Smith S. E., Read D. J. (2008).
Spíchal L. (2012). Cytokinins – recent news and views of evolutionally old molecules. PubMed DOI
Spíchal L., Rakova N. Y., Riefler M., Mizuno T., Romanov G. A., Strnad M., et al. (2004). Two cytokinin receptors of PubMed DOI
Spíchal L., Werner T., Popa I., Riefler M., Schmülling T., Strnad M. (2009). The purine derivative PI-55 blocks cytokinin action via receptor inhibition. PubMed DOI
Torelli A., Trotta A., Acerbi L., Arcidiacono G., Berta G., Branca C. (2000). IAA and ZR content in leek ( DOI
van Rhijn P., Fang Y., Galili S., Shaul O., Atzmon N., Wininger S., et al. (1997). Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and PubMed DOI PMC
Vierheilig H., Coughlan A. P., Wyss U., Piché Y. (1998). Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. PubMed PMC
Werner T., Schmülling Y. (2009). Cytokinin action in plant development. PubMed DOI
Yurkov A., Veselova S., Jacobi L., Stepanova G., Yemelyanov V., Kudoyarova G., et al. (2017). The effect of inoculation with arbuscular mycorrhizal fungus DOI
Zatloukal M., Gemrotová M., Doležal K., Havlíček L., Spíchal L., Strnad M. (2008). Novel potent inhibitors of PubMed DOI
Zhang K., Novak O., Wei Z., Gou M., Zhang X., Yu Y., et al. (2014). PubMed DOI
Cytokinin and Ethylene Cell Signaling Pathways from Prokaryotes to Eukaryotes