Phylogenetic reconstruction and evolution of the Rab GTPase gene family in Amoebozoa

. 2022 Jan ; 13 (1) : 100-113. [epub] 20210329

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33779495

Rab GTPase is a paralog-rich gene family that controls the maintenance of the eukaryotic cell compartmentalization system. Diverse eukaryotes have varying numbers of Rab paralogs. Currently, little is known about the evolutionary pattern of Rab GTPase in most major eukaryotic 'supergroups'. Here, we present a comprehensive phylogenetic reconstruction of the Rab GTPase gene family in the eukaryotic 'supergroup' Amoebozoa, a diverse lineage represented by unicellular and multicellular organisms. We demonstrate that Amoebozoa conserved 20 of the 23 ancestral Rab GTPases predicted to be present in the last eukaryotic common ancestor and massively expanded several 'novel' in-paralogs. Due to these 'novel' in-paralogs, the Rab family composition dramatically varies between the members of Amoebozoa; as a consequence, 'supergroup'-based studies may significantly change our current understanding of the evolution and diversity of this gene family. The high diversity of the Rab GTPase gene family in Amoebozoa makes this 'supergroup' a key lineage to study and advance our knowledge of the evolution of Rab in Eukaryotes.

Zobrazit více v PubMed

Stenmark H, Olkkonen VM.. The rab gtpase family. Genome Biol. 2001;2(5):reviews3007–1. PubMed PMC

Zhen Y, Stenmark H.. Cellular functions of Rab GTPases at a glance. J Cell Sci. 2015;128(17):3171–3176. PubMed

Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119–149. PubMed PMC

Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2(2):107–117. PubMed

Pfeffer S. A model for Rab GTPase localization. Biochem Soc Trans. 2005;33(4):627–630. PubMed

Colicelli J. Human RAS superfamily proteins and related GTPases. Science’s STKE. 2004;2004(250):re13–re13. PubMed PMC

Asaoka R, Uemura T, Ito J, et al. Arabidopsis RABA1 GTPases are involved in transport between the trans‐Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J. 2013;73(2):240–249. PubMed

Gurkan C, Lapp H, Alory C, et al. Large-scale profiling of Rab GTPase trafficking networks: the membrome. Mol Biol Cell. 2005;16(8):3847–3864. PubMed PMC

Rutherford S, Moore I. The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol. 2002;5(6):518–528. PubMed

Vernoud V, Horton AC, Yang Z, et al. Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol. 2003;131(3):1191–1208. PubMed PMC

Brighouse A, Dacks JB, Field MC. Rab protein evolution and the history of the eukaryotic endomembrane system. Cell Mol Life Sci. 2010;67(20):3449–3465. PubMed PMC

Pereira‐Leal JB. The Ypt/Rab family and the evolution of trafficking in fungi. Traffic. 2008;9(1):27–38. PubMed

Bright LJ, Kambesis N, Nelson SB, et al. Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet. 2010;6(10):e1001155. PubMed PMC

Eisen JA, Coyne RS, Wu M, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol. 2006;4(9):e286. PubMed PMC

Ezougou CN, Ben-Rached F, Moss DK, et al. Plasmodium falciparum Rab5B is an N-terminally myristoylated Rab GTPase that is targeted to the parasite’s plasma and food vacuole membranes. PloS One. 2014;9(2):e87695. PubMed PMC

Quevillon E, Spielmann T, Brahimi K, et al. The Plasmodiumfalciparum family of Rab GTPases. Gene. 2003;306:13–25. PubMed

Langsley G, Van Noort V, Carret C, et al. Comparative genomics of the Rab protein family in Apicomplexan parasites. Microbes Infect. 2008;10(5):462–470. PubMed PMC

Ackers JP, Dhir V, Field MC. A bioinformatic analysis of the RAB genes of Trypanosoma brucei. Mol Biochem Parasitol. 2005;141(1):89–97. PubMed

Field MC. Signalling the genome: the Ras-like small GTPase family of trypanosomatids. Trends Parasitol. 2005;21(10):447–450. PubMed

Fritz-Laylin LK, Prochnik SE, Ginger ML, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140(5):631–642. PubMed

Carlton JM, Hirt RP, Silva JC, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315(5809):207–212. PubMed PMC

Lal K, Field MC, Carlton JM, et al. Identification of a very large Rab GTPase family in the parasitic protozoan Trichomonas vaginalis. Mol Biochem Parasitol. 2005;143(2):226–235. PubMed

Eliáš M, Brighouse A, Gabernet-Castello C, et al. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci. 2012;125(10):2500–2508. PubMed PMC

Petrželková R, Eliáš M. Contrasting patterns in the evolution of the Rab GTPase family in Archaeplastida. Acta Societatis Botanicorum Poloniae. 2014;83:4.

Kang S, Tice AK, Spiegel FW, et al. Between a pod and a hard test: the deep evolution of amoebae. Mol Biol Evol. 2017;34(9):2258–2270. PubMed PMC

Nakada-Tsukui K, Saito-Nakano Y, Husain A, et al. Conservation and function of Rab small GTPases in Entamoeba: annotation of E. invadens Rab and its use for the understanding of Entamoeba biology. Exp Parasitol. 2010;126(3):337–347. PubMed

Lahr DJ, Kosakyan A, Lara E, et al. Phylogenomics and morphological reconstruction of Arcellinida testate amoebae highlight diversity of microbial eukaryotes in the Neoproterozoic. Curr Biol. 2019;29(6):991–1001. PubMed

Diekmann Y, Seixas E, Gouw M, et al. Thousands of rab GTPases for the cell biologist. PLoS Comput Biol. 2011;7(10):e1002217. PubMed PMC

Saito-Nakano Y, Loftus BJ, Hall N, et al. The diversity of Rab GTPases in Entamoeba histolytica. Exp Parasitol. 2005;110(3):244–252. PubMed

Wennerberg K, Rossman KL, Der CJ. The Ras superfamily at a glance. J Cell Sci. 2005;118(5):843–846. PubMed

Huet D, Blisnick T, Perrot S, et al. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport. Elife. 2014;3:e02419. PubMed PMC

Eguether T, San Agustin JT, Keady BT, et al. IFT27 links the BBSome to IFT for maintenance of the ciliary signaling compartment. Dev Cell. 2014;31(3):279–290. PubMed PMC

Kanie T, Abbott KL, Mooney NA, et al. The CEP19-RABL2 GTPase complex binds IFT-B to initiate intraflagellar transport at the ciliary base. Dev Cell. 2017;42(1):22–36. PubMed PMC

Lim YS, Tang BL. A role for Rab23 in the trafficking of Kif17 to the primary cilium. J Cell Sci. 2015;128(16):2996–3008. PubMed

Lo JC, Jamsai D, O’Connor AE, et al. (2012). RAB-like 2 has an essential role in male fertility, sperm intra-flagellar transport, and tail assembly. PubMed PMC

Lumb JH, Field MC. Rab23 is a flagellar protein in Trypanosoma brucei. BMC Res Notes. 2011;4(1):190. PubMed PMC

Qin H, Wang Z, Diener D, et al. Intraflagellar transport protein 27 is a small G protein involved in cell-cycle control. Curr Biol. 2007;17(3):193–202. PubMed PMC

Wang Y, Ng EL, Tang BL. Rab23: what exactly does it traffic? Traffic. 2006;7(6):746–750. PubMed

Yoshimura SI, Egerer J, Fuchs E, et al. Functional dissection of Rab GTPases involved in primary cilium formation. J Cell Biol. 2007;178(3):363–369. PubMed PMC

Hess S, Eme L, Roger AJ, et al. A natural toroidal microswimmer with a rotary eukaryotic flagellum. Nat Microbiol. 2019;4(10):1620–1626. PubMed

Fiore‐Donno AM, Tice AK, Brown MW. A non‐flagellated member of the myxogastria and expansion of the echinosteliida. J Eukaryotic Microbiol. 2019;66(4):538–544. PubMed

Reinhardt DJ, Olive LS. Echinosteliopsis, a new genus of the Mycetozoa. Mycologia. 1966;58(6):966–970.

Field MC, Carrington M. Intracellular membrane transport systems in Trypanosoma brucei. Traffic. 2004;5(12):905–913. PubMed

Field MC, Natesan SKA, Gabernet‐Castello C, et al. Intracellular trafficking in the trypanosomatids. Traffic. 2007;8(6):629–639. PubMed

Eichinger L, Pachebat JA, Glöckner G, et al. The genome of the social amoeba Dictyostelium discoideum. Nature. 2005;435(7038):43–57. PubMed PMC

Loftus B, Anderson I, Davies R, et al. The genome of the protist parasite Entamoeba histolytica. Nature. 2005;433(7028):865–868. PubMed

Lorenzi HA, Puiu D, Miller JR, et al. New assembly, reannotation and analysis of the Entamoeba histolytica genome reveal new genomic features and protein content information. PLoS Negl Trop Dis. 2010;4(6):e716. PubMed PMC

Žárský V, Klimeš V, Pačes J, et al. (2021). The Mastigamoeba balamuthi genome and the nature of the free-living ancestor of Entamoeba. Molecular biology and evolution, msab020. PubMed PMC

Mitra BN, Saito‐Nakano Y, Nakada‐Tsukui K, et al. Rab11B small GTPase regulates secretion of cysteine proteases in the enteric protozoan parasite Entamoeba histolytica. Cell Microbiol. 2007;9(9):2112–2125. PubMed

Verma K, Srivastava VK, Datta S. Rab GTPases take centre stage in understanding Entamoeba histolytica biology. Small GTPases. 2020;11(5):320–333. PubMed PMC

McGugan GC, Temesvari LA. Characterization of a Rab11-like GTPase, EhRab11, of entamoeba histolytica. Mol Biochem Parasitol. 2003;129(2):137–146. PubMed

Okada M, Nozaki T. New insights into molecular mechanisms of phagocytosis in Entamoeba histolytica by proteomic analysis. Arch Med Res. 2006;37(2):244–251. PubMed

Saito-Nakano Y, Yasuda T, Nakada-Tsukui K, et al. Rab5-associated vacuoles play a unique role in phagocytosis of the enteric protozoan parasite Entamoeba histolytica. J Biol Chem. 2004;279(47):49497–49507. PubMed

Rupper A, Grove B, Cardelli J. Rab7 regulates phagosome maturation in Dictyostelium. J Cell Sci. 2001;114(13):2449–2460. PubMed

Saito‐Nakano Y, Wahyuni R, Nakada‐Tsukui K, et al. Rab7D small GTPase is involved in phago‐, trogocytosis and cytoskeletal reorganization in the enteric protozoan Entamoeba histolytica. Cell Microbiol. 2021;23(1):e13267. PubMed PMC

Stein MP, Dong J, Wandinger-Ness A. Rab proteins and endocytic trafficking: potential targets for therapeutic intervention. Adv Drug Deliv Rev. 2003;55(11):1421–1437. PubMed

Seppey M, Manni M, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness. In: Gene prediction. Humana: New York, NY; 2019. p. 227–245. PubMed

Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. PubMed PMC

Surkont J, Diekmann Y, Pereira-Leal JB. Rabifier2: an improved bioinformatic classifier of Rab GTPases. Bioinformatics. 2017;33(4):568–570. PubMed

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780. PubMed PMC

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–1973. PubMed PMC

Kalyaanamoorthy S, Minh BQ, Wong TK, et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–589. PubMed PMC

Hoang DT, Chernomor O, Von Haeseler A, et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2018;35(2):518–522. PubMed PMC

Nguyen LT, Schmidt HA, Von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274. PubMed PMC

Adl SM, Bass D, Lane CE, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryotic Microbiol. 2019;66(1):4–119. PubMed PMC

Schilde C, Lawal HM, Kin K, et al. A well supported multi gene phylogeny of 52 dictyostelia. Mol Phylogenet Evol. 2019;134:66–73. PubMed PMC

Cui Z, Li J, Chen Y, et al. Molecular epidemiology, evolution, and phylogeny of Entamoeba spp. Genetics and Evolution: Infection; 2019. p. 75, 104018. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace