The role of actin isoforms in somatic embryogenesis in Norway spruce
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20478025
PubMed Central
PMC3095357
DOI
10.1186/1471-2229-10-89
PII: 1471-2229-10-89
Knihovny.cz E-zdroje
- MeSH
- aktiny antagonisté a inhibitory metabolismus MeSH
- bicyklické sloučeniny heterocyklické farmakologie MeSH
- cytoskelet účinky léků MeSH
- embryonální vývoj MeSH
- fylogeneze MeSH
- protein - isoformy metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- RNA rostlin genetika MeSH
- rostlinné geny MeSH
- sekvenční seřazení MeSH
- smrk embryologie růst a vývoj MeSH
- substituce aminokyselin MeSH
- techniky tkáňových kultur MeSH
- thiazolidiny farmakologie MeSH
- vazebná místa MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aktiny MeSH
- bicyklické sloučeniny heterocyklické MeSH
- latrunculin B MeSH Prohlížeč
- protein - isoformy MeSH
- RNA rostlin MeSH
- thiazolidiny MeSH
BACKGROUND: Somatic embryogenesis in spruce is a process of high importance for biotechnology, yet it comprises of orchestrated series of events whose cellular and molecular details are not well understood. In this study, we examined the role of actin cytoskeleton during somatic embryogenesis in Norway spruce line AFO 541 by means of anti-actin drugs. RESULTS: Application of low doses (50-100 nM) of latrunculin B (Lat B) during the maturation of somatic embryos predominantly killed suspensor cells while leaving the cells in meristematic centres alive, indicating differential sensitivity of actin in the two cell types. The treatment resulted in faster development of more advanced embryos into mature somatic embryos and elimination of insufficiently developed ones. In searching for the cause of the differential actin sensitivity of the two cell types, we analysed the composition of actin isoforms in the culture and isolated four spruce actin genes. Analysis of their expression during embryo maturation revealed that one actin isoform was expressed constitutively in both cell types, whereas three actin isoforms were expressed predominantly in suspensor cells and their expression declined during the maturation. The expression decline was greatly enhanced by Lat B treatment. Sequence analysis revealed amino-acid substitutions in the Lat B-binding site in one of the suspensor-specific actin isoforms, which may result in a different binding affinity for Lat B. CONCLUSIONS: We show that manipulating actin in specific cell types in somatic embryos using Lat B treatment accelerated and even synchronized the development of somatic embryos and may be of practical use in biotechnology.
Zobrazit více v PubMed
Staiger CJ, Baluska F, Volkmann D, Barlow P. Actin: a dynamic framework for multiple plant cell functions. Dordrecht, The Netherlands: Springer; 2000.
Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, von Arnold S. VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ. 2004;11:175–182. doi: 10.1038/sj.cdd.4401330. PubMed DOI
Thomas SG, Huang S, Li S, Staiger CJ, Franklin-Tong VE. Actin depolymerisation is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol. 2006;174:221–229. doi: 10.1083/jcb.200604011. PubMed DOI PMC
Hightower RC, Meagher RB. The molecular evolution of actin. Genetics. 1986;114:315–332. PubMed PMC
Meagher RB. Divergence and differential expression of actin gene families in higher-plants. Int Rev Cytol. 1991;125:139–163. full_text. PubMed
McDowell JM, Huang SR, McKinney EC, An YQ, Meagher RB. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics. 1996;142:587–602. PubMed PMC
Meagher RB, McKinney EC, Kandasamy MK. In: Actin: A dynamic framework for multiple plant cell functions. Staiger CJ, Baluška F, Volkmann D, Barlow P, editor. Dordrecht, The Netherlands: Springer; 2000. The significance of diversity in the plant actin gene family; pp. 3–28.
Meagher RB, McKinney EC, Vitale AV. The evolution of new structures - clues from plant cytoskeletal genes. Trends Genet. 1999;15:278–284. doi: 10.1016/S0168-9525(99)01759-X. PubMed DOI
Kandasamy MK, McKinney EC, Meagher RB. Functional nonequivalency of actin isovariants in Arabidopsis. Mol Biol Cell. 2002;13:251–261. doi: 10.1091/mbc.01-07-0342. PubMed DOI PMC
Gilliland LU, Kandasamy MK, Pawloski LC, Meagher RB. Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act2-1 mutation. Plant Physiol. 2002;130:2199–2209. doi: 10.1104/pp.014068. PubMed DOI PMC
von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L. Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult. 2002;69:233–249. doi: 10.1023/A:1015673200621. DOI
Fischerová L, Fischer L, Vondráková Z, Vágner M. Expression of the gene encoding transcription factor PaVP1 differs in Norway spruce embryogenic lines depending on their ability to develop somatic embryos. Plant Cell Rep. 2008;27:435–441. doi: 10.1007/s00299-007-0469-6. PubMed DOI
von Arnold S, Clapham D. In: Plant embryogenesis. Suárez MF, Bozhkov PV, editor. Totowa, USA: Humana Press; 2008. Spruce embryogenesis; pp. 31–47. full_text.
Stasolla C, Yeung EC. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult. 2003;74:15–35. doi: 10.1023/A:1023345803336. DOI
Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang SJ, Wilde HD, Kodrzycki RJ, Zhang CS, Gause KC, Parks DW, Hinchee MA. Forest biotechnology: Innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant. 2005;41:701–717. doi: 10.1079/IVP2005691. DOI
Nagmani R, Diner AM, Garton S, Zipf AE. In: Somatic embryogenesis in woody plants. Jain SM, Gupta ML, Newton RJ, editor. Dordrecht, The Netherlands: Springer; 1995. Anatomical comparision of somatic and zygotic embryogeny in conifers; pp. 23–48.
Vágner M, Fischerová L, Špačková J, Vondráková Z. In: Protocols for somatic embryogenesis in woody plants. Jain SM, Gupta PK, editor. Dordrecht, The Netherlands: Springer; 2005. Somatic embryogenesis in Norway spruce; pp. 141–155. full_text.
Smertenko AP, Bozhkov PV, Filonova LH, von Arnold S, Hussey PJ. Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant J. 2003;33:813–824. doi: 10.1046/j.1365-313X.2003.01670.x. PubMed DOI
Morton WM, Ayscough KR, McLaughlin PJ. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature Cell Biol. 2000;2:376–378. doi: 10.1038/35014075. PubMed DOI
Thangavelu M, Belostotsky D, Bevan MW, Flavell RB, Rogers HJ, Lonsdale DM. Partial characterization of the Nicotiana-tabacum actin gene family - evidence for pollen-specific expression of one of the gene family members. Mol Gen Genet. 1993;240:290–295. doi: 10.1007/BF00277069. PubMed DOI
Baird WV, Meagher RB. A complex gene superfamily encodes actin in Petunia. EMBO J. 1987;6:3223–3231. PubMed PMC
Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003;132:640–652. doi: 10.1104/pp.103.020925. PubMed DOI PMC
Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol. 2008;148:1201–1211. doi: 10.1104/pp.108.126375. PubMed DOI PMC
Binarová P, Čihalíková C, Doležel J, Gilmer S, Fowke LC. Actin distribution in somatic embryos and embryogenic protoplasts of white spruce (Picea glauca) In Vitro Cell Dev Biol Plant. 1996;32:59–65. doi: 10.1007/BF02823132. DOI
Baluška F, Jasik J, Edelmann HG, Salajová T, Volkmann. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent. Dev Biol. 2001;231:113–124. doi: 10.1006/dbio.2000.0115. PubMed DOI
Flanagan MD, Lin S. Cytochalasins block actin filament elongation by binding to high-affinity sites associated with F-Actin. J Biol Chem. 1980;255:835–838. PubMed
Goldberg RB. Plants - novel developmental processes. Science. 1988;240:1460–1467. doi: 10.1126/science.3287622. PubMed DOI
Goldberg RB, Depaiva G, Yadegari R. Plant embryogenesis - zygote to seed. Science. 1994;266:605–614. doi: 10.1126/science.266.5185.605. PubMed DOI
Gupta PK, Durzan DJ. Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea-abies (Norway spruce) In Vitro Cell Dev Biol. 1986;22:685–688. doi: 10.1007/BF02623484. DOI
Svobodová H, Albrechtová J, Kumstýřová L, Lipavská H, Vágner M, Vondráková Z. Somatic embryogenesis in Norway spruce: Anatomical study of embryo development and influence of polyethylene glykol on maturation process. Plant Physiol Biochem. 1999;37:209–221. doi: 10.1016/S0981-9428(99)80036-9. DOI
Widholm JM. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 1972;47:189–194. PubMed
Blancaflor EB. Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.) J Plant Growth Regul. 2000;19:406–414. PubMed
Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005;56:2907–2914. doi: 10.1093/jxb/eri285. PubMed DOI
Dvořáková L, Cvrčková F, Fischer L. Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns. BMC Genomics. 2007;8:412. doi: 10.1186/1471-2164-8-412. PubMed DOI PMC
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. PubMed DOI PMC
Vandepeer Y, Dewachter R. Treecon for Windows - a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci. 1994;10:569–570. PubMed
Felsenstein J. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool. 1973;22:240–249. doi: 10.2307/2412304. DOI
Felsenstein J. Phylogenies from molecular sequences - inference and reliability. Ann Rev Genet. 1988;22:521–565. doi: 10.1146/annurev.ge.22.120188.002513. PubMed DOI
PHYLIP package. http://evolution.genetics.washington.edu/phylip