The role of actin isoforms in somatic embryogenesis in Norway spruce

. 2010 May 17 ; 10 () : 89. [epub] 20100517

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20478025

BACKGROUND: Somatic embryogenesis in spruce is a process of high importance for biotechnology, yet it comprises of orchestrated series of events whose cellular and molecular details are not well understood. In this study, we examined the role of actin cytoskeleton during somatic embryogenesis in Norway spruce line AFO 541 by means of anti-actin drugs. RESULTS: Application of low doses (50-100 nM) of latrunculin B (Lat B) during the maturation of somatic embryos predominantly killed suspensor cells while leaving the cells in meristematic centres alive, indicating differential sensitivity of actin in the two cell types. The treatment resulted in faster development of more advanced embryos into mature somatic embryos and elimination of insufficiently developed ones. In searching for the cause of the differential actin sensitivity of the two cell types, we analysed the composition of actin isoforms in the culture and isolated four spruce actin genes. Analysis of their expression during embryo maturation revealed that one actin isoform was expressed constitutively in both cell types, whereas three actin isoforms were expressed predominantly in suspensor cells and their expression declined during the maturation. The expression decline was greatly enhanced by Lat B treatment. Sequence analysis revealed amino-acid substitutions in the Lat B-binding site in one of the suspensor-specific actin isoforms, which may result in a different binding affinity for Lat B. CONCLUSIONS: We show that manipulating actin in specific cell types in somatic embryos using Lat B treatment accelerated and even synchronized the development of somatic embryos and may be of practical use in biotechnology.

Zobrazit více v PubMed

Staiger CJ, Baluska F, Volkmann D, Barlow P. Actin: a dynamic framework for multiple plant cell functions. Dordrecht, The Netherlands: Springer; 2000.

Bozhkov PV, Filonova LH, Suarez MF, Helmersson A, Smertenko AP, Zhivotovsky B, von Arnold S. VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death Differ. 2004;11:175–182. doi: 10.1038/sj.cdd.4401330. PubMed DOI

Thomas SG, Huang S, Li S, Staiger CJ, Franklin-Tong VE. Actin depolymerisation is sufficient to induce programmed cell death in self-incompatible pollen. J Cell Biol. 2006;174:221–229. doi: 10.1083/jcb.200604011. PubMed DOI PMC

Hightower RC, Meagher RB. The molecular evolution of actin. Genetics. 1986;114:315–332. PubMed PMC

Meagher RB. Divergence and differential expression of actin gene families in higher-plants. Int Rev Cytol. 1991;125:139–163. full_text. PubMed

McDowell JM, Huang SR, McKinney EC, An YQ, Meagher RB. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics. 1996;142:587–602. PubMed PMC

Meagher RB, McKinney EC, Kandasamy MK. In: Actin: A dynamic framework for multiple plant cell functions. Staiger CJ, Baluška F, Volkmann D, Barlow P, editor. Dordrecht, The Netherlands: Springer; 2000. The significance of diversity in the plant actin gene family; pp. 3–28.

Meagher RB, McKinney EC, Vitale AV. The evolution of new structures - clues from plant cytoskeletal genes. Trends Genet. 1999;15:278–284. doi: 10.1016/S0168-9525(99)01759-X. PubMed DOI

Kandasamy MK, McKinney EC, Meagher RB. Functional nonequivalency of actin isovariants in Arabidopsis. Mol Biol Cell. 2002;13:251–261. doi: 10.1091/mbc.01-07-0342. PubMed DOI PMC

Gilliland LU, Kandasamy MK, Pawloski LC, Meagher RB. Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act2-1 mutation. Plant Physiol. 2002;130:2199–2209. doi: 10.1104/pp.014068. PubMed DOI PMC

von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L. Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult. 2002;69:233–249. doi: 10.1023/A:1015673200621. DOI

Fischerová L, Fischer L, Vondráková Z, Vágner M. Expression of the gene encoding transcription factor PaVP1 differs in Norway spruce embryogenic lines depending on their ability to develop somatic embryos. Plant Cell Rep. 2008;27:435–441. doi: 10.1007/s00299-007-0469-6. PubMed DOI

von Arnold S, Clapham D. In: Plant embryogenesis. Suárez MF, Bozhkov PV, editor. Totowa, USA: Humana Press; 2008. Spruce embryogenesis; pp. 31–47. full_text.

Stasolla C, Yeung EC. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult. 2003;74:15–35. doi: 10.1023/A:1023345803336. DOI

Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang SJ, Wilde HD, Kodrzycki RJ, Zhang CS, Gause KC, Parks DW, Hinchee MA. Forest biotechnology: Innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant. 2005;41:701–717. doi: 10.1079/IVP2005691. DOI

Nagmani R, Diner AM, Garton S, Zipf AE. In: Somatic embryogenesis in woody plants. Jain SM, Gupta ML, Newton RJ, editor. Dordrecht, The Netherlands: Springer; 1995. Anatomical comparision of somatic and zygotic embryogeny in conifers; pp. 23–48.

Vágner M, Fischerová L, Špačková J, Vondráková Z. In: Protocols for somatic embryogenesis in woody plants. Jain SM, Gupta PK, editor. Dordrecht, The Netherlands: Springer; 2005. Somatic embryogenesis in Norway spruce; pp. 141–155. full_text.

Smertenko AP, Bozhkov PV, Filonova LH, von Arnold S, Hussey PJ. Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant J. 2003;33:813–824. doi: 10.1046/j.1365-313X.2003.01670.x. PubMed DOI

Morton WM, Ayscough KR, McLaughlin PJ. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature Cell Biol. 2000;2:376–378. doi: 10.1038/35014075. PubMed DOI

Thangavelu M, Belostotsky D, Bevan MW, Flavell RB, Rogers HJ, Lonsdale DM. Partial characterization of the Nicotiana-tabacum actin gene family - evidence for pollen-specific expression of one of the gene family members. Mol Gen Genet. 1993;240:290–295. doi: 10.1007/BF00277069. PubMed DOI

Baird WV, Meagher RB. A complex gene superfamily encodes actin in Petunia. EMBO J. 1987;6:3223–3231. PubMed PMC

Honys D, Twell D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 2003;132:640–652. doi: 10.1104/pp.103.020925. PubMed DOI PMC

Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH. Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol. 2008;148:1201–1211. doi: 10.1104/pp.108.126375. PubMed DOI PMC

Binarová P, Čihalíková C, Doležel J, Gilmer S, Fowke LC. Actin distribution in somatic embryos and embryogenic protoplasts of white spruce (Picea glauca) In Vitro Cell Dev Biol Plant. 1996;32:59–65. doi: 10.1007/BF02823132. DOI

Baluška F, Jasik J, Edelmann HG, Salajová T, Volkmann. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent. Dev Biol. 2001;231:113–124. doi: 10.1006/dbio.2000.0115. PubMed DOI

Flanagan MD, Lin S. Cytochalasins block actin filament elongation by binding to high-affinity sites associated with F-Actin. J Biol Chem. 1980;255:835–838. PubMed

Goldberg RB. Plants - novel developmental processes. Science. 1988;240:1460–1467. doi: 10.1126/science.3287622. PubMed DOI

Goldberg RB, Depaiva G, Yadegari R. Plant embryogenesis - zygote to seed. Science. 1994;266:605–614. doi: 10.1126/science.266.5185.605. PubMed DOI

Gupta PK, Durzan DJ. Plantlet regeneration via somatic embryogenesis from subcultured callus of mature embryos of Picea-abies (Norway spruce) In Vitro Cell Dev Biol. 1986;22:685–688. doi: 10.1007/BF02623484. DOI

Svobodová H, Albrechtová J, Kumstýřová L, Lipavská H, Vágner M, Vondráková Z. Somatic embryogenesis in Norway spruce: Anatomical study of embryo development and influence of polyethylene glykol on maturation process. Plant Physiol Biochem. 1999;37:209–221. doi: 10.1016/S0981-9428(99)80036-9. DOI

Widholm JM. The use of fluorescein diacetate and phenosafranine for determining viability of cultured plant cells. Stain Technol. 1972;47:189–194. PubMed

Blancaflor EB. Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.) J Plant Growth Regul. 2000;19:406–414. PubMed

Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005;56:2907–2914. doi: 10.1093/jxb/eri285. PubMed DOI

Dvořáková L, Cvrčková F, Fischer L. Analysis of the hybrid proline-rich protein families from seven plant species suggests rapid diversification of their sequences and expression patterns. BMC Genomics. 2007;8:412. doi: 10.1186/1471-2164-8-412. PubMed DOI PMC

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. PubMed DOI PMC

Vandepeer Y, Dewachter R. Treecon for Windows - a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci. 1994;10:569–570. PubMed

Felsenstein J. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool. 1973;22:240–249. doi: 10.2307/2412304. DOI

Felsenstein J. Phylogenies from molecular sequences - inference and reliability. Ann Rev Genet. 1988;22:521–565. doi: 10.1146/annurev.ge.22.120188.002513. PubMed DOI

PHYLIP package. http://evolution.genetics.washington.edu/phylip

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace