Multiple actin isotypes in plants: diverse genes for diverse roles?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
23091476
PubMed Central
PMC3469877
DOI
10.3389/fpls.2012.00226
Knihovny.cz E-zdroje
- Klíčová slova
- actin, actin binding protein, expression, isotype, isovariant, regulation,
- Publikační typ
- časopisecké články MeSH
Plant actins are encoded by a gene family. Despite the crucial significance of the actin cytoskeleton for plant structure and function, the importance of individual actin isotypes and their specific roles in various plant tissues or even single cells is rather poorly understood. This review summarizes our current knowledge about the plant actin gene family including its evolution, gene and protein structure, and the expression profiles and regulation. Based on this background information, we review mutant and complementation analyses in Arabidopsis to draw an emerging picture of overlapping and specific roles of plant actin isotypes. Finally, we examine hypotheses explaining the mechanisms of isotype-specific functions.
Faculty of Science Department of Experimental Plant Biology Charles University Prague Czech Republic
Zobrazit více v PubMed
An S. S., Möpps B., Weber K., Bhattacharya D. (1999). The origin and evolution of green algal and plant actins. Mol. Biol. Evol. 16, 275–28510.1093/oxfordjournals.molbev.a026109 PubMed DOI
An Y. Q., Huang S. R., McDowell J. M., McKinney E. C., Meagher R. B. (1996a). Conserved expression of the Arabidopsis ACT1 and ACT3 actin subclass in organ primordia and mature pollen. Plant Cell 8, 15–3010.1105/tpc.8.1.15 PubMed DOI PMC
An Y. Q., McDowell J. M., Huang S. R., McKinney E. C., Chambliss S., Meagher R. B. (1996b). Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. Plant J. 10, 107–12110.1046/j.1365-313X.1996.10010107.x PubMed DOI
An Y. Q. C., Meagher R. B. (2010). Strong expression and conserved regulation of ACT2 in Arabidopsis thaliana and Physcomitrella patens. Plant Mol. Biol. Rep. 28, 481–49010.1007/s11105-009-0171-7 DOI
Baird W. V., Meagher R. B. (1987). A complex gene superfamily encodes actin in petunia. EMBO J. 6, 3223–3231 PubMed PMC
Bergeron S. E., Zhu M., Thiem S. M., Friderici K. H., Rubenstein P. A. (2010). Ion-dependent polymerization differences between mammalian beta- and gamma-nonmuscle actin isoforms. J. Biol. Chem. 285, 16087–1609510.1074/jbc.M110.110130 PubMed DOI PMC
Bhattacharya D., Aubry J., Twait E. C., Jurk S. (2000). Actin gene duplication and the evolution of morphological complexity in land plants. J. Phycol. 36, 813–82010.1046/j.1529-8817.2000.03655.x DOI
Brault V., Reedy M. C., Sauder U., Kammerer R. A., Aebi U., Schoenenberger C. A. (1999). Substitution of flight muscle-specific actin by human beta-cytoplasmic actin in the indirect flight muscle of Drosophila. J. Cell. Sci. 112, 3627–3639 PubMed
Florea C. S., Timko M. P. (1997). Actin genes with unusual organization in the parasitic angiosperm Striga asiatica L. (Kuntze). Gene 186, 127–133 PubMed
Gilliland L. U., Kandasamy M. K., Pawloski L. C., Meagher R. B. (2002). Both vegetative and reproductive actin isovariants complement the stunted root hair phenotype of the Arabidopsis act2-1 mutation. Plant Physiol. 130, 2199–220910.1104/pp.014068 PubMed DOI PMC
Gilliland L. U., McKinney E. C., Asmussen M. A., Meagher R. B. (1998). Detection of deleterious genotypes in multigenerational studies. I. Disruptions in individual Arabidopsis actin genes. Genetics 149, 717–725 PubMed PMC
Gilliland L. U., Pawloski L. C., Kandasamy M. K., Meagher R. B. (2003). Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J. 33, 319–32810.1046/j.1365-313X.2003.01626.x PubMed DOI
Huang S. R., An Y. Q., McDowell J. M., McKinney E. C., Meagher R. B. (1996a). The Arabidopsis thaliana ACT4/ACT12 actin gene subclass is strongly expressed throughout pollen development. Plant J. 10, 189–20210.1046/j.1365-313X.1996.10020189.x PubMed DOI
Huang S., McDowell J. M., Weise M. J., Meagher R. B. (1996b). The Arabidopsis profilin gene family (evidence for an ancient split between constitutive and pollen-specific profilin genes). Plant Physiol. 111, 115–12610.1104/pp.111.1.115 PubMed DOI PMC
Huang S. R., An Y. Q., McDowell J. M., McKinney E. C., Meagher R. B. (1997). The Arabidopsis ACT11 actin gene is strongly expressed in tissues of the emerging inflorescence, pollen, and developing ovules. Plant Mol. Biol. 33, 125–13910.1023/A:1005741514764 PubMed DOI
Jin S. M., Xu R. L., Wei Y. D., Goodwin P. H. (1999). Increased expression of a plant actin gene during a biotrophic interaction between round-leaved mallow, Malva pusilla, and Colletotrichum gloeosporioides f. sp malvae. Planta 209, 487–49410.1007/s004250050752 PubMed DOI
Kandasamy M. K., Burgos-Rivera B., McKinney E. C., Ruzicka D. R., Meagher R. B. (2007). Class-specific interaction of profilin and ADF isovariants with actin in the regulation of plant development. Plant Cell 19, 3111–312610.1105/tpc.107.052621 PubMed DOI PMC
Kandasamy M. K., Gilliland L. U., McKinney E. C., Meagher R. B. (2001). One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 13, 1541–155410.1105/tpc.13.7.1541 PubMed DOI PMC
Kandasamy M. K., McKinney E. C., Meagher R. B. (1999). The late pollen-specific actins in angiosperms. Plant J. 18, 681–69110.1046/j.1365-313x.1999.00487.x PubMed DOI
Kandasamy M. K., McKinney E. C., Meagher R. B. (2002). Functional nonequivalency of actin isovariants in Arabidopsis. Mol. Biol. Cell 13, 251–26110.1091/mbc.01-07-0342 PubMed DOI PMC
Kandasamy M. K., McKinney E. C., Meagher R. B. (2009). A single vegetative actin isovariant overexpressed under the control of multiple regulatory sequences is sufficient for normal Arabidopsis development. Plant Cell 21, 701–71810.1105/tpc.108.061960 PubMed DOI PMC
Kandasamy M. K., McKinney E. C., Meagher R. B. (2010). Differential sublocalization of actin variants within the nucleus. Cytoskeleton (Hoboken) 67, 729–743 PubMed PMC
Kandasamy M. K., McKinney E. C., Roy E., Meagher R. B. (2012). Plant vegetative and animal cytoplasmic actins share functional competence for spatial development with protists. Plant Cell 24, 2041–205710.1105/tpc.111.095281 PubMed DOI PMC
Le Gall L., Lelong C., Rusig A. M., Favrel P. (2005). Characterization of an actin gene family in Palmaria palmata and Porphyra purpurea (Rhodophyta). Cah. Biol. Mar. 46, 311–322
Li X. B., Fan X. P., Wang X. L., Cai L., Yang W. C. (2005). The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell 17, 859–87510.1105/tpc.104.029629 PubMed DOI PMC
Luo Z. H., Chen Z. X. (2007). Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. Plant Cell 19, 943–95810.1105/tpc.106.045724 PubMed DOI PMC
McDowell J. M., An Y. Q., Huang S. R., McKinney E. C., Meagher R. B. (1996a). The Arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol. 111, 699–71110.1104/pp.111.3.699 PubMed DOI PMC
McDowell J. M., Huang S. R., McKinney E. C., An Y. Q., Meagher R. B. (1996b). Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 142, 587–602 PubMed PMC
Meagher R. B., McKinney E. C., Kandasamy M. K. (1999a). Isovariant dynamics expand and buffer the responses of complex systems: the diverse plant actin gene family. Plant Cell 11, 995–100510.2307/3870793 PubMed DOI PMC
Meagher R. B., McKinney E. C., Vitale A. V. (1999b). The evolution of new structures – clues from plant cytoskeletal genes. Trends Genet. 15, 278–28410.1016/S0168-9525(99)01759-X PubMed DOI
Nishimura T., Yokota E., Wada T., Shimmen T., Okada K. (2003). An Arabidopsis ACT2 dominant-negative mutation, which disturbs F-actin polymerization, reveals its distinctive function in root development. Plant Cell Physiol. 44, 1131–114010.1093/pcp/pcg158 PubMed DOI
Perrin B. J., Ervasti J. M. (2010). The actin gene family: function follows isoform. Cytoskeleton (Hoboken) 67, 630–634 PubMed PMC
Ringli C., Baumberger N., Diet A., Frey B., Keller B. (2002). ACTIN2 is essential for bulge site selection and tip growth during root hair development of Arabidopsis. Plant Physiol. 129, 1464–147210.1104/pp.005777 PubMed DOI PMC
Schwarzerova K., Vondrakova Z., Fischer L., Borikova P., Bellinvia E., Eliasova K., et al. (2010). The role of actin isoforms in somatic embryogenesis in Norway spruce. BMC Plant Biol. 10, 89.10.1186/1471-2229-10-89 PubMed DOI PMC
Smith S. A., Beaulieu J. M., Donoghue M. J. (2010). An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc. Natl. Acad. Sci. U.S.A. 107, 5897–590210.1073/pnas.1000233107 PubMed DOI PMC
Specht C. D., Bartlett M. E. (2009). Flower evolution: the origin and subsequent diversification of the angiosperm flower. Annu. Rev. Ecol. Evol. Syst. 40, 217–24310.1146/annurev.ecolsys.110308.120203 DOI
Staiger C. J., Baluska F., Volkmann D., Barlow P. (2000). Actin: A Dynamic Framework for Multiple Plant Cell Functions. Dordrecht: Springer
Vitale A., Wu R. J., Cheng Z. Q., Meagher R. B. (2003). Multiple conserved 5′ elements are required for high-level pollen expression of the Arabidopsis reproductive actin ACT1. Plant Mol. Biol. 52, 1135–115110.1023/B:PLAN.0000004309.06973.16 PubMed DOI
Wu M., Comeron J. M., Yoon H. S., Bhattacharya D. (2009). Unexpected dynamic gene family evolution in algal actins. Mol. Biol. Evol. 26, 249–25310.1093/molbev/msp184 PubMed DOI
Zhang D. Q., Du Q. Z., Xu B. H., Zhang Z. Y., Li B. L. (2010). The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol. Genet. Genomics 284, 105–11910.1007/s00438-010-0552-5 PubMed DOI
Bundling up the Role of the Actin Cytoskeleton in Primary Root Growth