actin binding protein
Dotaz
Zobrazit nápovědu
Nuclear actin plays an important role in such processes as chromatin remodeling, transcriptional regulation, RNA processing, and nuclear export. Recent research has demonstrated that actin in the nucleus probably exists in dynamic equilibrium between monomeric and polymeric forms, and some of the actin-binding proteins, known to regulate actin dynamics in cytoplasm, have been also shown to be present in the nucleus. In this paper, we present ultrastructural data on distribution of actin and various actin-binding proteins (alpha-actinin, filamin, p190RhoGAP, paxillin, spectrin, and tropomyosin) in nuclei of HeLa cells and resting human lymphocytes. Probing extracts of HeLa cells for the presence of actin-binding proteins also confirmed their presence in nuclei. We report for the first time the presence of tropomyosin and p190RhoGAP in the cell nucleus, and the spatial colocalization of actin with spectrin, paxillin, and alpha-actinin in the nucleolus.
- MeSH
- aktinin MeSH
- aktiny analýza MeSH
- buněčné jádro chemie ultrastruktura MeSH
- financování organizované MeSH
- HeLa buňky MeSH
- jaderné proteiny analýza MeSH
- lidé MeSH
- lymfocyty chemie ultrastruktura MeSH
- mikrofilamentové proteiny analýza MeSH
- paxilin MeSH
- proteiny aktivující GTPasu MeSH
- spektrin MeSH
- tropomyosin MeSH
- Check Tag
- lidé MeSH
BACKGROUND: Antibodies to human sperm are useful diagnostic reagents for detection of changes in sperm protein expression and their relationship with sperm defects and male infertility. The specificity of Hs-16 monoclonal antibody (mAb) and the localization and frequency of the occurrence of Hs-16-recognized protein on human spermatozoa were investigated. METHODS: Samples from 30 fertile men with normal spermiograms and 30 men with pathological spermiograms were studied. The specificity of Hs-16 mAb was analysed by the western blotting technique and matrix-assisted laser desorption/ionization mass spectrometry. Indirect immunofluorescence with Hs-16 antibody was used to test sperm ejaculates. RESULTS: The Hs-16 antibody detected a human sperm and seminal plasma protein, which was determined to be secretory actin-binding protein (SABP). This specificity was also verified by co-localization of SABP and actin on spermatozoa with Hs-16 and anti-actin antibodies, and partial co-localization of these proteins was found. SABP was localized on the sperm tail, mainly in the midpiece of the tail. Other parts of spermatozoa were labelled with lower frequency. A significant difference was found in SABP labelling between men with normal spermiograms and donors with asthenozoospermia or oligoasthenoteratozoospermia (both P < 0.01), and asthenozoospermia versus oligoasthenoteratozoospermia (P < 0.05). Increased expression of SABP was observed in men with pathological spermiograms. CONCLUSIONS: Hs-16 antibody reacts specifically with SABP. SABP can serve as a marker of defective sperm and may be associated with fertility failure.
- MeSH
- aktiny analýza MeSH
- dospělí MeSH
- financování organizované MeSH
- fluorescenční protilátková technika nepřímá MeSH
- lidé MeSH
- mikrofilamentové proteiny biosyntéza sekrece MeSH
- monoklonální protilátky MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- spermie imunologie metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
Although actin monomers polymerize into filaments in the cytoplasm, the form of actin in the nucleus remains elusive. We searched for the form and function of β-actin fused to nuclear localization signal and to enhanced yellow fluorescent protein (EN-actin). Our results reveal that EN-actin is either dispersed in the nucleoplasm (homogenous EN-actin) or forms bundled filaments in the nucleus (EN-actin filaments). Formation of such filaments was not connected with increased EN-actin levels. Among numerous actin-binding proteins tested, only cofilin is recruited to the EN-actin filaments. Overexpression of EN-actin causes increase in the nuclear levels of actin-related protein 3 (Arp3). Although Arp3, a member of actin nucleation complex Arp2/3, is responsible for EN-actin filament nucleation and bundling, the way cofilin affects nuclear EN-actin filaments dynamics is not clear. While cells with homogenous EN-actin maintained unaffected mitosis during which EN-actin re-localizes to the plasma membrane, generation of nuclear EN-actin filaments severely decreases cell proliferation and interferes with mitotic progress. The introduction of EN-actin manifests in two mitotic-inborn defects-formation of binucleic cells and generation of micronuclei-suggesting that cells suffer aberrant cytokinesis and/or impaired chromosomal segregation. In interphase, nuclear EN-actin filaments passed through chromatin region, but do not co-localize with either chromatin remodeling complexes or RNA polymerases I and II. Surprisingly presence of EN-actin filaments was connected with increase in the overall transcription levels in the S-phase by yet unknown mechanism. Taken together, EN-actin can form filaments in the nucleus which affect important cellular processes such as transcription and mitosis.
- MeSH
- aktiny metabolismus MeSH
- bakteriální proteiny metabolismus MeSH
- buněčné jádro metabolismus MeSH
- faktory depolymerizující aktin MeSH
- genetická transkripce MeSH
- HEK293 buňky MeSH
- lidé MeSH
- luminescentní proteiny metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- mitóza genetika MeSH
- nádorové buněčné linie MeSH
- protein 3 související s aktinem biosyntéza metabolismus MeSH
- restrukturace chromatinu MeSH
- RNA-polymerasa I genetika MeSH
- RNA-polymerasa II genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- aktiny chemie metabolismus MeSH
- cytoskeletální proteiny genetika chemie MeSH
- finanční podpora výzkumu jako téma MeSH
- glykoproteiny chemie MeSH
- lidé MeSH
- myši MeSH
- proteiny intermediálních filament genetika chemie metabolismus MeSH
- vazebná místa MeSH
- vimentin genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- srovnávací studie MeSH
The actin cytoskeleton is a dynamic structure that coordinates numerous fundamental processes in eukaryotic cells. Dozens of actin-binding proteins are known to be involved in the regulation of actin filament organization or turnover and many of these are stimulus-response regulators of phospholipid signaling. One of these proteins is the heterodimeric actin-capping protein (CP) which binds the barbed end of actin filaments with high affinity and inhibits both addition and loss of actin monomers at this end. The ability of CP to bind filaments is regulated by signaling phospholipids, which inhibit the activity of CP; however, the exact mechanism of this regulation and the residues on CP responsible for lipid interactions is not fully resolved. Here, we focus on the interaction of CP with two signaling phospholipids, phosphatidic acid (PA) and phosphatidylinositol (4,5)-bisphosphate (PIP(2)). Using different methods of computational biology such as homology modeling, molecular docking and coarse-grained molecular dynamics, we uncovered specific modes of high affinity interaction between membranes containing PA/phosphatidylcholine (PC) and plant CP, as well as between PIP(2)/PC and animal CP. In particular, we identified differences in the binding of membrane lipids by animal and plant CP, explaining previously published experimental results. Furthermore, we pinpoint the critical importance of the C-terminal part of plant CPα subunit for CP-membrane interactions. We prepared a GST-fusion protein for the C-terminal domain of plant α subunit and verified this hypothesis with lipid-binding assays in vitro.
- MeSH
- aktin zastřešující proteiny antagonisté a inhibitory chemie genetika metabolismus MeSH
- fosfatidylinositolfosfáty chemie metabolismus MeSH
- fylogeneze MeSH
- hydrofobní a hydrofilní interakce MeSH
- kur domácí MeSH
- kyseliny fosfatidové chemie metabolismus MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- proteiny huseníčku antagonisté a inhibitory chemie genetika metabolismus MeSH
- ptačí proteiny antagonisté a inhibitory chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- vazba proteinů MeSH
- výpočetní biologie MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non-motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring.
- MeSH
- aktiny metabolismus MeSH
- aktomyosin metabolismus MeSH
- buněčné dělení MeSH
- cytokineze MeSH
- Drosophila melanogaster metabolismus MeSH
- kontraktilní proteiny genetika metabolismus MeSH
- lidé MeSH
- mikrofilamenta metabolismus MeSH
- mikrofilamentové proteiny MeSH
- myosiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of the BBSome, a cargo adaptor essential for export of transmembrane receptors from cilia. Although actin-dependent ectocytosis has been proposed to compensate defective cargo retrieval, its molecular basis remains unclear, especially in relation to BBS pathology. In this study, we investigated how actin polymerization and ectocytosis are regulated within the cilium. Our findings reveal that ciliary CDC42, a RHO-family GTPase triggers in situ actin polymerization, ciliary ectocytosis, and cilia shortening in BBSome-deficient cells. Activation of the Sonic Hedgehog pathway further enhances CDC42 activity specifically in BBSome-deficient cilia. Inhibition of CDC42 in BBSome-deficient cells decreases the frequency and duration of ciliary actin polymerization events, causing buildup of G protein coupled receptor 161 (GPR161) in bulges along the axoneme during Sonic Hedgehog signaling. Overall, our study identifies CDC42 as a key trigger of ciliary ectocytosis. Hyperactive ciliary CDC42 and ectocytosis and the resulting loss of ciliary material might contribute to BBS disease severity.
- MeSH
- aktiny * metabolismus MeSH
- Bardetův-Biedlův syndrom metabolismus genetika patologie MeSH
- cdc42 protein vázající GTP * metabolismus genetika MeSH
- cilie * metabolismus MeSH
- lidé MeSH
- myši MeSH
- proteiny hedgehog * metabolismus MeSH
- receptory spřažené s G-proteiny metabolismus genetika MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The actin family members, consisting of actin and actin-related proteins (ARPs), are essential components of chromatin remodeling complexes. ARP6, one of the nuclear ARPs, is part of the Snf-2-related CREB-binding protein activator protein (SRCAP) chromatin remodeling complex, which promotes the deposition of the histone variant H2A.Z into the chromatin. In this study, we showed that ARP6 influences the structure and the function of the nucleolus. ARP6 is localized in the central region of the nucleolus, and its knockdown induced a morphological change in the nucleolus. We also found that in the presence of high concentrations of glucose ARP6 contributed to the maintenance of active ribosomal DNA (rDNA) transcription by placing H2A.Z into the chromatin. In contrast, under starvation, ARP6 was required for cell survival through the repression of rDNA transcription independently of H2A.Z. These findings reveal novel pleiotropic roles for the actin family in nuclear organization and metabolic homeostasis.
- MeSH
- adenosintrifosfatasy metabolismus MeSH
- aktiny metabolismus fyziologie MeSH
- buněčné jadérko metabolismus fyziologie MeSH
- chromozomální proteiny, nehistonové metabolismus fyziologie MeSH
- genetická transkripce fyziologie MeSH
- glukosa metabolismus MeSH
- HeLa buňky MeSH
- lidé MeSH
- ribozomální DNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
The Arabidopsis EH proteins (AtEH1/Pan1 and AtEH2/Pan1) are components of the endocytic TPLATE complex (TPC) which is essential for endocytosis. Both proteins are homologues of the yeast ARP2/3 complex activator, Pan1p. Here, we show that these proteins are also involved in actin cytoskeleton regulated autophagy. Both AtEH/Pan1 proteins localise to the plasma membrane and autophagosomes. Upon induction of autophagy, AtEH/Pan1 proteins recruit TPC and AP-2 subunits, clathrin, actin and ARP2/3 proteins to autophagosomes. Increased expression of AtEH/Pan1 proteins boosts autophagosome formation, suggesting independent and redundant pathways for actin-mediated autophagy in plants. Moreover, AtEHs/Pan1-regulated autophagosomes associate with ER-PM contact sites (EPCS) where AtEH1/Pan1 interacts with VAP27-1. Knock-down expression of either AtEH1/Pan1 or VAP27-1 makes plants more susceptible to nutrient depleted conditions, indicating that the autophagy pathway is perturbed. In conclusion, we identify the existence of an autophagy-dependent pathway in plants to degrade endocytic components, starting at the EPCS through the interaction among AtEH/Pan1, actin cytoskeleton and the EPCS resident protein VAP27-1.
- MeSH
- aktiny metabolismus MeSH
- Arabidopsis metabolismus ultrastruktura MeSH
- autofagie MeSH
- autofagozomy metabolismus ultrastruktura MeSH
- biologické modely MeSH
- buněčná membrána metabolismus ultrastruktura MeSH
- endocytóza * MeSH
- endoplazmatické retikulum metabolismus ultrastruktura MeSH
- fylogeneze MeSH
- komplex proteinů 2-3 souvisejících s aktinem metabolismus MeSH
- mikrofilamenta metabolismus MeSH
- mikrofilamentové proteiny metabolismus MeSH
- proteiny huseníčku metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH