-
Something wrong with this record ?
Anillin propels myosin-independent constriction of actin rings
O. Kučera, V. Siahaan, D. Janda, SH. Dijkstra, E. Pilátová, E. Zatecka, S. Diez, M. Braun, Z. Lansky
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2015
Free Medical Journals
from 2010
Nature Open Access
from 2010-12-01
PubMed Central
from 2012
Europe PubMed Central
from 2012
ProQuest Central
from 2010-01-01
Open Access Digital Library
from 2015-01-01
Open Access Digital Library
from 2015-01-01
Medline Complete (EBSCOhost)
from 2012-11-01
Health & Medicine (ProQuest)
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
Springer Nature OA/Free Journals
from 2010-12-01
- MeSH
- Actins metabolism MeSH
- Actomyosin metabolism MeSH
- Cell Division MeSH
- Cytokinesis MeSH
- Drosophila melanogaster metabolism MeSH
- Contractile Proteins genetics metabolism MeSH
- Humans MeSH
- Actin Cytoskeleton metabolism MeSH
- Microfilament Proteins MeSH
- Myosins metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non-motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring.
B CUBE Center for Molecular Bioengineering TU Dresden Dresden Germany
Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
Institute of Biotechnology Czech Academy of Sciences BIOCEV Vestec Prague West Czechia
Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025296
- 003
- CZ-PrNML
- 005
- 20240624150911.0
- 007
- ta
- 008
- 211013s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-021-24474-1 $2 doi
- 035 __
- $a (PubMed)34321459
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Kučera, Ondřej $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia $u CytoMorpho Lab, Laboratoire Physiologie Cellulaire & Végétale, Institut de recherche interdisciplinaire de Grenoble, Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Grenoble, France
- 245 10
- $a Anillin propels myosin-independent constriction of actin rings / $c O. Kučera, V. Siahaan, D. Janda, SH. Dijkstra, E. Pilátová, E. Zatecka, S. Diez, M. Braun, Z. Lansky
- 520 9_
- $a Constriction of the cytokinetic ring, a circular structure of actin filaments, is an essential step during cell division. Mechanical forces driving the constriction are attributed to myosin motor proteins, which slide actin filaments along each other. However, in multiple organisms, ring constriction has been reported to be myosin independent. How actin rings constrict in the absence of motor activity remains unclear. Here, we demonstrate that anillin, a non-motor actin crosslinker, indispensable during cytokinesis, autonomously propels the contractility of actin bundles. Anillin generates contractile forces of tens of pico-Newtons to maximise the lengths of overlaps between bundled actin filaments. The contractility is enhanced by actin disassembly. When multiple actin filaments are arranged into a ring, this contractility leads to ring constriction. Our results indicate that passive actin crosslinkers can substitute for the activity of molecular motors to generate contractile forces in a variety of actin networks, including the cytokinetic ring.
- 650 _2
- $a mikrofilamenta $x metabolismus $7 D008841
- 650 _2
- $a aktiny $x metabolismus $7 D000199
- 650 _2
- $a aktomyosin $x metabolismus $7 D000205
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a buněčné dělení $7 D002455
- 650 _2
- $a kontraktilní proteiny $x genetika $x metabolismus $7 D003285
- 650 _2
- $a cytokineze $7 D048749
- 650 _2
- $a Drosophila melanogaster $x metabolismus $7 D004331
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mikrofilamentové proteiny $7 D008840
- 650 _2
- $a myosiny $x metabolismus $7 D009218
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Siahaan, Valerie $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
- 700 1_
- $a Janda, Daniel $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
- 700 1_
- $a Dijkstra, Sietske H $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
- 700 1_
- $a Pilátová, Eliška $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia
- 700 1_
- $a Žatecká, Eva $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia $7 xx0319144
- 700 1_
- $a Diez, Stefan $u B CUBE - Center for Molecular Bioengineering, TU Dresden, Dresden, Germany $u Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany $u Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- 700 1_
- $a Braun, Marcus $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia. marcus.braun@ibt.cas.cz
- 700 1_
- $a Lansky, Zdenek $u Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Vestec, Prague West, Czechia. zdenek.lansky@ibt.cas.cz
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 12, č. 1 (2021), s. 4595
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34321459 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20240624150909 $b ABA008
- 999 __
- $a ok $b bmc $g 1714377 $s 1145803
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 12 $c 1 $d 4595 $e 20210728 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20211013