Antioxidant agents against trichothecenes: new hints for oxidative stress treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
29299181
PubMed Central
PMC5746416
DOI
10.18632/oncotarget.22800
PII: 22800
Knihovny.cz E-zdroje
- Klíčová slova
- T-2 toxin, antioxidant agents, deoxynivalenol, oxidative stress, trichothecenes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Trichothecenes are a group of mycotoxins mainly produced by fungi of genus Fusarium. Due to high toxicity and widespread dissemination, T-2 toxin and deoxynivalenol (DON) are considered to be the most important compounds of this class. Trichothecenes generate free radicals, including reactive oxygen species (ROS), which induce lipid peroxidation, decrease levels of antioxidant enzymes, and ultimately lead to apoptosis. Consequently, oxidative stress is an active area of research on the toxic mechanisms of trichothecenes, and identification of antioxidant agents that could be used against trichothecenes is crucial for human health. Numerous natural compounds have been analyzed and have shown to function very effectively as antioxidants against trichothecenes. In this review, we summarize the molecular mechanisms underlying oxidative stress induced by these compounds, and discuss current knowledge regarding such antioxidant agents as vitamins, quercetin, selenium, glucomannan, nucleotides, antimicrobial peptides, bacteria, polyunsaturated fatty acids, oligosaccharides, and plant extracts. These products inhibit trichothecene-induced oxidative stress by (1) inhibiting ROS generation and induced DNA damage and lipid peroxidation; (2) increasing antioxidant enzyme activity; (3) blocking the MAPK and NF-κB signaling pathways; (4) inhibiting caspase activity and apoptosis; (5) protecting mitochondria; and (6) regulating anti-inflammatory actions. Finally, we summarize some decontamination methods, including bacterial and yeast biotransformation and degradation, as well as mycotoxin-binding agents. This review provides a comprehensive overview of antioxidant agents against trichothecenes and casts new light on the attenuation of oxidative stress.
College of Horticulture and Gardening Yangtze University Jingzhou 434025 China
College of Life Science Institute of Biomedicine Yangtze University Jingzhou 434025 China
Zobrazit více v PubMed
Wu Q, Dohnal V, Kuca K, Yuan Z. Trichothecenes: structure-toxic activity relationships. Curr Drug Metab. 2013;14:641–660. PubMed
Wei S, van der Lee T, Verstappen E, van Gent M, Waalwijk C. Targeting trichothecene biosynthetic genes. Methods Mol Biol. 2017;1542:173–189. PubMed
Wu Q, Vlastimil D, Huang L, Kuca K, Yuan Z. Metabolic pathways of trichothecenes. Drug Metab Rev. 2010;42:250–267. PubMed
Wu QH, Wang X, Yang W, Nüssler AK, Xiong LY, Kuča K, Dohnal V, Zhang XJ, Yuan ZH. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: an update. Arch Toxicol. 2014;88:1309–1326. PubMed
Wu Q, Wang X, Wan D, Li J, Yuan Z. Crosstalk of JNK1-STAT3 is critical for RAW264.7 cell survival. Cell Signal. 2014;26:2951–2960. PubMed
Wu Q, Huang L, Liu Z, Yao M, Wang Y, Dai M, Yuan Z. A comparison of hepatic in vitro metabolism of T-2 toxin in rats, pigs, chickens and carp. Xenobiotica. 2011;41:863–873. PubMed
Liu X, Guo P, Liu A, Wu Q, Xue X, Dai M, Hao H, Qu W, Xie S, Wang X, Yuan Z. Nitric oxide (NO)-mediated mitochondrial damage plays a critical role in T-2 toxin-induced apoptosis and growth hormone deficiency in rat anterior pituitary GH3 cells. Food Chem Toxicol. 2017;102:11–23. PubMed
Beyer M, Ferse I, Mulac D, Wurthwein EU, Humpf HU. Structural elucidation of T-2 toxin thermal degradation products and investigations toward their occurrence in retail food. J Agric Food Chem. 2009;57:1867–1875. PubMed
Morcia C, Tumino G, Ghizzoni R, Badeck FW, Lattanzio VM, Pascale M, Terzi V. Occurrence of Fusarium langsethiae and T-2 and HT-2 Toxins in Italian Malting Barley. Toxins (Basel) 2016 PubMed PMC
Bolechova M, Benesova K, Belakova S, Caslavsky J, Pospichalova M, Mikulikova R. Determination of seventeen mycotoxins in barley and malt in the Czech Republic. Food Control. 2015;47:108–113.
Aureli G, Amoriello T, Belocchi A, D’Egidio MG, Fornara M, Melloni S, Quaranta F. Preliminary survey on the co-occurrence of DON and T2+HT2 toxins in drum wheat in Italy. Cereal Res Commun. 2015;43:481–491.
Kuca K, Pohanka M. Chemical warfare agents. Mol Clin Environ Toxicol. 2010;100:543–558. PubMed
Tucker JB. The “yellow rain” controversy: lessons for arms control compliance. Nonprolif Rev. 2001;8:25–42.
Hendry KM, Cole EC. A review of mycotoxins in indoor air. J Toxicol Environ Health. 1993;38:183–198. PubMed
Bennett JW, Klich M. Mycotoxins. Clin Microbiol Rev. 2003;16:497–516. PubMed PMC
Wang Z, Wu Q, Kuča K, Dohnal V, Tian Z. Deoxynivalenol: signaling pathways and human exposure risk assessment--an update. Arch Toxicol. 2014;88:1915–1928. PubMed
Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald IP. Toxicology of deoxynivalenol and its acetylated and modified forms. Arch Toxicol. 2016;90:2931–2957. PubMed
Lei R, Jiang N, Zhang Q, Hu S, Dennis BS, He S, Guo X. Prevalence of selenium, T-2 toxin, and deoxynivalenol in Kashin-Beck Disease areas in Qinghai province, Northwest China. Biol Trace Elem Res. 2016;171:34–40. PubMed
Malachova A, Dzuman Z, Veprikova Z, Vaclavikova M, Zachariasova M, Hajslova J. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market. J Agric Food Chem. 2011;59:12990–12997. PubMed
Camerini M, Amoriello T, Aureli G, Belocchi A, Fornara M, Melloni S, Quaranta F. Deoxynivalenol content in Italian Organic Durum Wheat: results of a six-year survey. Cereal Res Commun. 2016;44:122–130.
Vidal A, Marín S, Ramos AJ, Cano-Sancho G, Sanchis V. Determination of aflatoxins, deoxynivalenol, ochratoxin A and zearalenone in wheat and oat based bran supplements sold in the Spanish market. Food Chem Toxicol. 2013;53:133–138. PubMed
Pleadin J, Zadravec M, Perši N, Vulić A, Jaki V, Mitak M. Mould and mycotoxin contamination of pig feed in northwest Croatia. Mycotoxin Res. 2012;28:157–162. PubMed
Tran ST, Smith T, Girgis GN. A survey of free and conjugated deoxynivalenol in the 2008 corn crop in Ontario, Canada. J Sci Food Agric. 2012;92:37–41. PubMed
Brockmeyer A, Thielert G. Deoxynivalenol (DON) in Hartweizen. Mycotoxin Res. 2004;20:37–41. PubMed
El Golli E, Hassen W, Bouslimi A, Bouaziz C, Ladjimi MM, Bacha H. Induction of Hsp 70 in Vero cells in response to mycotoxins cytoprotection by sub-lethal heat shock and by. Vitamin E. Toxicol Lett. 2006;166:122–130. PubMed
Krishnaswamy R, Devaraj SN, Padma VV. Lutein protects HT-29 cells against deoxynivalenol-induced oxidative stress and apoptosis: prevention of NF-kappaB nuclear localization and down regulation of NF-kappaB and Cyclo-Oxygenase-2 expression. Free Radic Biol Med. 2010;49:50–60. PubMed
Chaudhary M, Rao PV. Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice. Food Chem Toxicol. 2010;48:3436–3442. PubMed
Wu J, Jing L, Yuan H, Peng S. T-2 toxin induces apoptosis in ovarian granulose cells of rats through reactive oxygen species mediated mitochrondrial pathway. Toxicol Lett. 2011;202:168–177. PubMed
Fang H, Wu Y, Guo J, Rong J, Ma L, Zhao Z, Zuo D, Peng S. T-2 toxin induces apoptosis in differentiated murine embryonic stem cells through reactive oxygen species-mediated mitochondrial pathway. Apoptosis. 2012;17:895–907. PubMed
Chaudhari M, Jayaraj R, Bhaskar AS, Lakshmana Rao PV. Oxidative stress induction by T-2 toxin cause DNA damage and triggers apoptosis via caspase pathway in human cervical cancer cells. Toxicology. 2009;262:153–161. PubMed
Chaudhari M, Jayaraj R, Santhosh SR, Lakshmana Rao PV. Oxidative damage and gene expression profile of antioxidant enzymes after T-2 toxin exposure in mice. J Biochem Mol Toxicol. 2009;23:212–221. PubMed
Sehata S, Kiyosawa N, Atsumi F, Ito K, Yamoto T, Teranishi M, Uetsuka K, Uetsuka K, Nakayama H, Doi K. Microarray analysis of T-2 toxin-induced liver, placenta and fetal liver lesions in pregnant rats. Exp Toxicol Pathol. 2005;57:15–28. PubMed
Van De WJ Romier B, Larondelle Y, Schneider YJ. Influence of deoxynivalenol on NF-κB activation and IL-8 secretion in human intestinal Caco-2 cells. Toxicol lett. 2008;177:205–214. PubMed
Zhou HR, Pestka JJ. Deoxynivalenol-induced apoptosis mediated by p38 MAPK-dependent p53 gene induction in RAW264.7 macrophages. Toxicologist. 2003;72:330.
Bin-Umer MA, McLaughlin JE, Butterly MS, McCormick S, Tumer NE. Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci U S A. 2014;111:11798–11803. PubMed PMC
Li D, Ye Y, Lin S, Deng L, Fan X, Zhang Y, Deng X, Li Y, Yan H, Ma Y. Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: cell-cycle arrest, oxidative stress, and apoptosis. Environ Toxicol Pharmacol. 2014;37:141–149. PubMed
Strasser A, Carra M, Ghareeb K, Awar W, Bohm J. Protective effects of antioxidants on deoxynivalenol-induced damage in murine lymphoma cells. Mycotoxin Res. 2013;29:203–208. PubMed
Leśniak-Walentyn A, Kolesarova A, Medvedova M, Maruniakova N, Capcarova M, Kalafova A, Hrabia A, Sirotkin AV. Proliferation and apoptosis in the rabbit ovary after administration of T-2 toxin and quercetin. J Anim Feed Sci. 2013;22:264–271.
Keshavarz SA, Memarbashi A, Balali M. Preventive effect of selenium on T-2 toxin membrane toxicity. Adv Exp Med Biol. 2001;500:463–466. PubMed
He JW, Hassan YI, Perilla N, Li XZ, Boland GJ, Zhou T. Bacterial epimerization as a route for deoxynivalenol detoxification: the influence of growth and environmental conditions. Front Microbiol. 2016;7:572. PubMed PMC
Xiao H, Wu MM, Tan BE, Yin YL, Li TJ, Xiao DF, Li L. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: I. Growth performance, immune function, and antioxidation capacity. J Anim Sci. 2013;91:4772–4780. PubMed
Bócsai A, Pelyhe C, Zándoki E, Ancsin Z, Szabó-Fodor J, Erdélyi M, Mézes M, Balogh K. Short-term effects of T-2 toxin exposure on some lipid peroxide and glutathione redox parameters of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2016;100:520–525. PubMed
Wu J, Tu D, Yuan LY, Yuan H, Wen LX. T-2 toxin exposure induces apoptosis in rat ovarian granulosa cells through oxidative stress. Environ Toxicol Pharmacol. 2013;36:493–500. PubMed
Ngampongsa S, Hanafusa M, Ando K, Ito K, Kuwahara M, Yamamoto Y, Yamashita M, Tsuru Y, Tsubone H. Toxic effects of T-2 toxin and deoxynivalenol on the mitochondrial electron transport system of cardiomyocytes in rats. J Toxicol Sci. 2013;38:495–502. PubMed
Fang H, Cong L, Zhi Y, Xu H, Jia X, Peng S. T-2 toxin inhibits murine ES cells cardiac differentiation and mitochondrial biogenesis by ROS and p-38 MAPK-mediated pathway. Toxicol Lett. 2016;258:259–266. PubMed
Mu P, Xu M, Zhang L, Wu K, Wu J, Jiang J, Chen Q, Wang L, Tang X, Deng Y. Proteomic changes in chicken primary hepatocytes exposed to T-2 toxin are associated with oxidative stress and mitochondrial enhancement. Proteomics. 2013;13:3175–3188. PubMed
Yuan G, Wang Y, Yuan X, Zhang T, Zhao J, Huang L, Peng S. T-2 toxin induces developmental toxicity and apoptosis in zebrafish embryos. J Environ Sci (China) 2014;26:917–925. PubMed
Weidner M, Hüwel S, Ebert F, Schwerdtle T, Galla HJ, Humpf HU. Influence of T-2 and HT-2 toxin on the blood-brain barrier in vitro: new experimental hints for neurotoxic effects. PLoS One. 2013;8:e60484. PubMed PMC
Chen JH, Xue S, Li S, Wang ZL, Yang H, Wang W, Song D, Zhou X, Chen C. Oxidant damage in Kashin-Beck disease and a rat Kashin-Beck disease model by employing T-2 toxin treatment under selenium deficient conditions. J Orthop Res. 2012;30:1229–1237. PubMed
Matejova I, Faldyna M, Modra H, Blahova J, Palikova M, Markova Z, Franc A, Vicenova M, Vojtek L, Bartonkova J, Sehonova P, Hostovsky M, Svobodova Z. Effect of T-2 toxin-contaminated diet on common carp (Cyprinus carpio L.) Fish Shellfish Immunol. 2017;60:458–465. PubMed
Deng Y, Wang Y, Zhang X, Sun L, Wu C, Shi Q, Wang R, Sun X, Bi S, Gooneratne R. Effects of T-2 toxin on Pacific white shrimp Litopenaeus vannamei: growth, and antioxidant defenses and capacity and histopathology in the hepatopancreas. J Aquat Anim Health. 2017;29:15–25. PubMed
Zhang X, Jiang L, Geng C, Cao J, Zhong L. The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon. 2009;54:513–518. PubMed
Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, Wang Y, Peng X, Cui H, Shen L. Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. Environ Toxicol Pharmacol. 2015;39:339–346. PubMed
Wang X, Xu W, Fan M, Meng T, Chen X, Jiang Y, Zh D, Hu W, Gong J, Feng S, Wu J, Li Y. Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. Environ Toxicol Pharmacol. 2016;43:193–202. PubMed
Yang W, Yu M, Fu J, Bao W, Wang D, Hao L, Yao P, Nüssler AK, Yan H, Liu L. Deoxynivalenol induced oxidative stress and genotoxicity in human peripheral blood lymphocytes. Food Chem Toxicol. 2014;64:383–396. PubMed
Bodea GO, Munteanu MC, Dinu D, Serban AI, Roming FI, Costache M, Dinischiotu A. Influence of deoxynivalenol on the oxidative status of HepG2 cells. Rom Biotechnol Lett. 2009;14:4349–4359.
Zhuang Z, Yang D, Huang Y, Wang S. Study on the apoptosis mechanism induced by T-2 toxin. PLoS One. 2013;8:e831. PubMed PMC
Bocsai A, Ancsin Z, Fernye C, Zandoki E, Szabo-Fodor J, Erdelyi M, Mezes M, Balogh K. Dose-dependent short-term effects of T-2 toxin exposure on lipid peroxidation and antioxidant parameters of laying hens. Eur Poult Sci. 2015 https://doi.org/10.1399/eps.2015.115 DOI
Rizzo AF, Atroshi F, Ahotupa M, Sankari S, Elovaara E. Protective effect of antioxidants against free radical-mediated lipid peroxidation induced by DON or T-2 toxin. Zentralbl Veterinarmed A. 1994;41:81–90. PubMed
Rehak M, Fric E, Wiedemann P. [Lutein and antioxidants in the prevention of age-related macular degeneration]. [Article in German] Opththalmologe. 2008;105:37–38. PubMed
Atroshi F, Rizzo A, Biese I, Veijalainen P, Antila E, Westermarck T. T-2 toxin-induced DNA damage in mouse livers, the effect of pretreatment with coenzyme Q10 and alpha-tocopherol. Mol Aspects Med. 1997;18:255–258. PubMed
Capcarova M, Petruska P, Zbynovska K, Kolesarova A, Sirotkin AV. Changes in antioxidant status of porcine ovarian granulosa cells after quercetin and T-2 toxin treatment. J Environ Sci Health B. 2015;50:201–206. PubMed
Wrobel JK, Power R, Toborek M. Biological activity of selenium: revisited. IUBMB Life. 2016;68:97–105. PubMed
Kieliszek M, Błażejak S. Current knowledge on the importance of selenium in food for living organisms: a review. Molecules. 2016 PubMed PMC
Salimian J, Arefpour MA, Riazipour M, Poursasan N. Immunomodulatory effects of selenium and vitamin E on alterations in T lymphocyte subsets induced by T-2 toxin. Immunopharmacol Immunotoxicol. 2014;36:275–281. PubMed
Yao YF, Pei FX, Kang PD. Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition. 2011;27:1095–1100. PubMed
Guan F, Li SY, Wang ZL, Yang HJ, Xue SH, Wang W, Song DQ, Zhou XR, Zhou W, Chen JH, Caterson B, Hughes C. Histopathology of chondronecrosis development in knee articular cartilage in a rat model of Kashin–Beck disease using T-2 toxin and selenium deficiency conditions. Rheumatol Int. 2013;33:157–166. PubMed
Tan JA, Zhu WY, Wang WY, Li RB, Zou SF, Wang DC, Yang LS. Selenium in soil and endemic diseases in China. Sci Total Environ. 2002;284:227–235. PubMed
Han J, Guo X. Down-regulation of ATF2 in the inhibition of T-2-toxininduced chondrocyte apoptosis by selenium chondroitin sulfate nanoparticles. J Nanopart Res. 2013;15:2037.
Keithley J, Swanson B. Glucomannan and obesity: a critical review. Altern Ther Health Med. 2005;11:30–34. PubMed
González Canga A, Fernández Martínez N, Sahagún AM, García Vieitez JJ, Díez Liébana MJ, Calle Pardo AP, Castro Robles LJ, Sierra Vega M. Glucomannan: properties and therapeutic applications. Nutr Hosp. 2004;19:45–50. PubMed
Meissonnier GM, Raymond I, Laffitte J, Cossalter AM, Pinton P, Benoit E, Bertin G, Galtier P, Oswald IP. Dietary glucomannan improves the vaccinal response in pigs exposed to aflatoxin B-1 or T-2 toxin. World Mycotoxin J. 2009;2:161–172.
Verbrugghe E, Croubels S, Vandenbroucke V, Goossens J, De Backer P, Eeckhout M, De Saeger S, Boyen F, Leyman B, Van Parys A, Haesebrouck F, Pasmans F. A modified glucomannan mycotoxin-adsorbing agent counteracts the reduced weight gain and diminishes cecal colonization of Salmonella Typhimurium in T-2 toxin exposed pigs. Res Vet Sci. 2012;93:1139–1141. PubMed
Dvorska JE, Pappas AC, Karadas F, Speake BK, Surai PF. Protective effect of modified glucomannans and organic selenium against antioxidant depletion in the chicken liver due to T-2 toxin-contaminated feed consumption. Comp Biochem Physiol C Toxicol Pharmacol. 2007;145:582–587. PubMed
Hou R, Jiang C, Zheng Q, Wang CF, Xu JR. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Mol Plant Pathol. 2015;16:987–999. PubMed PMC
Ueno T, Yamada M, Sugita Y, Ogawa T. N-acetylcysteine protects TMJ chondrocytes from oxidative stress. J Dent Res. 2011;90:353–359. PubMed
He SJ, Hou JF, Dai YY, Zhou ZL, Deng YF. N-acetyl-cysteine protects chicken growth plate chondrocytes from T-2 toxin-induced oxidative stress. J Appl Toxicol. 2012;32:980–985. PubMed
Wu L, Wang W, Yao K, Zhou T, Yin J, Li T, Yang L, He L, Yang X, Zhang H, Wang Q, Huang R, Yin Y. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLoS One. 2013;8:e69502. PubMed PMC
Wu M, Xiao H, Ren W, Yin J, Tan B, Liu G, Li L, Nyachoti CM, Xiong X, Wu G. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol. PLoS One. 2014;9:e100591. PubMed PMC
Oyanagi E, Yano H, Uchida M, Utsumi K, Sasaki J. Protective action of L-carnitine on cardiac mitochondrial function and structure against fatty acid stress. Biochem Biophys Res Commun. 2011;412:61–67. PubMed
Moosavi M, Rezaei M, Kalantari H, Behfar A, Varnaseri G. l-carnitine protects rat hepatocytes from oxidative stress induced by T-2 toxin. Drug Chem Toxicol. 2016;39:445–450. PubMed
Frankic T, Pajk T, Rezar V, Levart A, Salobir J. The role of dietary nucleotides in reduction of DNA damage induced by T-2 toxin and deoxynivalenol in chicken leukocytes. Food Chem Toxicol. 2006;44:1838–1844. PubMed
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol. 2005;3:238–250. PubMed
Xiao H, Tan BE, Wu MM, Yin YL, Li TJ, Yuan DX, Li L. Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function. J Anim Sci. 2013;91:4750–4756. PubMed
Kalaiselvi P, Rajashree K, Priya LB, Padma VV. Cytoprotective effect of epigallocatechin-3-gallate against deoxynivalenol-induced toxicity through anti-oxidative and anti-inflammatory mechanisms in HT-29 cells. Food Chem Toxicol. 2013;56:110–118. PubMed
Schwaiger S, Cervellati R, Seger C, Ellmerer EP, About N, Renimel I, Godenir C, Andre P, Gafne F, Stuppner H. Leontopodic acid—a novel highly substituted glucaric acid derivative from Edelweiss (Leontopodium alpinum Cass.) and its antioxidative and DNA protecting properties. Tetrahedron. 2005;61:4621–4630.
Costa S, Schwaiger S, Cervellati R, Stuppner H, Speroni E, Guerra MC. In vitro evaluation of the chemoprotective action mechanisms of leontopodic acid against aflatoxin B1 and deoxynivalenol-induced cell damage. J Appl Toxicol. 2009;29:7–14. PubMed
Hemmati AA, Kalantari H, Jalali A, Rezai S, Zadeh HH. Healing effect of quince seed mucilage on T-2 toxin-induced dermal toxicity in rabbit. Exp Toxicol Pathol. 2012;64:181–186. PubMed
Silva BM, Andrade PB, Ferreres F, Seabra RM, Oliveira MB, Ferreira MA. Composition of quince (Cydonia oblonga Miller) seeds: phenolics, organic acids and free amino acids. Nat Prod Res. 2005;19:275–281. PubMed
Magalhaes AS, Silva BM, Pereira JA, Andrade PB, Valentao P, Carvalho M. Protective effect of quince (Cydonia oblonga Miller) fruit against oxidative hemolysis of human erythrocytes. Food Chem Toxicol. 2009;47:1372–1377. PubMed
El-Saw NM, Al-Seeni MN. Assessment of flavonoids as rutin for detoxification of T-2 toxin. J Appl Anim Res. 2009;35:57–60.
Leal M, Shimada A, Ruíz F, González E, Mejía D. Effect of lycopene on lipid peroxidation and glutathione-dependent enzymes induced by T-2 toxin in vivo. Toxicol Lett. 1999;109:1–10. PubMed
Yang X, Li L, Duan Y, Yang X. Antioxidant activity of Lactobacillus plantarum JM113 in vitro and its protective effect on broiler chickens challenged with deoxynivalenol. J Anim Sci. 2017;95:837–846. PubMed
Wan ML, Turner PC, Allen KJ, El-Nezami H. Lactobacillus rhamnosus GG modulates intestinal mucosal barrier and inflammation in mice following combined dietary exposure to deoxynivalenol and zearalenone. J Funct Foods. 2016;22:34–43.
Shi Y, Pestka JJ. Attenuation of mycotoxin-induced IgA nephropathy by eicosapentaenoic acid in the mouse: dose response and relation to IL-6 expression. J Biochem. 2006;17:697–706. PubMed
Donadio JV, Grande JP. The role of fish oil/omega-3 fatty acids in the treatment of IgA nephropathy. Semin Nephrol. 2004;24:225–243. PubMed
Shi Y, Pestka JJ. Mechanisms for suppression of interleukin-6 expression in peritoneal macrophages from docosahexaenoic acid-fed mice. J Nutr Biochem. 2009;20:358–368. PubMed PMC
Akbari P, Braber S, Alizadeh A, Verheijden KA, Schoterman MH, Kraneveld AD, Garssen J, Fink-Gremmels J. Galacto-oligosaccharides protect the intestinal barrier by maintaining the tight junction network and modulating the inflammatory responses after a challenge with the mycotoxin deoxynivalenol in Human caco-2 cell monolayers and B6C3F1 mice. J Nutr. 2015;145:1604–1613. PubMed
Alizadeh A, Braber S, Akbari P, Kraneveld A, Garssen J, Fink-Gremmels J. Deoxynivalenol and its modified forms: are there major differences? Toxins (Basel) 2016 PubMed PMC
Wu Q, Jezkova A, Yuan Z, Pavlikova L, Dohnal V, Kuca K. Biological degradation of aflatoxins. Drug Metab Rev. 2009;41:1–7. PubMed
Awad WA, Ghareeb K, Bohm J, Zentek J. Decontamination and detoxification strategies for the Fusarium mycotoxi deoxynivalenol in animal feed and the effectiveness of microbial biodegradation. Food Addit Contam. 2010;27:510–520. PubMed
Leroy F, De Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol. 2004;15:67–78.
Franco TS, Garcia S, Hirooka EY, Ono YS, dos Santos JS. Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. J Appl Microbiol. 2011;111:739–748. PubMed
Dalié DKD, Deschamps AM, Richard-Forget F. Lactic acid bacteria – potential for control of mould growth and mycotoxins: a review. Food Control. 2010;21:370–380.
Zou ZY, He ZF, Li HJ, Han PF, Meng X, Zhang Y, Zhou F, Ouyang KP, Chen XY, Tang J. In vitro removal of deoxynivalenol and T-2 toxin by Lactic acid bacteria. Food Sci Biotechnol. 2012;21:1677–1683.
Zhao L, Li X, Ji C, Rong X, Liu S, Zhang J, Ma Q. Protective effect of Devosia sp. ANSB714 on growth performance, serum chemistry, immunity function and residues in kidneys of mice exposed to deoxynivalenol. Food Chem Toxicol. 2016;92:143–149. PubMed
Gastélum-Martínez E, Compant S, Taillandier P, Mathieu F. Control of T-2 toxin in Fusarium langsethiae and Geotrichum candidum co-culture. Arh Hig Rada Toksikol. 2012;63:447–456. PubMed
McCormick SP, Price NP, Kurtzman CP. Glucosylation and other biotransformations of T-2 toxin by yeasts of the trichomonascus clade. Appl Environ Microbiol. 2012;78:8694–8702. PubMed PMC
de Souza AF, Borsato D, Lofrano AD, de Oliyeira AS, Ono MA, Bordini JG, Hirozawa MT, Yabe MJ, Ono EY. In vitro removal of deoxynivalenol by a mixture of organic and inorganic adsorbents. World Mycotoxin J. 2015;8:113–119.
Weaver AC, See MT, Hansen JA, Kim YB, De Souza AL, Middleton TF, Kim SW. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins (Basel) 2013;5:1261–1281. PubMed PMC
Diaz GJ, Vargas ML, Cortes A. Evaluation of the supplementation of a feed additive as a potential protector against the adverse effects of 2.5 ppm T-2 toxin on growing broiler chickens. Arq Bras Med Vet Zootec. 2016;68:709–715.
Schatzmayr G, Zehner F, Taubel M, Schatzmayr D, Klimitsch A, Loibner AP, Binder EM. Microbiologicals for deactivating mycotoxins. Mol Nutr Food Res. 2006;50:543–551. PubMed
Huwig A, Freimund S, Kappeli O, Dutler H. Mycotoxin detoxification of animal feed by different absorbents. Toxicol Lett. 2001;122:179–188. PubMed
Ramos AJ, Fink-Gremmels J, Hernandez E. Prevention of toxic effects of mycotoxins by means of nonnutritive adsorbent compounds. J Food Prot. 1996;59:631–641. PubMed
Choy JH, Choi SJ, Oh JM, Park T. Clay minerals and layered double hydroxides for novel biological applications. Appl Clay Sci. 2007;36:122–132.
Wang L, Luo Y, Luo X, Wang R, Li Y, Li Y, Shao H, Chen Z. Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control. 2016;66:137–144.
Bai X, Sun C, Liu D, Luo X, Li D, Wang J, Wang N, Chang X, Zong R, Zhu Y. Photocatalytic degradation of deoxynivalenol using graphene/ZnOhybrids in aqueous suspension. Appl Catal B. 2017;204:11–20.
Wu Q, Dohnal V, Huang L, Kuca K, Wang X, Chen G, Yuan Z. Metabolic pathways of ochratoxin A. Curr Drug Metab. 2010;12:1–10. PubMed
Kőszegi T, Poór M. Ochratoxin A: molecular interactions, mechanisms of toxicity and prevention at the molecular level. Toxins (Basel) 2016;8:111. PubMed PMC
Costa S, Utan A, Cervellati R, Speroni E, Guerra MC. Catechins: natural free-radical scavengers against Ochratoxin A-induced cell damage in a pig kidney cell line (LLC-PK1) Food Chem Toxicol. 2007;45:1910–1917. PubMed
Baldi A, Losio MN, Cheli F, Rebucci R, Sangalli L, Fusi E, Bertasi B, Pavoni E, Carli S, Politis I. Evaluation of the protective effects of alpha-tocopherol and retinol against Ochratoxin A cytotoxicity. Br J Nutr. 2004;91:507–512. PubMed
Ramyaa P, Padma VV. Ochratoxin-induced toxicity, oxidative stress and apoptosis ameliorated by quercetin—modulation by Nrf2. Food Chem Toxicol. 2013;62:205–216. PubMed
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–247. PubMed
Finkel T. Oxidant signals and oxidative stress. Curr Opin Cell Biol. 2003;15:247–254. PubMed
Ozben T. Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci. 2007;96:2181–2196. PubMed
Köster S, Upadhyay S, Chandra P, Papavinasasundaram K, Yang G, Hassan A, Grigsby SJ, Mittal E, Park HS, Jones V, Hsu FF, Jackson M, Sassetti CM, Philips JA. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc Natl Acad Sci U S A. 2017 https://doi.org/10.1073/pnas.1707792114 PubMed DOI PMC
Bryk R, Lima CD, Erdjument-Bromage H, Tempst P, Nathan C. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science. 2002;295:1073–1077. PubMed
Wu Q, Kuča K, Humpf HU, Klímová B, Cramer B. Fate of deoxynivalenol and deoxynivalenol-3-glucoside during cereal-based thermal food processing: a review study. Mycotoxin Res. 2017;33:79–91. PubMed
Schmidt H, Becker S, Cramer B, Humpf HU. Impact of mechanical and thermal energies on the degradation of T 2 and HT 2 toxins during extrusion cooking of oat flour. J Agr Food Chem. 2017;65:4177–4183. PubMed