Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS

. 2020 Nov 05 ; 11 (1) : 5614. [epub] 20201105

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33154382

Grantová podpora
082381 Wellcome Trust - United Kingdom
T32 GM007200 NIGMS NIH HHS - United States
MR/R004544/1 Medical Research Council - United Kingdom
MR/R004463/1 Medical Research Council - United Kingdom

Odkazy

PubMed 33154382
PubMed Central PMC7645621
DOI 10.1038/s41467-020-19436-y
PII: 10.1038/s41467-020-19436-y
Knihovny.cz E-zdroje

Adult mammalian central nervous system axons have intrinsically poor regenerative capacity, so axonal injury has permanent consequences. One approach to enhancing regeneration is to increase the axonal supply of growth molecules and organelles. We achieved this by expressing the adaptor molecule Protrudin which is normally found at low levels in non-regenerative neurons. Elevated Protrudin expression enabled robust central nervous system regeneration both in vitro in primary cortical neurons and in vivo in the injured adult optic nerve. Protrudin overexpression facilitated the accumulation of endoplasmic reticulum, integrins and Rab11 endosomes in the distal axon, whilst removing Protrudin's endoplasmic reticulum localization, kinesin-binding or phosphoinositide-binding properties abrogated the regenerative effects. These results demonstrate that Protrudin promotes regeneration by functioning as a scaffold to link axonal organelles, motors and membranes, establishing important roles for these cellular components in mediating regeneration in the adult central nervous system.

Zobrazit více v PubMed

Huebner EA, Strittmatter SM. Axon regeneration in the peripheral and central nervous systems. Results Probl. Cell Differ. 2009;48:339–351. PubMed PMC

Nicholls J, Saunders N. Regeneration of immature mammalian spinal cord after injury. Trends Neurosci. 1996;19:229–234. doi: 10.1016/0166-2236(96)10021-7. PubMed DOI

Bradke F, Marín O. Editorial overview: development and regeneration: Nervous system development and regeneration. Curr. Opin. Neurobiol. 2014;27:iv–vi. doi: 10.1016/j.conb.2014.05.007. PubMed DOI

Tedeschi A, Bradke F. Spatial and temporal arrangement of neuronal intrinsic and extrinsic mechanisms controlling axon regeneration. Curr. Opin. Neurobiol. 2017;42:118–127. doi: 10.1016/j.conb.2016.12.005. PubMed DOI

He Z, Jin Y. Intrinsic control of axon regeneration. Neuron. 2016;90:437–451. doi: 10.1016/j.neuron.2016.04.022. PubMed DOI

Puttagunta R, et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat. Commun. 2014;5:3527. doi: 10.1038/ncomms4527. PubMed DOI

Gaub P, et al. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ. 2010;17:1392–1408. doi: 10.1038/cdd.2009.216. PubMed DOI

Park KK, et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science. 2008;322:963–966. doi: 10.1126/science.1161566. PubMed DOI PMC

Sun F, et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature. 2011;480:372–375. doi: 10.1038/nature10594. PubMed DOI PMC

Liu K, et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 2010;13:1075–1081. doi: 10.1038/nn.2603. PubMed DOI PMC

Blanquie O, Bradke F. Cytoskeleton dynamics in axon regeneration. Curr. Opin. Neurobiol. 2018;51:60–69. doi: 10.1016/j.conb.2018.02.024. PubMed DOI

Erturk A, Hellal F, Enes J, Bradke F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 2007;27:9169–9180. doi: 10.1523/JNEUROSCI.0612-07.2007. PubMed DOI PMC

Tedeschi A, et al. ADF/cofilin-mediated actin turnover promotes axon regeneration in the adult CNS. Neuron. 2019;103:1073–1085. doi: 10.1016/j.neuron.2019.07.007. PubMed DOI PMC

Ruschel J, et al. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science. 2015;348:347–352. doi: 10.1126/science.aaa2958. PubMed DOI PMC

Cheah M, et al. Expression of an activated integrin promotes long-distance sensory axon regeneration in the spinal cord. J. Neurosci. 2016;36:7283–7297. doi: 10.1523/JNEUROSCI.0901-16.2016. PubMed DOI PMC

Nieuwenhuis B, Haenzi B, Andrews MR, Verhaagen J, Fawcett JW. Integrins promote axonal regeneration after injury of the nervous system. Biol. Rev. 2018;93:1339–1362. doi: 10.1111/brv.12398. PubMed DOI PMC

Andrews MR, et al. 9 Integrin promotes neurite outgrowth on tenascin-C and enhances sensory axon regeneration. J. Neurosci. 2009;29:5546–5557. doi: 10.1523/JNEUROSCI.0759-09.2009. PubMed DOI PMC

Eva R, Koseki H, Kanamarlapudi V, Fawcett JW. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J. Cell Sci. 2017;130:3663–3675. doi: 10.1242/jcs.207423. PubMed DOI PMC

Koseki H, et al. Selective rab11 transport and the intrinsic regenerative ability of CNS axons. Elife. 2017;6:e26956. doi: 10.7554/eLife.26956. PubMed DOI PMC

Fawcett JW. The struggle to make CNS axons regenerate: why has it been so difficult? Neurochem. Res. 2020;45:144–158. doi: 10.1007/s11064-019-02844-y. PubMed DOI PMC

Shirane M, Nakayama KI. Protrudin induces neurite formation by directional membrane trafficking. Science. 2006;314:818–821. doi: 10.1126/science.1134027. PubMed DOI

Raiborg C, et al. Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature. 2015;520:234–238. doi: 10.1038/nature14359. PubMed DOI

Chang J, Lee S, Blackstone C. Protrudin binds atlastins and endoplasmic reticulum-shaping proteins and regulates network formation. Proc. Natl Acad. Sci. USA. 2013;110:14954–14959. doi: 10.1073/pnas.1307391110. PubMed DOI PMC

Saita S, Shirane M, Natume T, Iemura S, Nakayama KI. Promotion of neurite extension by protrudin requires its interaction with vesicle-associated membrane protein-associated protein. J. Biol. Chem. 2009;284:13766–13777. doi: 10.1074/jbc.M807938200. PubMed DOI PMC

Gil J-E, et al. Phosphoinositides differentially regulate protrudin localization through the FYVE domain. J. Biol. Chem. 2012;287:41268–41276. doi: 10.1074/jbc.M112.419127. PubMed DOI PMC

Nieuwenhuis, B. et al. PI3‐kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS. EMBO Mol. Med. 12, e11674 (2020). PubMed PMC

Matsuzaki F, Shirane M, Matsumoto M, Nakayama KI. Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Mol. Biol. Cell. 2011;22:4602–4620. doi: 10.1091/mbc.e11-01-0068. PubMed DOI PMC

Tedeschi A, et al. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron. 2016;92:419–434. doi: 10.1016/j.neuron.2016.09.026. PubMed DOI

Eva R, et al. Rab11 and its effector rab coupling protein contribute to the trafficking of 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells. J. Neurosci. 2010;30:11654–11669. doi: 10.1523/JNEUROSCI.2425-10.2010. PubMed DOI PMC

Lee CA, Blackstone C. ER morphology and endo-lysosomal crosstalk: functions and disease implications. Biochimica et. Biophysica Acta - Mol. Cell Biol. Lipids. 2020;1865:158544. doi: 10.1016/j.bbalip.2019.158544. PubMed DOI PMC

Wu Y, et al. Contacts between the endoplasmic reticulum and other membranes in neurons. Proc. Natl Acad. Sci. USA. 2017;114:E4859–E4867. doi: 10.1073/pnas.1701078114. PubMed DOI PMC

Yalçın, B. et al. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. Elife6, e23882 (2017). PubMed PMC

Guo Y, et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell. 2018;175:1430–1442. doi: 10.1016/j.cell.2018.09.057. PubMed DOI

Farías GG, et al. Feedback-driven mechanisms between microtubules and the endoplasmic reticulum instruct neuronal polarity. Neuron. 2019;102:184–201. doi: 10.1016/j.neuron.2019.01.030. PubMed DOI

Williams PA, et al. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science. 2017;355:756–760. doi: 10.1126/science.aal0092. PubMed DOI PMC

Bull ND, et al. Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. Investig. Ophthalmol. Vis. Sci. 2011;52:3309–3320. doi: 10.1167/iovs.10-6873. PubMed DOI PMC

Pattamatta U, McPherson Z, White A. A mouse retinal explant model for use in studying neuroprotection in glaucoma. Exp. Eye Res. 2016;151:38–44. doi: 10.1016/j.exer.2016.07.010. PubMed DOI

Andrews, M. R. et al. Axonal localization of integrins in the CNS is neuronal type and age dependent. eNeuro3, ENEURO.0029-16 (2016). PubMed PMC

Petrova V, Eva R. The virtuous cycle of axon growth: axonal transport of growth‐promoting machinery as an intrinsic determinant of axon regeneration. Dev. Neurobiol. 2018;78:898–925. doi: 10.1002/dneu.22608. PubMed DOI

Romanelli RJ, et al. Insulin-like growth factor type-I receptor internalization and recycling mediate the sustained phosphorylation of Akt. J. Biol. Chem. 2007;282:22513–22524. doi: 10.1074/jbc.M704309200. PubMed DOI

Hollis ER, Lu P, Blesch A, Tuszynski MH, Tuszynski MH. IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp. Neurol. 2009;215:53–59. doi: 10.1016/j.expneurol.2008.09.014. PubMed DOI PMC

Hollis ER, Jamshidi P, Low K, Blesch A, Tuszynski MH. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc. Natl Acad. Sci. 2009;106:7215–7220. doi: 10.1073/pnas.0810624106. PubMed DOI PMC

Campa CC, Hirsch E. Rab11 and phosphoinositides: a synergy of signal transducers in the control of vesicular trafficking. Adv. Biol. Regul. 2017;63:132–139. doi: 10.1016/j.jbior.2016.09.002. PubMed DOI

Rao K, et al. Spastin, atlastin, and ER relocalization are involved in axon but not dendrite regeneration. Mol. Biol. Cell. 2016;27:3245–3256. doi: 10.1091/mbc.E16-05-0287. PubMed DOI PMC

Raiborg C, Wenzel EM, Pedersen NM, Stenmark H. ER-endosome contact sites in endosome positioning and protrusion outgrowth. Biochemical Soc. Trans. 2016;44:441–446. doi: 10.1042/BST20150246. PubMed DOI

Bradke F, Fawcett JW, Spira ME. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat. Rev. Neurosci. 2012;13:183–193. doi: 10.1038/nrn3176. PubMed DOI

Bainbridge JWB, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med. 2008;358:2231–2239. doi: 10.1056/NEJMoa0802268. PubMed DOI

Connell, J. W. et al. ESCRT-III-associated proteins and spastin inhibit protrudin-dependent polarised membrane traffic. Cell. Mol. Life Sci. 77, 2641–2658 (2019). PubMed PMC

Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Pearson, C. S., Mencio, C. P., Barber, A. C., Martin, K. R. & Geller, H. M. Identification of a critical sulfation in chondroitin that inhibits axonal regeneration. Elife7, e37139 (2018). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...