PI 3-kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G0300336
Medical Research Council - United Kingdom
MR/K017047/1
Medical Research Council - United Kingdom
T32 GM007200
NIGMS NIH HHS - United States
MR/R004463/1
Medical Research Council - United Kingdom
BBS/E/B/000C0409
Biotechnology and Biological Sciences Research Council - United Kingdom
Wellcome Trust - United Kingdom
MR/R004544/1
Medical Research Council - United Kingdom
PubMed
32558386
PubMed Central
PMC7411663
DOI
10.15252/emmm.201911674
Knihovny.cz E-zdroje
- Klíčová slova
- CNS axon regeneration, axon transport, optic nerve, p110 delta, phosphoinositide 3-kinase,
- MeSH
- axony * MeSH
- centrální nervový systém MeSH
- dospělí MeSH
- fosfatidylinositol-3-kinasy * MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- neurony MeSH
- regenerace nervu MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Peripheral nervous system (PNS) neurons support axon regeneration into adulthood, whereas central nervous system (CNS) neurons lose regenerative ability after development. To better understand this decline whilst aiming to improve regeneration, we focused on phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol (3,4,5)-trisphosphate (PIP3 ). We demonstrate that adult PNS neurons utilise two catalytic subunits of PI3K for axon regeneration: p110α and p110δ. However, in the CNS, axonal PIP3 decreases with development at the time when axon transport declines and regenerative competence is lost. Overexpressing p110α in CNS neurons had no effect; however, expression of p110δ restored axonal PIP3 and increased regenerative axon transport. p110δ expression enhanced CNS regeneration in both rat and human neurons and in transgenic mice, functioning in the same way as the hyperactivating H1047R mutation of p110α. Furthermore, viral delivery of p110δ promoted robust regeneration after optic nerve injury. These findings establish a deficit of axonal PIP3 as a key reason for intrinsic regeneration failure and demonstrate that native p110δ facilitates axon regeneration by functioning in a hyperactive fashion.
Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Vic Australia
Department of Neuroscience Carleton University Ottawa ON Canada
Department of Pathology University of Cambridge Cambridge UK
Institute of Biochemistry Charité Universitätsmedizin Berlin Berlin Germany
Laboratory of Lymphocyte Signalling and Development Babraham Institute Cambridge UK
MRC Centre for Regenerative Medicine University of Edinburgh Edinburgh UK
Ophthalmology Department of Surgery University of Melbourne Melbourne Vic Australia
Zobrazit více v PubMed
Agostinone J, Alarcon‐Martinez L, Gamlin C, Yu WQ, Wong ROL, Di Polo A (2018) Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury. Brain 141: 1963–1980 PubMed PMC
Al‐Ali H, Ding Y, Slepak T, Wu W, Sun Y, Martinez Y, Xu XM, Lemmon VP, Bixby JL (2017) The mTOR substrate S6 Kinase 1 (S6K1) is a negative regulator of axon regeneration and a potential drug target for central nervous system injury. J Neurosci 37: 7079–7095 PubMed PMC
Andrews MR, Soleman S, Cheah M, Tumbarello DA, Mason MR, Moloney E, Verhaagen J, Bensadoun JC, Schneider B, Aebischer P et al (2016) Axonal localization of integrins in the CNS is neuronal type and age dependent. eNeuro 10.1523/ENEURO.0029-16.2016 PubMed DOI PMC
Ascano M, Richmond A, Borden P, Kuruvilla R (2009) Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. J Neurosci 29: 11674–11685 PubMed PMC
Bilanges B, Posor Y, Vanhaesebroeck B (2019) PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol 20: 515–534 PubMed
Blackmore MG, Wang Z, Lerch JK, Motti D, Zhang YP, Shields CB, Lee JK, Goldberg JL, Lemmon VP, Bixby JL (2012) Kruppel‐like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc Natl Acad Sci USA 109: 7517–7522 PubMed PMC
Campa CC, Hirsch E (2017) Rab11 and phosphoinositides: a synergy of signal transducers in the control of vesicular trafficking. Adv Biol Regul 63: 132–139 PubMed
Cheah M, Andrews MR, Chew DJ, Moloney EB, Verhaagen J, Fassler R, Fawcett JW (2016) Expression of an activated integrin promotes long‐distance sensory axon regeneration in the spinal cord. J Neurosci 36: 7283–7297 PubMed PMC
Cheng PL, Song AH, Wong YH, Wang S, Zhang X, Poo MM (2011) Self‐amplifying autocrine actions of BDNF in axon development. Proc Natl Acad Sci USA 108: 18430–18435 PubMed PMC
Curcio M, Bradke F (2018) Axon regeneration in the central nervous system: facing the challenges from the inside. Annu Rev Cell Dev Biol 34: 495–521 PubMed
De Sousa PA, Tye BJ, Bruce K, Dand P, Russell G, Collins DM, Greenshields A, McDonald K, Bradburn H, Allan D et al (2016) Derivation of the clinical grade human embryonic stem cell line RCe021‐A (RC‐17). Stem Cell Res 17: 1–5 PubMed
Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR (2015) Subtype‐specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85: 1244–1256 PubMed PMC
Eickholt BJ, Ahmed AI, Davies M, Papakonstanti EA, Pearce W, Starkey ML, Bilancio A, Need AC, Smith AJ, Hall SM et al (2007) Control of axonal growth and regeneration of sensory neurons by the p110delta PI 3‐kinase. PLoS ONE 2: e869 PubMed PMC
Eva R, Dassie E, Caswell PT, Dick G, Ffrench‐Constant C, Norman JC, Fawcett JW (2010) Rab11 and its effector Rab coupling protein contribute to the trafficking of beta 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells. J Neurosci 30: 11654–11669 PubMed PMC
Eva R, Koseki H, Kanamarlapudi V, Fawcett JW (2017) EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J Cell Sci 130: 3663–3675 PubMed PMC
Fagoe ND, Attwell CL, Kouwenhoven D, Verhaagen J, Mason MR (2015) Overexpression of ATF3 or the combination of ATF3, c‐Jun, STAT3 and Smad1 promotes regeneration of the central axon branch of sensory neurons but without synergistic effects. Hum Mol Genet 24: 6788–6800 PubMed
Fiorcari S, Brown WS, McIntyre BW, Estrov Z, Maffei R, O'Brien S, Sivina M, Hoellenriegel J, Wierda WG, Keating MJ et al (2013) The PI3‐kinase delta inhibitor idelalisib (GS‐1101) targets integrin‐mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells. PLoS ONE 8: e83830 PubMed PMC
Franssen EH, Zhao RR, Koseki H, Kanamarlapudi V, Hoogenraad CC, Eva R, Fawcett JW (2015) Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. J Neurosci 35: 8359–8375 PubMed PMC
Geoffroy CG, Lorenzana AO, Kwan JP, Lin K, Ghassemi O, Ma A, Xu N, Creger D, Liu K, He Z et al (2015) Effects of PTEN and nogo codeletion on corticospinal axon sprouting and regeneration in mice. J Neurosci 35: 6413–6428 PubMed PMC
Ghosh M, Lo R, Ivic I, Aguilera B, Qendro V, Devarakonda C, Shapiro LH (2019) CD13 tethers the IQGAP1‐ARF6‐EFA6 complex to the plasma membrane to promote ARF6 activation, beta1 integrin recycling, and cell migration. Sci Signal 12: eaav5938 PubMed PMC
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6: 343–345 PubMed
Gillingham AK, Munro S (2007) The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23: 579–611 PubMed
Goldberg JL, Klassen MP, Hua Y, Barres BA (2002) Amacrine‐signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296: 1860–1864 PubMed
Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J 422: 23–35 PubMed PMC
Hawkins PT, Stephens LR (2015) PI3K signalling in inflammation. Biochim Biophys Acta 1851: 882–897 PubMed
He Z, Jin Y (2016) Intrinsic control of axon regeneration. Neuron 90: 437–451 PubMed
Hervera A, Zhou L, Palmisano I, McLachlan E, Kong G, Hutson TH, Danzi MC, Lemmon VP, Bixby JL, Matamoros‐Angles A et al (2019) PP4‐dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure. EMBO J 38: e101032 PubMed PMC
Hollis ER II, Jamshidi P, Low K, Blesch A, Tuszynski MH (2009a) Induction of corticospinal regeneration by lentiviral trkB‐induced Erk activation. Proc Natl Acad Sci USA 106: 7215–7220 PubMed PMC
Hollis ER II, Lu P, Blesch A, Tuszynski MH (2009b) IGF‐I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Exp Neurol 215: 53–59 PubMed PMC
Hu Y, Poopalasundaram S, Graham A, Bouloux PM (2013) GnRH neuronal migration and olfactory bulb neurite outgrowth are dependent on FGF receptor 1 signaling, specifically via the PI3K p110alpha isoform in chick embryo. Endocrinology 154: 388–399 PubMed
Kalil K, Reh T (1979) Regrowth of severed axons in the neonatal central nervous system: establishment of normal connections. Science 205: 1158–1161 PubMed
Kang S, Denley A, Vanhaesebroeck B, Vogt PK (2006) Oncogenic transformation induced by the p110beta, ‐gamma, and ‐delta isoforms of class I phosphoinositide 3‐kinase. Proc Natl Acad Sci USA 103: 1289–1294 PubMed PMC
Koseki H, Donegá M, Lam BYH, Petrova V, van Erp S, Yeo GSH, Kwok JCF, Ffrench‐Constant C, Eva R, Fawcett J (2017) Selective Rab11 transport and the intrinsic regenerative ability of CNS axons. Elife 6: e26956 PubMed PMC
Kreis P, Leondaritis G, Lieberam I, Eickholt BJ (2014) Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders. Front Mol Neurosci 7: 23 PubMed PMC
Lazo OM, Gonzalez A, Ascano M, Kuruvilla R, Couve A, Bronfman FC (2013) BDNF regulates Rab11‐mediated recycling endosome dynamics to induce dendritic branching. J Neurosci 33: 6112–6122 PubMed PMC
Lee DH, Luo X, Yungher BJ, Bray E, Lee JK, Park KK (2014) Mammalian target of rapamycin's distinct roles and effectiveness in promoting compensatory axonal sprouting in the injured CNS. J Neurosci 34: 15347–15355 PubMed PMC
Leibinger M, Hilla AM, Andreadaki A, Fischer D (2019) GSK3‐CRMP2 signaling mediates axonal regeneration induced by Pten knockout. Commun Biol 2: 318 PubMed PMC
Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears‐Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B et al (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13: 1075–1081 PubMed PMC
Liu Y, Wang X, Li W, Zhang Q, Li Y, Zhang Z, Zhu J, Chen B, Williams PR, Zhang Y et al (2017) A sensitized IGF1 treatment restores corticospinal axon‐dependent functions. Neuron 95: 817–833 e814 PubMed PMC
Longair MH, Baker DA, Armstrong JD (2011) Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27: 2453–2454 PubMed
Low PC, Misaki R, Schroder K, Stanley AC, Sweet MJ, Teasdale RD, Vanhaesebroeck B, Meunier FA, Taguchi T, Stow JL (2010) Phosphoinositide 3‐kinase delta regulates membrane fission of Golgi carriers for selective cytokine secretion. J Cell Biol 190: 1053–1065 PubMed PMC
Low PC, Manzanero S, Mohannak N, Narayana VK, Nguyen TH, Kvaskoff D, Brennan FH, Ruitenberg MJ, Gelderblom M, Magnus T et al (2014) PI3Kdelta inhibition reduces TNF secretion and neuroinflammation in a mouse cerebral stroke model. Nat Commun 5: 3450 PubMed
Malaby AW, van den Berg B, Lambright DG (2013) Structural basis for membrane recruitment and allosteric activation of cytohesin family Arf GTPase exchange factors. Proc Natl Acad Sci USA 110: 14213–14218 PubMed PMC
Malek M, Kielkowska A, Chessa T, Anderson KE, Barneda D, Pir P, Nakanishi H, Eguchi S, Koizumi A, Sasaki J et al (2017) PTEN regulates PI(3,4)P2 signaling downstream of class I PI3K. Mol Cell 68: 566–580.e510 PubMed PMC
Mandelker D, Gabelli SB, Schmidt‐Kittler O, Zhu J, Cheong I, Huang CH, Kinzler KW, Vogelstein B, Amzel LM (2009) A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc Natl Acad Sci USA 106: 16996–17001 PubMed PMC
Martinez‐Marmol R, Mohannak N, Qian L, Wang T, Gormal RS, Ruitenberg MJ, Vanhaesebroeck B, Coulson EJ, Meunier FA (2019) p110delta PI 3‐kinase inhibition perturbs APP and TNFalpha trafficking, reduces plaque burden, dampens neuroinflammation and prevents cognitive decline in an Alzheimer's disease mouse model. J Neurosci 39: 7976–7991 PubMed PMC
Montagnac G, Sibarita JB, Loubery S, Daviet L, Romao M, Raposo G, Chavrier P (2009) ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr Biol 19: 184–195 PubMed
Nieuwenhuis B, Eva R (2018) ARF6 and Rab11 as intrinsic regulators of axon regeneration. Small Gtpases 10.1080/21541248.2018.1457914 PubMed DOI PMC
Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, Iizuka R, Balla T, Yamazaki M, Watanabe H, Itoh R et al (2007) Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 9: 36–44 PubMed
Nyabi O, Naessens M, Haigh K, Gembarska A, Goossens S, Maetens M, De Clercq S, Drogat B, Haenebalcke L, Bartunkova S et al (2009) Efficient mouse transgenesis using Gateway‐compatible ROSA26 locus targeting vectors and F1 hybrid ES cells. Nucleic Acids Res 37: e55 PubMed PMC
Okkenhaug K (2013) Signaling by the phosphoinositide 3‐kinase family in immune cells. Annu Rev Immunol 31: 675–704 PubMed PMC
Padovani D, Folly‐Klan M, Labarde A, Boulakirba S, Campanacci V, Franco M, Zeghouf M, Cherfils J (2014) EFA6 controls Arf1 and Arf6 activation through a negative feedback loop. Proc Natl Acad Sci USA 111: 12378–12383 PubMed PMC
Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322: 963–966 PubMed PMC
Petrova V, Eva R (2018) The virtuous cycle of axon growth: Axonal transport of growth‐promoting machinery as an intrinsic determinant of axon regeneration. Dev Neurobiol 78: 898–925 PubMed
Poulopoulos A, Murphy AJ, Ozkan A, Davis P, Hatch J, Kirchner R, Macklis JD (2019) Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature 565: 356–360 PubMed PMC
Puttagunta R, Tedeschi A, Soria MG, Hervera A, Lindner R, Rathore KI, Gaub P, Joshi Y, Nguyen T, Schmandke A et al (2014) PCAF‐dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun 5: 3527 PubMed
Rahajeng J, Giridharan SS, Naslavsky N, Caplan S (2010) Collapsin response mediator protein‐2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J Biol Chem 285: 31918–31922 PubMed PMC
Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304: 554 PubMed
Schmitz SK, Hjorth JJ, Joemai RM, Wijntjes R, Eijgenraam S, de Bruijn P, Georgiou C, de Jong AP, van Ooyen A, Verhage M et al (2011) Automated analysis of neuronal morphology, synapse number and synaptic recruitment. J Neurosci Methods 195: 185–193 PubMed
Shi SH, Jan LY, Jan YN (2003) Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3‐kinase activity. Cell 112: 63–75 PubMed
Smith DS, Skene JH (1997) A transcription‐dependent switch controls competence of adult neurons for distinct modes of axon growth. J Neurosci 17: 646–658 PubMed PMC
Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, Martinez‐Carrasco I, Connolly L, He Z (2009) SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron 64: 617–623 PubMed PMC
Sosa L, Dupraz S, Laurino L, Bollati F, Bisbal M, Caceres A, Pfenninger KH, Quiroga S (2006) IGF‐1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci 9: 993–995 PubMed
Tedeschi A, Dupraz S, Laskowski CJ, Xue J, Ulas T, Beyer M, Schultze JL, Bradke F (2016) The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 92: 419–434 PubMed
Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13: 195–203 PubMed
Varnai P, Bondeva T, Tamas P, Toth B, Buday L, Hunyady L, Balla T (2005) Selective cellular effects of overexpressed pleckstrin‐homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci 118: 4879–4888 PubMed
Welch HC, Coadwell WJ, Ellson CD, Ferguson GJ, Andrews SR, Erdjument‐Bromage H, Tempst P, Hawkins PT, Stephens LR (2002) P‐Rex1, a PtdIns(3,4,5)P3‐ and Gbetagamma‐regulated guanine‐nucleotide exchange factor for Rac. Cell 108: 809–821 PubMed
Weng YL, Wang X, An R, Cassin J, Vissers C, Liu Y, Liu Y, Xu T, Wang X, Wong SZH et al (2018) Epitranscriptomic m(6)A regulation of axon regeneration in the adult mammalian nervous system. Neuron 97: 313–325 e316 PubMed PMC
Wu Z, Ghosh‐Roy A, Yanik MF, Zhang JZ, Jin Y, Chisholm AD (2007) Caenorhabditis elegans neuronal regeneration is influenced by life stage, ephrin signaling, and synaptic branching. Proc Natl Acad Sci USA 104: 15132–15137 PubMed PMC
Ylera B, Erturk A, Hellal F, Nadrigny F, Hurtado A, Tahirovic S, Oudega M, Kirchhoff F, Bradke F (2009) Chronically CNS‐injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr Biol 19: 930–936 PubMed
Yoshizawa M, Kawauchi T, Sone M, Nishimura YV, Terao M, Chihama K, Nabeshima Y, Hoshino M (2005) Involvement of a Rac activator, P‐Rex1, in neurotrophin‐derived signaling and neuronal migration. J Neurosci 25: 4406–4419 PubMed PMC
Yungher BJ, Luo X, Salgueiro Y, Blackmore MG, Park KK (2015) Viral vector‐based improvement of optic nerve regeneration: characterization of individual axons’ growth patterns and synaptogenesis in a visual target. Gene Ther 22: 811–821 PubMed PMC
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O'Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N et al (2014) An RNA‐sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34: 11929–11947 PubMed PMC
Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89: 37–53 PubMed PMC
Zhao JJ, Liu Z, Wang L, Shin E, Loda MF, Roberts TM (2005) The oncogenic properties of mutant p110alpha and p110beta phosphatidylinositol 3‐kinases in human mammary epithelial cells. Proc Natl Acad Sci USA 102: 18443–18448 PubMed PMC
Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF‐induced axon growth is mediated by localized inactivation of GSK‐3beta and functions of the microtubule plus end binding protein APC. Neuron 42: 897–912 PubMed
Neuronal maturation and axon regeneration: unfixing circuitry to enable repair
Age-related loss of axonal regeneration is reflected by the level of local translation
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury
Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS