Selective rab11 transport and the intrinsic regenerative ability of CNS axons
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G0701518
Medical Research Council - United Kingdom
G1000864
Medical Research Council - United Kingdom
MC_PC_16050
Medical Research Council - United Kingdom
MR/R004544/1
Medical Research Council - United Kingdom
PubMed
28829741
PubMed Central
PMC5779230
DOI
10.7554/elife.26956
PII: 26956
Knihovny.cz E-zdroje
- Klíčová slova
- axon regeneration, axonal transport, axotomy, endosomes, human, neuroscience, rat, small GTPases, trafficking,
- MeSH
- axony fyziologie MeSH
- biologický transport MeSH
- buněčná diferenciace MeSH
- cytoplazmatické vezikuly metabolismus MeSH
- potkani Sprague-Dawley MeSH
- Rab proteiny vázající GTP metabolismus MeSH
- regenerace * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Rab proteiny vázající GTP MeSH
- rab11 protein MeSH Prohlížeč
Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration.
Department of Clinical Neurosciences University of Cambridge Cambridge United Kingdom
John van Geest Centre for Brain Repair University of Cambridge Cambridge United Kingdom
MRC Centre of Regenerative Medicine University of Edinburgh Edinburgh United Kingdom
Zobrazit více v PubMed
Andrews MR, Czvitkovich S, Dassie E, Vogelaar CF, Faissner A, Blits B, Gage FH, ffrench-Constant C, Fawcett JW. Alpha9 integrin promotes neurite outgrowth on tenascin-C and enhances sensory axon regeneration. Journal of Neuroscience. 2009;29:5546–5557. doi: 10.1523/JNEUROSCI.0759-09.2009. PubMed DOI PMC
Andrews MR, Soleman S, Cheah M, Tumbarello DA, Mason MR, Moloney E, Verhaagen J, Bensadoun JC, Schneider B, Aebischer P, Fawcett JW. Axonal localization of integrins in the cns is neuronal type and age dependent. eNeuro. 2016;3:ENEURO.0029-16.2016. doi: 10.1523/ENEURO.0029-16.2016. PubMed DOI PMC
Ascaño M, Richmond A, Borden P, Kuruvilla R. Axonal targeting of Trk receptors via transcytosis regulates sensitivity to neurotrophin responses. Journal of Neuroscience. 2009;29:11674–11685. doi: 10.1523/JNEUROSCI.1542-09.2009. PubMed DOI PMC
Baetz NW, Goldenring JR. Rab11-family interacting proteins define spatially and temporally distinct regions within the dynamic Rab11a-dependent recycling system. Molecular Biology of the Cell. 2013;24:643–658. doi: 10.1091/mbc.E12-09-0659. PubMed DOI PMC
Barbati AC, Fang C, Banker GA, Kirby BJ. Culture of primary rat hippocampal neurons: design, analysis, and optimization of a microfluidic device for cell seeding, coherent growth, and solute delivery. Biomedical Microdevices. 2013;15:97–108. doi: 10.1007/s10544-012-9691-2. PubMed DOI PMC
Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nature Neuroscience. 2004;7:269–277. doi: 10.1038/nn1195. PubMed DOI
Bentley M, Banker G. The cellular mechanisms that maintain neuronal polarity. Nature Reviews Neuroscience. 2016;17:611–622. doi: 10.1038/nrn.2016.100. PubMed DOI
Bernstein-Goral H, Bregman BS. Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: a quantitative double-labeling study. Experimental Neurology. 1993;123:118–132. doi: 10.1006/exnr.1993.1145. PubMed DOI
Bradke F, Fawcett JW, Spira ME. Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nature Reviews Neuroscience. 2012;13:183–193. doi: 10.1038/nrn3176. PubMed DOI
Britt DJ, Farías GG, Guardia CM, Bonifacino JS. Mechanisms of polarized organelle distribution in neurons. Frontiers in Cellular Neuroscience. 2016;10:88. doi: 10.3389/fncel.2016.00088. PubMed DOI PMC
Byrne AB, Walradt T, Gardner KE, Hubbert A, Reinke V, Hammarlund M. Insulin/IGF1 signaling inhibits age-dependent axon regeneration. Neuron. 2014;81:561–573. doi: 10.1016/j.neuron.2013.11.019. PubMed DOI PMC
Canty AJ, Teles-Grilo Ruivo LM, Nesarajah C, Song S, Jackson JS, Little GE, De Paola Synaptic elimination and protection after minimal injury depend on cell type and their prelesion structural dynamics in the adult cerebral cortex. Journal of Neuroscience. 2013;33:10374–10383. doi: 10.1523/JNEUROSCI.0254-13.2013. PubMed DOI PMC
Caswell PT, Norman JC. Integrin trafficking and the control of cell migration. Traffic. 2006;7:14–21. doi: 10.1111/j.1600-0854.2005.00362.x. PubMed DOI
Cheah M, Andrews MR, Chew DJ, Moloney EB, Verhaagen J, Fässler R, Fawcett JW. Expression of an activated integrin promotes long-distance sensory axon regeneration in the spinal cord. Journal of Neuroscience. 2016;36:7283–7297. doi: 10.1523/JNEUROSCI.0901-16.2016. PubMed DOI PMC
Cheng P-L, Song A-H, Wong Y-H, Wang S, Zhang X, Poo M-M. Self-amplifying autocrine actions of BDNF in axon development. Proceedings of the National Academy of Sciences. 2011;108:18430–18435. doi: 10.1073/pnas.1115907108. PubMed DOI PMC
De Sousa PA, Tye BJ, Bruce K, Dand P, Russell G, Collins DM, Greenshields A, McDonald K, Bradburn H, Allan D, Laurie A, Kunath T, Canham MA, Downie JM, Bateman M, Courtney A. Derivation of the clinical grade human embryonic stem cell line RCe021-A (RC-17) Stem Cell Research. 2016;17:1–5. doi: 10.1016/j.scr.2016.04.019. PubMed DOI
Du K, Zheng S, Zhang Q, Li S, Gao X, Wang J, Jiang L, Liu K. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. Journal of Neuroscience. 2015;35:9754–9763. doi: 10.1523/JNEUROSCI.3637-14.2015. PubMed DOI PMC
Eva R, Crisp S, Marland JR, Norman JC, Kanamarlapudi V, ffrench-Constant C, Fawcett JW. ARF6 directs axon transport and traffic of integrins and regulates axon growth in adult DRG neurons. Journal of Neuroscience. 2012;32:10352–10364. doi: 10.1523/JNEUROSCI.1409-12.2012. PubMed DOI PMC
Eva R, Dassie E, Caswell PT, Dick G, ffrench-Constant C, Norman JC, Fawcett JW. Rab11 and its effector Rab coupling protein contribute to the trafficking of beta 1 integrins during axon growth in adult dorsal root ganglion neurons and PC12 cells. Journal of Neuroscience. 2010;30:11654–11669. doi: 10.1523/JNEUROSCI.2425-10.2010. PubMed DOI PMC
Fawcett JW, Schwab ME, Montani L, Brazda N, Müller HW. Defeating inhibition of regeneration by scar and myelin components. Handbook of Clinical Neurology. 2012;109:503–522. doi: 10.1016/B978-0-444-52137-8.00031-0. PubMed DOI
Franssen EH, Zhao RR, Koseki H, Kanamarlapudi V, Hoogenraad CC, Eva R, Fawcett JW. Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. Journal of Neuroscience. 2015;35:8359–8375. doi: 10.1523/JNEUROSCI.2850-14.2015. PubMed DOI PMC
Gardiner NJ, Moffatt S, Fernyhough P, Humphries MJ, Streuli CH, Tomlinson DR. Preconditioning injury-induced neurite outgrowth of adult rat sensory neurons on fibronectin is mediated by mobilisation of axonal alpha5 integrin. Molecular and Cellular Neuroscience. 2007;35:249–260. doi: 10.1016/j.mcn.2007.02.020. PubMed DOI
Geoffroy CG, Hilton BJ, Tetzlaff W, Zheng B, Anderson MA, Ao Y, Sofroniew MV, Badan I, Buchhold B, Hamm A. Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system. Cell Reports. 2016;15:238–246. doi: 10.1016/j.celrep.2016.03.028. PubMed DOI PMC
Harris WA, Holt CE, Bonhoeffer F. Retinal axons with and without their somata, growing to and arborizing in the tectum of Xenopus embryos: a time-lapse video study of single fibres in vivo. Development. 1987;101:123–133. PubMed
Hollis ER, Jamshidi P, Löw K, Blesch A, Tuszynski MH, Tuszynski MH. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. PNAS. 2009a;106:7215–7220. doi: 10.1073/pnas.0810624106. PubMed DOI PMC
Hollis ER, Lu P, Blesch A, Tuszynski MH. IGF-I gene delivery promotes corticospinal neuronal survival but not regeneration after adult CNS injury. Experimental Neurology. 2009b;215:53–59. doi: 10.1016/j.expneurol.2008.09.014. PubMed DOI PMC
Hur EM, Saijilafu, Zhou FQ. Growing the growth cone: remodeling the cytoskeleton to promote axon regeneration. Trends in Neurosciences. 2012;35:164–174. doi: 10.1016/j.tins.2011.11.002. PubMed DOI PMC
Hülsbusch N, Solis GP, Katanaev VL, Stuermer CA. Reggie-1/Flotillin-2 regulates integrin trafficking and focal adhesion turnover via Rab11a. European Journal of Cell Biology. 2015;94:531–545. doi: 10.1016/j.ejcb.2015.07.003. PubMed DOI
Jakeman LB, Reier PJ. Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. The Journal of Comparative Neurology. 1991;307:311–334. doi: 10.1002/cne.903070211. PubMed DOI
Kadoya K, Lu P, Nguyen K, Lee-Kubli C, Kumamaru H, Yao L, Knackert J, Poplawski G, Dulin JN, Strobl H, Takashima Y, Biane J, Conner J, Zhang SC, Tuszynski MH. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration. Nature Medicine. 2016;22:479–487. doi: 10.1038/nm.4066. PubMed DOI PMC
Kaech S, Banker G. Culturing hippocampal neurons. Nature Protocols. 2006;1:2406–2415. doi: 10.1038/nprot.2006.356. PubMed DOI
Kay L, Humphreys L, Eickholt BJ, Burrone J. Neuronal activity drives matching of pre- and postsynaptic function during synapse maturation. Nature Neuroscience. 2011;14:688–690. doi: 10.1038/nn.2826. PubMed DOI
Kim BG, Dai HN, Lynskey JV, McAtee M, Bregman BS. Degradation of chondroitin sulfate proteoglycans potentiates transplant-mediated axonal remodeling and functional recovery after spinal cord injury in adult rats. The Journal of Comparative Neurology. 2006;497:182–198. doi: 10.1002/cne.20980. PubMed DOI PMC
Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports. 2012;1:703–714. doi: 10.1016/j.celrep.2012.04.009. PubMed DOI
Lasiecka ZM, Winckler B. Mechanisms of polarized membrane trafficking in neurons -- focusing in on endosomes. Molecular and Cellular Neuroscience. 2011;48:278–287. doi: 10.1016/j.mcn.2011.06.013. PubMed DOI PMC
Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nature Neuroscience. 2010;13:1075–1081. doi: 10.1038/nn.2603. PubMed DOI PMC
Liu K, Tedeschi A, Park KK, He Z. Neuronal intrinsic mechanisms of axon regeneration. Annual Review of Neuroscience. 2011;34:131–152. doi: 10.1146/annurev-neuro-061010-113723. PubMed DOI
Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig ES, Havton LA, Zheng B, Conner JM, Marsala M, Tuszynski MH. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell. 2012;150:1264–1273. doi: 10.1016/j.cell.2012.08.020. PubMed DOI PMC
Macia E, Partisani M, Favard C, Mortier E, Zimmermann P, Carlier MF, Gounon P, Luton F, Franco M. The pleckstrin homology domain of the Arf6-specific exchange factor EFA6 localizes to the plasma membrane by interacting with phosphatidylinositol 4,5-bisphosphate and F-actin. Journal of Biological Chemistry. 2008;283:19836–19844. doi: 10.1074/jbc.M800781200. PubMed DOI
Maeder CI, Shen K, Hoogenraad CC. Axon and dendritic trafficking. Current Opinion in Neurobiology. 2014;27:165–170. doi: 10.1016/j.conb.2014.03.015. PubMed DOI
Matsuzaki F, Shirane M, Matsumoto M, Nakayama KI. Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Molecular Biology of the Cell. 2011;22:4602–4620. doi: 10.1091/mbc.E11-01-0068. PubMed DOI PMC
Montagnac G, Sibarita JB, Loubéry S, Daviet L, Romao M, Raposo G, Chavrier P. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Current Biology. 2009;19:184–195. doi: 10.1016/j.cub.2008.12.043. PubMed DOI
Park M, Salgado JM, Ostroff L, Helton TD, Robinson CG, Harris KM, Ehlers MD. Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes. Neuron. 2006;52:817–830. doi: 10.1016/j.neuron.2006.09.040. PubMed DOI PMC
Petersen JD, Kaech S, Banker G. Selective microtubule-based transport of dendritic membrane proteins arises in concert with axon specification. Journal of Neuroscience. 2014;34:4135–4147. doi: 10.1523/JNEUROSCI.3779-13.2014. PubMed DOI PMC
Ramel D, Wang X, Laflamme C, Montell DJ, Emery G. Rab11 regulates cell-cell communication during collective cell movements. Nature Cell Biology. 2013;15:317–324. doi: 10.1038/ncb2681. PubMed DOI PMC
Randazzo PA, Miura K, Nie Z, Orr A, Theibert AB, Kearns BG. Cytohesins and centaurins: mediators of PI 3-kinase regulated Arf signaling. Trends in Biochemical Sciences. 2001;26:220–221. doi: 10.1016/S0968-0004(01)01806-0. PubMed DOI
Reier PJ, Bregman BS, Wujek JR. Intraspinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. The Journal of Comparative Neurology. 1986;247:275–296. doi: 10.1002/cne.902470302. PubMed DOI
Richardson PM, Issa VM, Aguayo AJ. Regeneration of long spinal axons in the rat. Journal of Neurocytology. 1984;13:165–182. doi: 10.1007/BF01148324. PubMed DOI
Rosenzweig ES, Courtine G, Jindrich DL, Brock JH, Ferguson AR, Strand SC, Nout YS, Roy RR, Miller DM, Beattie MS, Havton LA, Bresnahan JC, Edgerton VR, Tuszynski MH. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nature Neuroscience. 2010;13:1505–1510. doi: 10.1038/nn.2691. PubMed DOI PMC
Sheehan D, Ray GS, Calhoun BC, Goldenring JR. A somatodendritic distribution of Rab11 in rabbit brain neurons. NeuroReport. 1996;7:1297–1300. doi: 10.1097/00001756-199605170-00016. PubMed DOI
Shirane M, Nakayama KI. Protrudin induces neurite formation by directional membrane trafficking. Science. 2006;314:818–821. doi: 10.1126/science.1134027. PubMed DOI
Tan CL, Kwok JC, Patani R, Ffrench-Constant C, Chandran S, Fawcett JW. Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. Journal of Neuroscience. 2011;31:6289–6295. doi: 10.1523/JNEUROSCI.0008-11.2011. PubMed DOI PMC
Tang NH, Chisholm AD. Regulation of Microtubule Dynamics in Axon Regeneration: Insights from C. elegans. F1000Research. 2016;5:764. doi: 10.12688/f1000research.8197.1. PubMed DOI PMC
Tosney KW, Landmesser LT. Growth cone morphology and trajectory in the lumbosacral region of the chick embryo. Journal of Neuroscience. 1985;5:2345–2358. PubMed PMC
van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC. Optogenetic control of organelle transport and positioning. Nature. 2015;518:111–114. doi: 10.1038/nature14128. PubMed DOI PMC
van Erp S, van den Heuvel DM, Fujita Y, Robinson RA, Hellemons AJ, Adolfs Y, Van Battum EY, Blokhuis AM, Kuijpers M, Demmers JA, Hedman H, Hoogenraad CC, Siebold C, Yamashita T, Pasterkamp RJ. Lrig2 Negatively Regulates Ectodomain Shedding of Axon Guidance Receptors by ADAM Proteases. Developmental Cell. 2015;35:537–552. doi: 10.1016/j.devcel.2015.11.008. PubMed DOI
Welz T, Wellbourne-Wood J, Kerkhoff E, Salminen A, Novick PJ, Bos JL, D’Souza-Schorey C, Chavrier P, Stenmark H. Orchestration of cell surface proteins by Rab11. Trends in Cell Biology. 2014;24:407–415. doi: 10.1016/j.tcb.2014.02.004. PubMed DOI
Neuronal maturation and axon regeneration: unfixing circuitry to enable repair
Long-Term Cultures of Spinal Cord Interneurons
Age-related loss of axonal regeneration is reflected by the level of local translation
Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury
Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS
PI 3-kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS
The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult?
Integrins promote axonal regeneration after injury of the nervous system
EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment