• This record comes from PubMed

Hyperactive delta isoform of PI3 kinase enables long-distance regeneration of adult rat corticospinal tract

. 2025 Feb 05 ; 33 (2) : 752-770. [epub] 20250101

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 39748509
PubMed Central PMC11852985
DOI 10.1016/j.ymthe.2024.12.040
PII: S1525-0016(24)00838-4
Knihovny.cz E-resources

Neurons in the CNS lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonizes PI3K signaling by hydrolyzing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3. This study explores whether increased PIP3 generation can promote long-distance regeneration in adults. We used a hyperactive PI3K, PI3Kδ (PIK3CD), to boost PIP3 levels in mature cortical neurons and assessed CST regeneration after SCI. Adult rats received AAV1-PIK3CD and AAV1-eGFP, or AAV1-eGFP alone, in the sensorimotor cortex concurrent with a C4 dorsal SCI. Transduced neurons showed increased pS6 levels, indicating elevated PI3K/Akt/mTOR signaling. CST regeneration, confirmed with retrograde tracing, was evaluated up to 16 weeks post injury. At 12 weeks, ∼100 axons were present at lesion sites, doubling to 200 by 16 weeks, with regeneration indices of 0.1 and 0.2, respectively. Behavioral tests showed significant improvements in paw reaching, grip strength, and ladder-rung walking in PIK3CD-treated rats, corroborated by electrophysiological recordings of cord dorsum potentials and distal flexor muscle electromyography. Thus, PI3Kδ upregulation in adult cortical neurons enhances axonal regeneration and functional recovery post SCI.

See more in PubMed

Weng Y.-L., An R., Cassin J., Joseph J., Mi R., Wang C., Zhong C., Jin S.-G., Pfeifer G.P., Bellacosa A., et al. An Intrinsic Epigenetic Barrier for Functional Axon Regeneration. Neuron. 2017;94:337–346.e6. doi: 10.1016/j.neuron.2017.03.034. PubMed DOI PMC

Deng S., Leong H.C., Datta A., Gopal V., Kumar A.P., Yap C.T. PI3K/AKT Signaling Tips the Balance of Cytoskeletal Forces for Cancer Progression. Cancers (Basel) 2022;14:1652. doi: 10.3390/cancers14071652. PubMed DOI PMC

Kreis P., Leondaritis G., Lieberam I., Eickholt B.J. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders. Front. Mol. Neurosci. 2014;7 doi: 10.3389/fnmol.2014.00023. PubMed DOI PMC

Park K.K., Liu K., Hu Y., Smith P.D., Wang C., Cai B., Xu B., Connolly L., Kramvis I., Sahin M., He Z. Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science. 2008;322:963–966. doi: 10.1126/science.1161566. PubMed DOI PMC

Liu K., Lu Y., Lee J.K., Samara R., Willenberg R., Sears-Kraxberger I., Tedeschi A., Park K.K., Jin D., Cai B., et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 2010;13:1075–1081. doi: 10.1038/nn.2603. PubMed DOI PMC

Geoffroy C.G., Hilton B.J., Tetzlaff W., Zheng B. Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System. Cell Rep. 2016;15:238–246. doi: 10.1016/j.celrep.2016.03.028. PubMed DOI PMC

Hawkins P.T., Anderson K.E., Davidson K., Stephens L.R. Signalling through Class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 2006;34:647–662. doi: 10.1042/BST0340647. PubMed DOI

Nieuwenhuis B., Barber A.C., Evans R.S., Pearson C.S., Fuchs J., MacQueen A.R., van Erp S., Haenzi B., Hulshof L.A., Osborne A., et al. PI3-kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS. EMBO Mol. Med. 2020;12 doi: 10.15252/emmm.201911674. PubMed DOI PMC

Chadborn N.H., Ahmed A.I., Holt M.R., Prinjha R., Dunn G.A., Jones G.E., Eickholt B.J. PTEN couples Sema3A signalling to growth cone collapse. J. Cell Sci. 2006;119:951–957. doi: 10.1242/jcs.02801. PubMed DOI

Liu Y., Wang X., Li W., Zhang Q., Li Y., Zhang Z., Zhu J., Chen B., Williams P.R., Zhang Y., et al. A Sensitized IGF1 Treatment Restores Corticospinal Axon-Dependent Functions. Neuron. 2017;95:817–833.e4. doi: 10.1016/j.neuron.2017.07.037. PubMed DOI PMC

Koseki H., Donegá M., Lam B.Y., Petrova V., van Erp S., Yeo G.S., Kwok J.C., ffrench-Constant C., Eva R., Fawcett J.W. Selective rab11 transport and the intrinsic regenerative ability of CNS axons. eLife. 2017;6:e26956. doi: 10.7554/eLife.26956. PubMed DOI PMC

Franssen E.H.P., Zhao R.-R., Koseki H., Kanamarlapudi V., Hoogenraad C.C., Eva R., Fawcett J.W. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS. J. Neurosci. 2015;35:8359–8375. doi: 10.1523/JNEUROSCI.2850-14.2015. PubMed DOI PMC

Hollis E.R., Jamshidi P., Löw K., Blesch A., Tuszynski M.H. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc. Natl. Acad. Sci. USA. 2009;106:7215–7220. doi: 10.1073/pnas.0810624106. PubMed DOI PMC

Du K., Zheng S., Zhang Q., Li S., Gao X., Wang J., Jiang L., Liu K. Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury. J. Neurosci. 2015;35:9754–9763. doi: 10.1523/JNEUROSCI.3637-14.2015. PubMed DOI PMC

Eickholt B.J., Ahmed A.I., Davies M., Papakonstanti E.A., Pearce W., Starkey M.L., Bilancio A., Need A.C., Smith A.J.H., Hall S.M., et al. Control of Axonal Growth and Regeneration of Sensory Neurons by the p110δ PI 3-Kinase. PLoS One. 2007;2:e869. doi: 10.1371/journal.pone.0000869. PubMed DOI PMC

Eva R., Koseki H., Kanamarlapudi V., Fawcett J.W. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J. Cell Sci. 2017;130:3663–3675. doi: 10.1242/jcs.207423. PubMed DOI PMC

Eva R., Andrews M.R., Franssen E.H.P., Fawcett J.W. Intrinsic Mechanisms Regulating Axon Regeneration. Int. Rev. Neurobiol. 2012;106:75–104. doi: 10.1016/B978-0-12-407178-0.00004-1. PubMed DOI

Campion T.J., Sheikh I.S., Smit R.D., Iffland P.H., Chen J., Junker I.P., Krynska B., Crino P.B., Smith G.M. Viral expression of constitutively active AKT3 induces CST axonal sprouting and regeneration, but also promotes seizures. Exp. Neurol. 2022;349 doi: 10.1016/j.expneurol.2021.113961. PubMed DOI

Voelker C.C.J., Garin N., Taylor J.S.H., Gähwiler B.H., Hornung J.P., Molnár Z. Selective Neurofilament (SMI-32, FNP-7 and N200) Expression in Subpopulations of Layer V Pyramidal Neurons In Vivo and In Vitro. Cereb. Cortex. 2004;14:1276–1286. doi: 10.1093/cercor/bhh089. PubMed DOI

Han Q., Xie Y., Ordaz J.D., Huh A.J., Huang N., Wu W., Liu N., Chamberlain K.A., Sheng Z.-H., Xu X.-M. Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metab. 2020;31:623–641.e8. doi: 10.1016/j.cmet.2020.02.002. PubMed DOI PMC

Brown L.T. Projections and termination of the corticospinal tract in rodents. Exp. Brain Res. 1971;13:432–450. doi: 10.1007/BF00234340. PubMed DOI

Gribnau A.A., Dederen P.J. Collateralization of the cervical corticospinal tract in the rat. Neurosci. Lett. 1989;105:47–51. doi: 10.1016/0304-3940(89)90009-8. PubMed DOI

Valverde F. The pyramidal tract in rodents. A study of its relations with the posterior column nuclei, dorsolateral reticular formation of the medulla oblongata, and cervical spinal cord. (Golgi and electron microscopic observations) Z. Zellforsch. Mikrosk. Anat. 1966;71:298–363. PubMed

McCann M.M., Fisher K.M., Ahloy-Dallaire J., Darian-Smith C. Somatosensory corticospinal tract axons sprout within the cervical cord following a dorsal root/dorsal column spinal injury in the rat. J. Comp. Neurol. 2020;528:1293–1306. doi: 10.1002/cne.24826. PubMed DOI PMC

Bradbury E.J., Moon L.D.F., Popat R.J., King V.R., Bennett G.S., Patel P.N., Fawcett J.W., McMahon S.B. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. PubMed DOI

Kwon C.-H., Zhu X., Zhang J., Baker S.J. mTor is required for hypertrophy of Pten-deficient neuronal soma in vivo. Proc. Natl. Acad. Sci. USA. 2003;100:12923–12928. doi: 10.1073/pnas.2132711100. PubMed DOI PMC

Tariq K., Cullen E., Getz S.A., Conching A.K.S., Goyette A.R., Prina M.L., Wang W., Li M., Weston M.C., Luikart B.W. Disruption of mTORC1 rescues neuronal overgrowth and synapse function dysregulated by Pten loss. Cell Rep. 2022;41 doi: 10.1016/j.celrep.2022.111574. PubMed DOI PMC

Nikolaeva I., Kazdoba T.M., Crowell B., D’Arcangelo G. Differential roles for Akt and mTORC1 in the hypertrophy of Pten mutant neurons, a cellular model of brain overgrowth disorders. Neuroscience. 2017;354:196–207. doi: 10.1016/j.neuroscience.2017.04.026. PubMed DOI

Zukor K., Belin S., Wang C., Keelan N., Wang X., He Z. Short Hairpin RNA against PTEN Enhances Regenerative Growth of Corticospinal Tract Axons after Spinal Cord Injury. J. Neurosci. 2013;33:15350–15361. doi: 10.1523/JNEUROSCI.2510-13.2013. PubMed DOI PMC

Bilanges B., Posor Y., Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat. Rev. Mol. Cell Biol. 2019;20:515–534. doi: 10.1038/s41580-019-0129-z. PubMed DOI

Gong G.Q., Bilanges B., Allsop B., Masson G.R., Roberton V., Askwith T., Oxenford S., Madsen R.R., Conduit S.E., Bellini D., et al. A small-molecule PI3Kα activator for cardioprotection and neuroregeneration. Nature. 2023;618:159–168. doi: 10.1038/s41586-023-05972-2. PubMed DOI PMC

Eva R., Dassie E., Caswell P.T., Dick G., ffrench-Constant C., Norman J.C., Fawcett J.W. Rab11 and Its Effector Rab Coupling Protein Contribute to the Trafficking of β1 Integrins during Axon Growth in Adult Dorsal Root Ganglion Neurons and PC12 Cells. J. Neurosci. 2010;30:11654–11669. doi: 10.1523/JNEUROSCI.2425-10.2010. PubMed DOI PMC

Umegaki Y., Brotons A.M., Nakanishi Y., Luo Z., Zhang H., Bonni A., Ikeuchi Y. Palladin Is a Neuron-Specific Translational Target of mTOR Signaling That Regulates Axon Morphogenesis. J. Neurosci. 2018;38:4985–4995. doi: 10.1523/JNEUROSCI.2370-17.2018. PubMed DOI PMC

Batty N.J., Torres-Espín A., Vavrek R., Raposo P., Fouad K. Single-session cortical electrical stimulation enhances the efficacy of rehabilitative motor training after spinal cord injury in rats. Exp. Neurol. 2020;324 doi: 10.1016/j.expneurol.2019.113136. PubMed DOI

Jack A.S., Hurd C., Forero J., Nataraj A., Fenrich K., Blesch A., Fouad K. Cortical electrical stimulation in female rats with a cervical spinal cord injury to promote axonal outgrowth. J. Neurosci. Res. 2018;96:852–862. doi: 10.1002/jnr.24209. PubMed DOI

Carmel J.B., Kimura H., Berrol L.J., Martin J.H. Motor cortex electrical stimulation promotes axon outgrowth to brain stem and spinal targets that control the forelimb impaired by unilateral corticospinal injury. Eur. J. Neurosci. 2013;37:1090–1102. doi: 10.1111/ejn.12119. PubMed DOI PMC

Zhong H., Xing C., Zhou M., Jia Z., Liu S., Zhu S., Li B., Yang H., Ma H., Wang L., et al. Alternating current stimulation promotes neurite outgrowth and plasticity in neurons through activation of the PI3K/AKT signaling pathway. Acta Biochim. Biophys. Sin. 2023;55:1718–1729. doi: 10.3724/abbs.2023238. PubMed DOI PMC

Wang Z., Brannigan M., Friedrich L., Blackmore M.G. Chronic activation of corticospinal tract neurons after pyramidotomy injury enhances neither behavioral recovery nor axonal sprouting. bioRxiv. 2024;31:623. doi: 10.1101/2024.10.25.620314. Preprint at. DOI

Brösamle C., Huber A.B., Fiedler M., Skerra A., Schwab M.E. Regeneration of Lesioned Corticospinal Tract Fibers in the Adult Rat Induced by a Recombinant, Humanized IN-1 Antibody Fragment. J. Neurosci. 2000;20:8061–8068. doi: 10.1523/JNEUROSCI.20-21-08061.2000. PubMed DOI PMC

Guzowski J.F. Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches. Hippocampus. 2002;12:86–104. doi: 10.1002/hipo.10010. PubMed DOI

Meenakshi P., Kumar S., Balaji J. In vivo imaging of immediate early gene expression dynamics segregates neuronal ensemble of memories of dual events. Mol. Brain. 2021;14:102. doi: 10.1186/s13041-021-00798-3. PubMed DOI PMC

Ketschek A., Gallo G. Nerve Growth Factor Induces Axonal Filopodia through Localized Microdomains of Phosphoinositide 3-Kinase Activity That Drive the Formation of Cytoskeletal Precursors to Filopodia. J. Neurosci. 2010;30:12185–12197. doi: 10.1523/JNEUROSCI.1740-10.2010. PubMed DOI PMC

Spillane M., Ketschek A., Merianda T.T., Twiss J.L., Gallo G. Mitochondria Coordinate Sites of Axon Branching through Localized Intra-axonal Protein Synthesis. Cell Rep. 2013;5:1564–1575. doi: 10.1016/j.celrep.2013.11.022. PubMed DOI PMC

Brosig A., Fuchs J., Ipek F., Kroon C., Schrötter S., Vadhvani M., Polyzou A., Ledderose J., van Diepen M., Holzhütter H.-G., et al. The Axonal Membrane Protein PRG2 Inhibits PTEN and Directs Growth to Branches. Cell Rep. 2019;29:2028–2040.e8. doi: 10.1016/j.celrep.2019.10.039. PubMed DOI PMC

Schucht P., Raineteau O., Schwab M.E., Fouad K. Anatomical Correlates of Locomotor Recovery Following Dorsal and Ventral Lesions of the Rat Spinal Cord. Exp. Neurol. 2002;176:143–153. doi: 10.1006/exnr.2002.7909. PubMed DOI

Ishida A., Kobayashi K., Ueda Y., Shimizu T., Tajiri N., Isa T., Hida H. Dynamic Interaction between Cortico-Brainstem Pathways during Training-Induced Recovery in Stroke Model Rats. J. Neurosci. 2019;39:7306–7320. doi: 10.1523/JNEUROSCI.0649-19.2019. PubMed DOI PMC

Baker S.N., Perez M.A. Reticulospinal Contributions to Gross Hand Function after Human Spinal Cord Injury. J. Neurosci. 2017;37:9778–9784. doi: 10.1523/JNEUROSCI.3368-16.2017. PubMed DOI PMC

Glover I.S., Baker S.N. Both Corticospinal and Reticulospinal Tracts Control Force of Contraction. J. Neurosci. 2022;42:3150–3164. doi: 10.1523/JNEUROSCI.0627-21.2022. PubMed DOI PMC

Brownstone R.M., Chopek J.W. Reticulospinal Systems for Tuning Motor Commands. Front. Neural Circuits. 2018;12 doi: 10.3389/fncir.2018.00030. PubMed DOI PMC

Engmann A.K., Bizzozzero F., Schneider M.P., Pfyffer D., Imobersteg S., Schneider R., Hofer A.-S., Wieckhorst M., Schwab M.E. The Gigantocellular Reticular Nucleus Plays a Significant Role in Locomotor Recovery after Incomplete Spinal Cord Injury. J. Neurosci. 2020;40:8292–8305. doi: 10.1523/JNEUROSCI.0474-20.2020. PubMed DOI PMC

Stepankova K., Smejkalova B., Machova-Urdzikova L., Havelikova K., Verhaagen J., de Winter F., Herynek V., Kwok J., Fawcett J., Jendelova P. Alpha 9 integrin expression enables reconstruction of the spinal cord sensory pathway. Preprint at bioRxiv. 2023 doi: 10.1101/2023.03.24.534172. DOI

Al-Ali H., Ding Y., Slepak T., Wu W., Sun Y., Martinez Y., Xu X.-M., Lemmon V.P., Bixby J.L. The mTOR Substrate S6 Kinase 1 (S6K1) Is a Negative Regulator of Axon Regeneration and a Potential Drug Target for Central Nervous System Injury. J. Neurosci. 2017;37:7079–7095. doi: 10.1523/JNEUROSCI.0931-17.2017. PubMed DOI PMC

Verhaagen J., Hobo B., Ehlert E.M.E., Eggers R., Korecka J.A., Hoyng S.A., Attwell C.L., Harvey A.R., Mason M.R.J. Small Scale Production of Recombinant Adeno-Associated Viral Vectors for Gene Delivery to the Nervous System. Methods Mol. Biol. 2018;1715:3–17. doi: 10.1007/978-1-4939-7522-8_1. PubMed DOI

Metz G.A., Whishaw I.Q. The Ladder Rung Walking Task: A Scoring System and its Practical Application. J. Vis. Exp. 2009 doi: 10.3791/1204. PubMed DOI PMC

Alstermark B., Ogawa J., Isa T. Lack of Monosynaptic Corticomotoneuronal EPSPs in Rats: Disynaptic EPSPs Mediated Via Reticulospinal Neurons and Polysynaptic EPSPs Via Segmental Interneurons. J. Neurophysiol. 2004;91:1832–1839. doi: 10.1152/jn.00820.2003. PubMed DOI

Tanaka H., Ono K., Shibasaki H., Isa T., Ikenaka K. Conduction properties of identified neural pathways in the central nervous system of mice in vivo. Neurosci. Res. 2004;49:113–122. doi: 10.1016/j.neures.2004.02.001. PubMed DOI

Kathe C., Hutson T.H., Chen Q., Shine H.D., McMahon S.B., Moon L.D.F. Unilateral Pyramidotomy of the Corticospinal Tract in Rats for Assessment of Neuroplasticity-inducing Therapies. J. Vis. Exp. 2014 doi: 10.3791/51843. PubMed DOI PMC

Ahn S.N., Guu J.J., Tobin A.J., Edgerton V.R., Tillakaratne N.J.K. Use of c-fos to identify activity-dependent spinal neurons after stepping in intact adult rats. Spinal Cord. 2006;44:547–559. doi: 10.1038/sj.sc.3101862. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...