Long-Term Cultures of Spinal Cord Interneurons
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
MR/R004463/1
Medical Research Council - United Kingdom
MR/V002694/1
Medical Research Council - United Kingdom
PubMed
35197829
PubMed Central
PMC8859857
DOI
10.3389/fncel.2022.827628
Knihovny.cz E-zdroje
- Klíčová slova
- axon regeneration, culture, laser axotomy, maturation, spinal interneurons,
- Publikační typ
- časopisecké články MeSH
Spinal cord interneurons (SpINs) are highly diverse population of neurons that play a significant role in circuit reorganization and spontaneous recovery after spinal cord injury. Regeneration of SpIN axons across rodent spinal injuries has been demonstrated after modification of the environment and neurotrophin treatment, but development of methods to enhance the intrinsic regenerative ability of SpINs is needed. There is a lack of described in vitro models of spinal cord neurons in which to develop new regeneration treatments. For this reason, we developed a new model of mouse primary spinal cord neuronal culture in which to analyze maturation, morphology, physiology, connectivity and regeneration of identified interneurons. Isolated from E14 mice, the neurons mature over 15 days in vitro, demonstrated by expression of maturity markers, electrophysiological patch-clamp recordings, and formation of synapses. The neurons express markers of SpINs, including Tlx3, Lmx1b, Lbx1, Chx10, and Pax2. The neurons demonstrate distinct morphologies and some form perineuronal nets in long-term cultivation. Live neurons in various maturation stages were axotomized, using a 900 nm multiphoton laser and their fate was observed overnight. The percentage of axons that regenerated declined with neuronal maturity. This model of SpINs will be a valuable tool in future regenerative, developmental, and functional studies alongside existing models using cortical or hippocampal neurons.
2nd Faculty of Medicine Charles University Prague Czechia
Faculty of Biological Sciences University of Leeds Leeds United Kingdom
Zobrazit více v PubMed
Abraira V. E., Ginty D. D. (2013). The sensory neurons of touch. Neuron 79 618–639. 10.1016/j.neuron.2013.07.051 PubMed DOI PMC
Abu-Rub M., McMahon S., Zeugolis D. I., Windebank A., Pandit A. (2010). Spinal cord injury in vitro: modelling axon growth inhibition. Drug Discov. Today 15 436–443. 10.1016/j.drudis.2010.03.008 PubMed DOI
Ahlemeyer B., Kölker S., Zhu Y., Hoffmann G. F., Krieglstein J. (2003). Cytosine arabinofuranoside-induced activation of astrocytes increases the susceptibility of neurons to glutamate due to the release of soluble factors. Neurochem. Int. 42 567–581. 10.1016/s0197-0186(02)00164-x PubMed DOI
Alaynick W. A., Jessell T. M., Pfaff S. L. (2011). SnapShot: spinal cord development. Cell 146 178.e–178.e. 10.1016/j.cell.2011.06.038 PubMed DOI PMC
Allen N. J., Barres B. A. (2005). Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 15 542–548. 10.1016/j.conb.2005.08.006 PubMed DOI
Anderson M. A., Burda J. E., Ren Y., Ao Y., O’Shea T. M., Kawaguchi R., et al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. Nature 532 195–200. 10.1038/nature17623 PubMed DOI PMC
Anderson M. A., O’Shea T. M., Burda J. E., Ao Y., Barlatey S. L., Bernstein A. M., et al. (2018). Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561 396–400. 10.1038/s41586-018-0467-6 PubMed DOI PMC
Arshadi C., Günther U., Eddison M., Harrington K. I. S., Ferreira T. A. (2020). SNT: A Unifying Toolbox for Quantification of Neuronal Anatomy. Neuroscience. Nat. Methods 18 374–377. 10.1101/2020.07.13.179325 PubMed DOI
Ayanlaja A. A., Xiong Y., Gao Y., Ji G., Tang C., Abdikani Abdullah Z., et al. (2017). Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front. Mol. Neurosci. 10:199. 10.3389/fnmol.2017.00199 PubMed DOI PMC
Barbati A. C., Fang C., Banker G. A., Kirby B. J. (2013). Culture of primary rat hippocampal neurons: design, analysis, and optimization of a microfluidic device for cell seeding, coherent growth, and solute delivery. Biomed. Microdevices 15 97–108. 10.1007/s10544-012-9691-2 PubMed DOI PMC
Bareyre F. M., Kerschensteiner M., Raineteau O., Mettenleiter T. C., Weinmann O., Schwab M. E. (2004). The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7 269–277. 10.1038/nn1195 PubMed DOI
Ben-Yaakov K., Dagan S. Y., Segal-Ruder Y., Shalem O., Vuppalanchi D., Willis D. E., et al. (2012). Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J. 31 1350–1363. 10.1038/emboj.2011.494 PubMed DOI PMC
Blesch A., Fischer I., Tuszynski M. H. (2012). Gene therapy, neurotrophic factors and spinal cord regeneration. Handb. Clin. Neurol. 109 563–574. 10.1016/B978-0-444-52137-8.00035-8 PubMed DOI
Brown J. P., Couillard-Després S., Cooper-Kuhn C. M., Winkler J., Aigner L., Kuhn H. G. (2003). Transient expression of doublecortin during adult neurogenesis. J. Comp. Neurol. 467 1–10. 10.1002/cne.10874 PubMed DOI
Bucchia M., Merwin S. J., Re D. B., Kariya S. (2018). Limitations and Challenges in Modeling Diseases Involving Spinal Motor Neuron Degeneration in Vitro. Front. Cell. Neurosci. 12:61. 10.3389/fncel.2018.00061 PubMed DOI PMC
Cameron D., Polgár E., Gutierrez-Mecinas M., Gomez-Lima M., Watanabe M., Todd A. J. (2015). The organisation of spinoparabrachial neurons in the mouse. Pain 156 2061–2071. 10.1097/j.pain.0000000000000270 PubMed DOI PMC
Cheah M., Andrews M. R., Chew D. J., Moloney E. B., Verhaagen J., Fässler R., et al. (2016). Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord. J. Neurosci. 36 7283–7297. 10.1523/JNEUROSCI.0901-16.2016 PubMed DOI PMC
Courtine G., Song B., Roy R. R., Zhong H., Herrmann J. E., Ao Y., et al. (2008). Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14 69–74. 10.1038/nm1682 PubMed DOI PMC
Dai J.-X., Hu Z.-L., Shi M., Guo C., Ding Y.-Q. (2008). Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system. Journal of Comparative Neurology 509 341–355. 10.1002/cne.21759 PubMed DOI
Del Barrio M. G., Bourane S., Grossmann K., Schüle R., Britsch S., O’Leary D. D. M., et al. (2013). A transcription factor code defines nine sensory interneuron subtypes in the mechanosensory area of the spinal cord. PLoS ONE 8:e77928. 10.1371/journal.pone.0077928 PubMed DOI PMC
Dobrott C. I., Sathyamurthy A., Levine A. J. (2019). Decoding cell type diversity within the spinal cord. Curr. Opin. Physiol. 8 1–6. 10.1016/j.cophys.2018.11.006 PubMed DOI PMC
Donaldson K., Höke A. (2014). Studying axonal degeneration and regeneration using in vitro and in vivo models: the translational potential. Fut. Neurol. 9 461–473. 10.2217/fnl.14.29 DOI
Durand J., Filipchuk A., Pambo-Pambo A., Amendola J., Borisovna Kulagina I., Guéritaud J.-P. (2015). Developing electrical properties of postnatal mouse lumbar motoneurons. Front. Cell. Neurosci. 9:349. 10.3389/fncel.2015.00349 PubMed DOI PMC
Eldeiry M., Yamanaka K., Reece T. B., Aftab M. (2017). Spinal cord neurons isolation and culture from neonatal mice. J. Vis. Exp. 11:55856. 10.3791/55856 PubMed DOI PMC
Enright H. A., Lam D., Sebastian A., Sales A. P., Cadena J., Hum N. R., et al. (2020). Functional and transcriptional characterization of complex neuronal co-cultures. Sci. Rep. 10:11007. 10.1038/s41598-020-67691-2 PubMed DOI PMC
Fawcett J. W. (2020). The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult? Neurochem. Res. 45 144–158. 10.1007/s11064-019-02844-y PubMed DOI PMC
Francis F., Koulakoff A., Boucher D., Chafey P., Schaar B., Vinet M.-C., et al. (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23 247–256. 10.1016/S0896-6273(00)80777-1 PubMed DOI
Franssen E. H. P., Zhao R.-R., Koseki H., Kanamarlapudi V., Hoogenraad C. C., Eva R., et al. (2015). Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. J. Neurosci. 35 8359–8375. 10.1523/JNEUROSCI.2850-14.2015 PubMed DOI PMC
Geller H. M., Cheng K. Y., Goldsmith N. K., Romero A. A., Zhang A. L., Morris E. J., et al. (2001). Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside. J. Neurochem. 78 265–275. 10.1046/j.1471-4159.2001.00395.x PubMed DOI
Gertz C. C., Leach M. K., Birrell L. K., Martin D. C., Feldman E. L., Corey J. M. (2010). Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers. Dev Neurobiol 70 589–603. 10.1002/dneu.20792 PubMed DOI PMC
Golowasch J., Thomas G., Taylor A. L., Patel A., Pineda A., Khalil C., et al. (2009). Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J. Neurophysiol. 102 2161–2175. 10.1152/jn.00160.2009 PubMed DOI PMC
Gosgnach S., Bikoff J. B., Dougherty K. J., Manira A. E., Lanuza G. M., Zhang Y. (2017). Delineating the Diversity of Spinal Interneurons in Locomotor Circuits. J. Neurosci. 37 10835–10841. 10.1523/JNEUROSCI.1829-17.2017 PubMed DOI PMC
Grudt T. J., Perl E. R. (2002). Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J. Physiol. 540 189–207. 10.1113/jphysiol.2001.012890 PubMed DOI PMC
Hantman A. W., van den Pol A. N., Perl E. R. (2004). Morphological and physiological features of a set of spinal substantia gelatinosa neurons defined by green fluorescent protein expression. J. Neurosci. 24 836–842. 10.1523/JNEUROSCI.4221-03.2004 PubMed DOI PMC
Häring M., Zeisel A., Hochgerner H., Rinwa P., Jakobsson J. E. T., Lönnerberg P., et al. (2018). Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat. Neurosci. 21 869–880. 10.1038/s41593-018-0141-1 PubMed DOI
Hayashi M., Hinckley C. A., Driscoll S. P., Moore N. J., Levine A. J., Hilde K. L., et al. (2018). Graded Arrays of Spinal and Supraspinal V2a Interneuron Subtypes Underlie Forelimb and Hindlimb Motor Control. Neuron 97 869-884.e5. 10.1016/j.neuron.2018.01.023 PubMed DOI PMC
Hui C. W., Zhang Y., Herrup K. (2016). Non-Neuronal Cells Are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System. PLoS One 11:e0147134. 10.1371/journal.pone.0147134 PubMed DOI PMC
Kaech S., Banker G. (2006). Culturing hippocampal neurons. Nat. Protoc. 1 2406–2415. 10.1038/nprot.2006.356 PubMed DOI
Kappagantula S., Andrews M. R., Cheah M., Abad-Rodriguez J., Dotti C. G., Fawcett J. W. (2014). Neu3 Sialidase-Mediated Ganglioside Conversion Is Necessary for Axon Regeneration and Is Blocked in CNS Axons. J. Neurosci. 34 2477–2492. 10.1523/JNEUROSCI.4432-13.2014 PubMed DOI PMC
Kopach O., Esteras N., Wray S., Rusakov D. A., Abramov A. Y. (2020). Maturation and phenotype of pathophysiological neuronal excitability of human cells in tau-related dementia. J. Cell. Sci. 133 jcs241687. 10.1242/jcs.241687 PubMed DOI PMC
Koseki H., Donegá M., Lam B. Y., Petrova V., van Erp S., Yeo G. S., et al. (2017). Selective rab11 transport and the intrinsic regenerative ability of CNS axons. Elife 6:e26956. 10.7554/eLife.26956 PubMed DOI PMC
LaBarbera K. M., Limegrover C., Rehak C., Yurko R., Izzo N. J., Knezovich N., et al. (2021). Modeling the mature CNS: A predictive screening platform for neurodegenerative disease drug discovery. J. Neurosci. Methods 358:109180. 10.1016/j.jneumeth.2021.109180 PubMed DOI PMC
Larsson M. (2017). Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neurosci. Lett. 638 96–101. 10.1016/j.neulet.2016.12.015 PubMed DOI
Lu D. C., Niu T., Alaynick W. A. (2015). Molecular and cellular development of spinal cord locomotor circuitry. Front. Mol. Neurosci. 8:25. 10.3389/fnmol.2015.00025 PubMed DOI PMC
Lu P., Ceto S., Wang Y., Graham L., Wu D., Kumamaru H., et al. (2017). Prolonged human neural stem cell maturation supports recovery in injured rodent CNS. J. Clin. Invest. 127 3287–3299. 10.1172/JCI92955 PubMed DOI PMC
Lu P., Kadoya K., Tuszynski M. H. (2014). Axonal growth and connectivity from neural stem cell grafts in models of spinal cord injury. Curr. Opin. Neurobiol. 27 103–109. 10.1016/j.conb.2014.03.010 PubMed DOI
Martin D., Wallace T., Johnson E. (1990). Cytosine arabinoside kills postmitotic neurons in a fashion resembling trophic factor deprivation: evidence that a deoxycytidine-dependent process may be required for nerve growth factor signal transduction. J. Neurosci. 10 184–193. 10.1523/JNEUROSCI.10-01-00184.1990 PubMed DOI PMC
Martinez M., Delivet-Mongrain H., Leblond H., Rossignol S. (2012). Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry. J. Neurophysiol. 108 124–134. 10.1152/jn.00073.2012 PubMed DOI
May Z., Fenrich K. K., Dahlby J., Batty N. J., Torres-Espín A., Fouad K. (2017). Following Spinal Cord Injury Transected Reticulospinal Tract Axons Develop New Collateral Inputs to Spinal Interneurons in Parallel with Locomotor Recovery. Neural Plasticity 2017:1932875. 10.1155/2017/1932875 PubMed DOI PMC
Monteiro F. A., Miranda R. M., Samina M. C., Dias A. F., Raposo A. A. S. F., Oliveira P., et al. (2021). Tlx3 Exerts Direct Control in Specifying Excitatory Over Inhibitory Neurons in the Dorsal Spinal Cord. Front. Cell. Dev. Biol. 9:642697. 10.3389/fcell.2021.642697 PubMed DOI PMC
Moore D. L., Blackmore M. G., Hu Y., Kaestner K. H., Bixby J. L., Lemmon V. P., et al. (2009). KLF family members regulate intrinsic axon regeneration ability. Science 326 298–301. 10.1126/science.1175737 PubMed DOI PMC
Moutaux E., Christaller W., Scaramuzzino C., Genoux A., Charlot B., Cazorla M., et al. (2018). Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons. Sci. Rep. 8:13429. 10.1038/s41598-018-31759-x PubMed DOI PMC
Müller T., Brohmann H., Pierani A., Heppenstall P. A., Lewin G. R., Jessell T. M., et al. (2002). The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34 551–562. 10.1016/s0896-6273(02)00689-x PubMed DOI
Neumann S., Braz J. M., Skinner K., Llewellyn-Smith I. J., Basbaum A. I. (2008). Innocuous, not noxious, input activates PKCgamma interneurons of the spinal dorsal horn via myelinated afferent fibers. J. Neurosci. 28 7936–7944. 10.1523/JNEUROSCI.1259-08.2008 PubMed DOI PMC
Nicholls J., Saunders N. (1996). Regeneration of immature mammalian spinal cord after injury. Trends Neurosci. 19 229–234. 10.1016/0166-2236(96)10021-7 PubMed DOI
Norris C. M., Blalock E. M., Thibault O., Brewer L. D., Clodfelter G. V., Porter N. M., et al. (2006). Electrophysiological mechanisms of delayed excitotoxicity: positive feedback loop between nmda receptor current and depolarization-mediated glutamate release. J. Neurophysiol. 96 2488–2500. 10.1152/jn.00593.2005 PubMed DOI PMC
Pernas-Alonso R., Schaffner A. E., Perrone-Capano C., Orlando A., Morelli F., Hansen C. T., et al. (1996). Early upregulation of medium neurofilament gene expression in developing spinal cord of the wobbler mouse mutant. Brain Res. Mol. Brain Res. 38 267–275. 10.1016/0169-328x(95)00344-r PubMed DOI
Petitjean H., Pawlowski S. A., Fraine S. L., Sharif B., Hamad D., Fatima T., et al. (2015). Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury. Cell. Rep. 13 1246–1257. 10.1016/j.celrep.2015.09.080 PubMed DOI PMC
Petrova V., Nieuwenhuis B., Fawcett J. W., Eva R. (2021). Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int. J. Mol. Sci. 22:1798. 10.3390/ijms22041798 PubMed DOI PMC
Petrova V., Pearson C. S., Ching J., Tribble J. R., Solano A. G., Yang Y., et al. (2020). Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat. Commun. 11 5614. 10.1038/s41467-020-19436-y PubMed DOI PMC
Roppongi R. T., Champagne-Jorgensen K. P., Siddiqui T. J. (2017). Low-Density Primary Hippocampal Neuron Culture. J. Vis. Exp. 122:55000. 10.3791/55000 PubMed DOI PMC
Russ D. E., Cross R. B. P., Li L., Koch S. C., Matson K. J. E., Yadav A., et al. (2021). A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat. Commun. 12:5722. 10.1038/s41467-021-25125-1 PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC
Schwab M. E., Strittmatter S. M. (2014). Nogo limits neural plasticity and recovery from injury. Curr. Opin. Neurobiol. 27 53–60. 10.1016/j.conb.2014.02.011 PubMed DOI PMC
Shen Y., Tenney A. P., Busch S. A., Horn K. P., Cuascut F. X., Liu K., et al. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326 592–596. 10.1126/science.1178310 PubMed DOI PMC
Song M., Mohamad O., Chen D., Yu S. P. (2013). Coordinated Development of Voltage-Gated Na+ and K+ Currents Regulates Functional Maturation of Forebrain Neurons Derived from Human Induced Pluripotent Stem Cells. Stem. Cells Dev. 22 1551–1563. 10.1089/scd.2012.0556 PubMed DOI PMC
Spike R. C., Puskar Z., Andrew D., Todd A. J. (2003). A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur. J. Neurosci. 18 2433–2448. 10.1046/j.1460-9568.2003.02981.x PubMed DOI
Stahl A. M., Ruthel G., Torres-Melendez E., Kenny T. A., Panchal R. G., Bavari S. (2007). Primary cultures of embryonic chicken neurons for sensitive cell-based assay of botulinum neurotoxin: implications for therapeutic discovery. J. Biomol. Screen 12 370–377. 10.1177/1087057106299163 PubMed DOI
Sun J., Harrington M. A. (2019). The Alteration of Intrinsic Excitability and Synaptic Transmission in Lumbar Spinal Motor Neurons and Interneurons of Severe Spinal Muscular Atrophy Mice. Front. Cell. Neurosci. 13:15. 10.3389/fncel.2019.00015 PubMed DOI PMC
Sun Z., Williams D. J., Xu B., Gogos J. A. (2018). Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Trans. Psychiat. 8:85. 10.1038/s41398-018-0132-8 PubMed DOI PMC
Takazawa T., Croft G. F., Amoroso M. W., Studer L., Wichterle H., MacDermott A. B. (2012). Maturation of Spinal Motor Neurons Derived from Human Embryonic Stem Cells. PLoS ONE 7:e40154. 10.1371/journal.pone.0040154 PubMed DOI PMC
Thomson C. E., McCulloch M., Sorenson A., Barnett S. C., Seed B. V., Griffiths I. R., et al. (2008). Myelinated, synapsing cultures of murine spinal cord – validation as an in vitro model of the central nervous system. Eur. J. Neurosci. 28 1518–1535. 10.1111/j.1460-9568.2008.06415.x PubMed DOI PMC
Todd A. J., Spike R. C., Polgár E. (1998). A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 85 459–473. 10.1016/S0306-4522(97)00669-6 PubMed DOI
Uyeda A., Muramatsu R. (2020). Molecular Mechanisms of Central Nervous System Axonal Regeneration and Remyelination: A Review. Int. J. Mol. Sci. 21:8116. 10.3390/ijms21218116 PubMed DOI PMC
van Niekerk E. A., Tuszynski M. H., Lu P., Dulin J. N. (2016). Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol. Cell. Proteomics 15 394–408. 10.1074/mcp.R115.053751 PubMed DOI PMC
Wilson J. M., Hartley R., Maxwell D. J., Todd A. J., Lieberam I., Kaltschmidt J. A., et al. (2005). Conditional Rhythmicity of Ventral Spinal Interneurons Defined by Expression of the Hb9 Homeodomain Protein. J. Neurosci. 25 5710–5719. 10.1523/JNEUROSCI.0274-05.2005 PubMed DOI PMC
Zeng H., Sanes J. R. (2017). Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18 530–546. 10.1038/nrn.2017.85 PubMed DOI
Zhong G., Díaz-Ríos M., Harris-Warrick R. M. (2006). Intrinsic and Functional Differences among Commissural Interneurons during Fictive Locomotion and Serotonergic Modulation in the Neonatal Mouse. J. Neurosci. 26 6509–6517. 10.1523/JNEUROSCI.1410-06.2006 PubMed DOI PMC