Long-Term Cultures of Spinal Cord Interneurons

. 2022 ; 16 () : 827628. [epub] 20220207

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35197829

Grantová podpora
MR/R004463/1 Medical Research Council - United Kingdom
MR/V002694/1 Medical Research Council - United Kingdom

Spinal cord interneurons (SpINs) are highly diverse population of neurons that play a significant role in circuit reorganization and spontaneous recovery after spinal cord injury. Regeneration of SpIN axons across rodent spinal injuries has been demonstrated after modification of the environment and neurotrophin treatment, but development of methods to enhance the intrinsic regenerative ability of SpINs is needed. There is a lack of described in vitro models of spinal cord neurons in which to develop new regeneration treatments. For this reason, we developed a new model of mouse primary spinal cord neuronal culture in which to analyze maturation, morphology, physiology, connectivity and regeneration of identified interneurons. Isolated from E14 mice, the neurons mature over 15 days in vitro, demonstrated by expression of maturity markers, electrophysiological patch-clamp recordings, and formation of synapses. The neurons express markers of SpINs, including Tlx3, Lmx1b, Lbx1, Chx10, and Pax2. The neurons demonstrate distinct morphologies and some form perineuronal nets in long-term cultivation. Live neurons in various maturation stages were axotomized, using a 900 nm multiphoton laser and their fate was observed overnight. The percentage of axons that regenerated declined with neuronal maturity. This model of SpINs will be a valuable tool in future regenerative, developmental, and functional studies alongside existing models using cortical or hippocampal neurons.

Zobrazit více v PubMed

Abraira V. E., Ginty D. D. (2013). The sensory neurons of touch. Neuron 79 618–639. 10.1016/j.neuron.2013.07.051 PubMed DOI PMC

Abu-Rub M., McMahon S., Zeugolis D. I., Windebank A., Pandit A. (2010). Spinal cord injury in vitro: modelling axon growth inhibition. Drug Discov. Today 15 436–443. 10.1016/j.drudis.2010.03.008 PubMed DOI

Ahlemeyer B., Kölker S., Zhu Y., Hoffmann G. F., Krieglstein J. (2003). Cytosine arabinofuranoside-induced activation of astrocytes increases the susceptibility of neurons to glutamate due to the release of soluble factors. Neurochem. Int. 42 567–581. 10.1016/s0197-0186(02)00164-x PubMed DOI

Alaynick W. A., Jessell T. M., Pfaff S. L. (2011). SnapShot: spinal cord development. Cell 146 178.e–178.e. 10.1016/j.cell.2011.06.038 PubMed DOI PMC

Allen N. J., Barres B. A. (2005). Signaling between glia and neurons: focus on synaptic plasticity. Curr. Opin. Neurobiol. 15 542–548. 10.1016/j.conb.2005.08.006 PubMed DOI

Anderson M. A., Burda J. E., Ren Y., Ao Y., O’Shea T. M., Kawaguchi R., et al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. Nature 532 195–200. 10.1038/nature17623 PubMed DOI PMC

Anderson M. A., O’Shea T. M., Burda J. E., Ao Y., Barlatey S. L., Bernstein A. M., et al. (2018). Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561 396–400. 10.1038/s41586-018-0467-6 PubMed DOI PMC

Arshadi C., Günther U., Eddison M., Harrington K. I. S., Ferreira T. A. (2020). SNT: A Unifying Toolbox for Quantification of Neuronal Anatomy. Neuroscience. Nat. Methods 18 374–377. 10.1101/2020.07.13.179325 PubMed DOI

Ayanlaja A. A., Xiong Y., Gao Y., Ji G., Tang C., Abdikani Abdullah Z., et al. (2017). Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front. Mol. Neurosci. 10:199. 10.3389/fnmol.2017.00199 PubMed DOI PMC

Barbati A. C., Fang C., Banker G. A., Kirby B. J. (2013). Culture of primary rat hippocampal neurons: design, analysis, and optimization of a microfluidic device for cell seeding, coherent growth, and solute delivery. Biomed. Microdevices 15 97–108. 10.1007/s10544-012-9691-2 PubMed DOI PMC

Bareyre F. M., Kerschensteiner M., Raineteau O., Mettenleiter T. C., Weinmann O., Schwab M. E. (2004). The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7 269–277. 10.1038/nn1195 PubMed DOI

Ben-Yaakov K., Dagan S. Y., Segal-Ruder Y., Shalem O., Vuppalanchi D., Willis D. E., et al. (2012). Axonal transcription factors signal retrogradely in lesioned peripheral nerve. EMBO J. 31 1350–1363. 10.1038/emboj.2011.494 PubMed DOI PMC

Blesch A., Fischer I., Tuszynski M. H. (2012). Gene therapy, neurotrophic factors and spinal cord regeneration. Handb. Clin. Neurol. 109 563–574. 10.1016/B978-0-444-52137-8.00035-8 PubMed DOI

Brown J. P., Couillard-Després S., Cooper-Kuhn C. M., Winkler J., Aigner L., Kuhn H. G. (2003). Transient expression of doublecortin during adult neurogenesis. J. Comp. Neurol. 467 1–10. 10.1002/cne.10874 PubMed DOI

Bucchia M., Merwin S. J., Re D. B., Kariya S. (2018). Limitations and Challenges in Modeling Diseases Involving Spinal Motor Neuron Degeneration in Vitro. Front. Cell. Neurosci. 12:61. 10.3389/fncel.2018.00061 PubMed DOI PMC

Cameron D., Polgár E., Gutierrez-Mecinas M., Gomez-Lima M., Watanabe M., Todd A. J. (2015). The organisation of spinoparabrachial neurons in the mouse. Pain 156 2061–2071. 10.1097/j.pain.0000000000000270 PubMed DOI PMC

Cheah M., Andrews M. R., Chew D. J., Moloney E. B., Verhaagen J., Fässler R., et al. (2016). Expression of an Activated Integrin Promotes Long-Distance Sensory Axon Regeneration in the Spinal Cord. J. Neurosci. 36 7283–7297. 10.1523/JNEUROSCI.0901-16.2016 PubMed DOI PMC

Courtine G., Song B., Roy R. R., Zhong H., Herrmann J. E., Ao Y., et al. (2008). Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14 69–74. 10.1038/nm1682 PubMed DOI PMC

Dai J.-X., Hu Z.-L., Shi M., Guo C., Ding Y.-Q. (2008). Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system. Journal of Comparative Neurology 509 341–355. 10.1002/cne.21759 PubMed DOI

Del Barrio M. G., Bourane S., Grossmann K., Schüle R., Britsch S., O’Leary D. D. M., et al. (2013). A transcription factor code defines nine sensory interneuron subtypes in the mechanosensory area of the spinal cord. PLoS ONE 8:e77928. 10.1371/journal.pone.0077928 PubMed DOI PMC

Dobrott C. I., Sathyamurthy A., Levine A. J. (2019). Decoding cell type diversity within the spinal cord. Curr. Opin. Physiol. 8 1–6. 10.1016/j.cophys.2018.11.006 PubMed DOI PMC

Donaldson K., Höke A. (2014). Studying axonal degeneration and regeneration using in vitro and in vivo models: the translational potential. Fut. Neurol. 9 461–473. 10.2217/fnl.14.29 DOI

Durand J., Filipchuk A., Pambo-Pambo A., Amendola J., Borisovna Kulagina I., Guéritaud J.-P. (2015). Developing electrical properties of postnatal mouse lumbar motoneurons. Front. Cell. Neurosci. 9:349. 10.3389/fncel.2015.00349 PubMed DOI PMC

Eldeiry M., Yamanaka K., Reece T. B., Aftab M. (2017). Spinal cord neurons isolation and culture from neonatal mice. J. Vis. Exp. 11:55856. 10.3791/55856 PubMed DOI PMC

Enright H. A., Lam D., Sebastian A., Sales A. P., Cadena J., Hum N. R., et al. (2020). Functional and transcriptional characterization of complex neuronal co-cultures. Sci. Rep. 10:11007. 10.1038/s41598-020-67691-2 PubMed DOI PMC

Fawcett J. W. (2020). The Struggle to Make CNS Axons Regenerate: Why Has It Been so Difficult? Neurochem. Res. 45 144–158. 10.1007/s11064-019-02844-y PubMed DOI PMC

Francis F., Koulakoff A., Boucher D., Chafey P., Schaar B., Vinet M.-C., et al. (1999). Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and differentiating neurons. Neuron 23 247–256. 10.1016/S0896-6273(00)80777-1 PubMed DOI

Franssen E. H. P., Zhao R.-R., Koseki H., Kanamarlapudi V., Hoogenraad C. C., Eva R., et al. (2015). Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. J. Neurosci. 35 8359–8375. 10.1523/JNEUROSCI.2850-14.2015 PubMed DOI PMC

Geller H. M., Cheng K. Y., Goldsmith N. K., Romero A. A., Zhang A. L., Morris E. J., et al. (2001). Oxidative stress mediates neuronal DNA damage and apoptosis in response to cytosine arabinoside. J. Neurochem. 78 265–275. 10.1046/j.1471-4159.2001.00395.x PubMed DOI

Gertz C. C., Leach M. K., Birrell L. K., Martin D. C., Feldman E. L., Corey J. M. (2010). Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers. Dev Neurobiol 70 589–603. 10.1002/dneu.20792 PubMed DOI PMC

Golowasch J., Thomas G., Taylor A. L., Patel A., Pineda A., Khalil C., et al. (2009). Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J. Neurophysiol. 102 2161–2175. 10.1152/jn.00160.2009 PubMed DOI PMC

Gosgnach S., Bikoff J. B., Dougherty K. J., Manira A. E., Lanuza G. M., Zhang Y. (2017). Delineating the Diversity of Spinal Interneurons in Locomotor Circuits. J. Neurosci. 37 10835–10841. 10.1523/JNEUROSCI.1829-17.2017 PubMed DOI PMC

Grudt T. J., Perl E. R. (2002). Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J. Physiol. 540 189–207. 10.1113/jphysiol.2001.012890 PubMed DOI PMC

Hantman A. W., van den Pol A. N., Perl E. R. (2004). Morphological and physiological features of a set of spinal substantia gelatinosa neurons defined by green fluorescent protein expression. J. Neurosci. 24 836–842. 10.1523/JNEUROSCI.4221-03.2004 PubMed DOI PMC

Häring M., Zeisel A., Hochgerner H., Rinwa P., Jakobsson J. E. T., Lönnerberg P., et al. (2018). Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat. Neurosci. 21 869–880. 10.1038/s41593-018-0141-1 PubMed DOI

Hayashi M., Hinckley C. A., Driscoll S. P., Moore N. J., Levine A. J., Hilde K. L., et al. (2018). Graded Arrays of Spinal and Supraspinal V2a Interneuron Subtypes Underlie Forelimb and Hindlimb Motor Control. Neuron 97 869-884.e5. 10.1016/j.neuron.2018.01.023 PubMed DOI PMC

Hui C. W., Zhang Y., Herrup K. (2016). Non-Neuronal Cells Are Required to Mediate the Effects of Neuroinflammation: Results from a Neuron-Enriched Culture System. PLoS One 11:e0147134. 10.1371/journal.pone.0147134 PubMed DOI PMC

Kaech S., Banker G. (2006). Culturing hippocampal neurons. Nat. Protoc. 1 2406–2415. 10.1038/nprot.2006.356 PubMed DOI

Kappagantula S., Andrews M. R., Cheah M., Abad-Rodriguez J., Dotti C. G., Fawcett J. W. (2014). Neu3 Sialidase-Mediated Ganglioside Conversion Is Necessary for Axon Regeneration and Is Blocked in CNS Axons. J. Neurosci. 34 2477–2492. 10.1523/JNEUROSCI.4432-13.2014 PubMed DOI PMC

Kopach O., Esteras N., Wray S., Rusakov D. A., Abramov A. Y. (2020). Maturation and phenotype of pathophysiological neuronal excitability of human cells in tau-related dementia. J. Cell. Sci. 133 jcs241687. 10.1242/jcs.241687 PubMed DOI PMC

Koseki H., Donegá M., Lam B. Y., Petrova V., van Erp S., Yeo G. S., et al. (2017). Selective rab11 transport and the intrinsic regenerative ability of CNS axons. Elife 6:e26956. 10.7554/eLife.26956 PubMed DOI PMC

LaBarbera K. M., Limegrover C., Rehak C., Yurko R., Izzo N. J., Knezovich N., et al. (2021). Modeling the mature CNS: A predictive screening platform for neurodegenerative disease drug discovery. J. Neurosci. Methods 358:109180. 10.1016/j.jneumeth.2021.109180 PubMed DOI PMC

Larsson M. (2017). Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neurosci. Lett. 638 96–101. 10.1016/j.neulet.2016.12.015 PubMed DOI

Lu D. C., Niu T., Alaynick W. A. (2015). Molecular and cellular development of spinal cord locomotor circuitry. Front. Mol. Neurosci. 8:25. 10.3389/fnmol.2015.00025 PubMed DOI PMC

Lu P., Ceto S., Wang Y., Graham L., Wu D., Kumamaru H., et al. (2017). Prolonged human neural stem cell maturation supports recovery in injured rodent CNS. J. Clin. Invest. 127 3287–3299. 10.1172/JCI92955 PubMed DOI PMC

Lu P., Kadoya K., Tuszynski M. H. (2014). Axonal growth and connectivity from neural stem cell grafts in models of spinal cord injury. Curr. Opin. Neurobiol. 27 103–109. 10.1016/j.conb.2014.03.010 PubMed DOI

Martin D., Wallace T., Johnson E. (1990). Cytosine arabinoside kills postmitotic neurons in a fashion resembling trophic factor deprivation: evidence that a deoxycytidine-dependent process may be required for nerve growth factor signal transduction. J. Neurosci. 10 184–193. 10.1523/JNEUROSCI.10-01-00184.1990 PubMed DOI PMC

Martinez M., Delivet-Mongrain H., Leblond H., Rossignol S. (2012). Incomplete spinal cord injury promotes durable functional changes within the spinal locomotor circuitry. J. Neurophysiol. 108 124–134. 10.1152/jn.00073.2012 PubMed DOI

May Z., Fenrich K. K., Dahlby J., Batty N. J., Torres-Espín A., Fouad K. (2017). Following Spinal Cord Injury Transected Reticulospinal Tract Axons Develop New Collateral Inputs to Spinal Interneurons in Parallel with Locomotor Recovery. Neural Plasticity 2017:1932875. 10.1155/2017/1932875 PubMed DOI PMC

Monteiro F. A., Miranda R. M., Samina M. C., Dias A. F., Raposo A. A. S. F., Oliveira P., et al. (2021). Tlx3 Exerts Direct Control in Specifying Excitatory Over Inhibitory Neurons in the Dorsal Spinal Cord. Front. Cell. Dev. Biol. 9:642697. 10.3389/fcell.2021.642697 PubMed DOI PMC

Moore D. L., Blackmore M. G., Hu Y., Kaestner K. H., Bixby J. L., Lemmon V. P., et al. (2009). KLF family members regulate intrinsic axon regeneration ability. Science 326 298–301. 10.1126/science.1175737 PubMed DOI PMC

Moutaux E., Christaller W., Scaramuzzino C., Genoux A., Charlot B., Cazorla M., et al. (2018). Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons. Sci. Rep. 8:13429. 10.1038/s41598-018-31759-x PubMed DOI PMC

Müller T., Brohmann H., Pierani A., Heppenstall P. A., Lewin G. R., Jessell T. M., et al. (2002). The homeodomain factor lbx1 distinguishes two major programs of neuronal differentiation in the dorsal spinal cord. Neuron 34 551–562. 10.1016/s0896-6273(02)00689-x PubMed DOI

Neumann S., Braz J. M., Skinner K., Llewellyn-Smith I. J., Basbaum A. I. (2008). Innocuous, not noxious, input activates PKCgamma interneurons of the spinal dorsal horn via myelinated afferent fibers. J. Neurosci. 28 7936–7944. 10.1523/JNEUROSCI.1259-08.2008 PubMed DOI PMC

Nicholls J., Saunders N. (1996). Regeneration of immature mammalian spinal cord after injury. Trends Neurosci. 19 229–234. 10.1016/0166-2236(96)10021-7 PubMed DOI

Norris C. M., Blalock E. M., Thibault O., Brewer L. D., Clodfelter G. V., Porter N. M., et al. (2006). Electrophysiological mechanisms of delayed excitotoxicity: positive feedback loop between nmda receptor current and depolarization-mediated glutamate release. J. Neurophysiol. 96 2488–2500. 10.1152/jn.00593.2005 PubMed DOI PMC

Pernas-Alonso R., Schaffner A. E., Perrone-Capano C., Orlando A., Morelli F., Hansen C. T., et al. (1996). Early upregulation of medium neurofilament gene expression in developing spinal cord of the wobbler mouse mutant. Brain Res. Mol. Brain Res. 38 267–275. 10.1016/0169-328x(95)00344-r PubMed DOI

Petitjean H., Pawlowski S. A., Fraine S. L., Sharif B., Hamad D., Fatima T., et al. (2015). Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury. Cell. Rep. 13 1246–1257. 10.1016/j.celrep.2015.09.080 PubMed DOI PMC

Petrova V., Nieuwenhuis B., Fawcett J. W., Eva R. (2021). Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury. Int. J. Mol. Sci. 22:1798. 10.3390/ijms22041798 PubMed DOI PMC

Petrova V., Pearson C. S., Ching J., Tribble J. R., Solano A. G., Yang Y., et al. (2020). Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat. Commun. 11 5614. 10.1038/s41467-020-19436-y PubMed DOI PMC

Roppongi R. T., Champagne-Jorgensen K. P., Siddiqui T. J. (2017). Low-Density Primary Hippocampal Neuron Culture. J. Vis. Exp. 122:55000. 10.3791/55000 PubMed DOI PMC

Russ D. E., Cross R. B. P., Li L., Koch S. C., Matson K. J. E., Yadav A., et al. (2021). A harmonized atlas of mouse spinal cord cell types and their spatial organization. Nat. Commun. 12:5722. 10.1038/s41467-021-25125-1 PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat. Methods 9 676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schwab M. E., Strittmatter S. M. (2014). Nogo limits neural plasticity and recovery from injury. Curr. Opin. Neurobiol. 27 53–60. 10.1016/j.conb.2014.02.011 PubMed DOI PMC

Shen Y., Tenney A. P., Busch S. A., Horn K. P., Cuascut F. X., Liu K., et al. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326 592–596. 10.1126/science.1178310 PubMed DOI PMC

Song M., Mohamad O., Chen D., Yu S. P. (2013). Coordinated Development of Voltage-Gated Na+ and K+ Currents Regulates Functional Maturation of Forebrain Neurons Derived from Human Induced Pluripotent Stem Cells. Stem. Cells Dev. 22 1551–1563. 10.1089/scd.2012.0556 PubMed DOI PMC

Spike R. C., Puskar Z., Andrew D., Todd A. J. (2003). A quantitative and morphological study of projection neurons in lamina I of the rat lumbar spinal cord. Eur. J. Neurosci. 18 2433–2448. 10.1046/j.1460-9568.2003.02981.x PubMed DOI

Stahl A. M., Ruthel G., Torres-Melendez E., Kenny T. A., Panchal R. G., Bavari S. (2007). Primary cultures of embryonic chicken neurons for sensitive cell-based assay of botulinum neurotoxin: implications for therapeutic discovery. J. Biomol. Screen 12 370–377. 10.1177/1087057106299163 PubMed DOI

Sun J., Harrington M. A. (2019). The Alteration of Intrinsic Excitability and Synaptic Transmission in Lumbar Spinal Motor Neurons and Interneurons of Severe Spinal Muscular Atrophy Mice. Front. Cell. Neurosci. 13:15. 10.3389/fncel.2019.00015 PubMed DOI PMC

Sun Z., Williams D. J., Xu B., Gogos J. A. (2018). Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia. Trans. Psychiat. 8:85. 10.1038/s41398-018-0132-8 PubMed DOI PMC

Takazawa T., Croft G. F., Amoroso M. W., Studer L., Wichterle H., MacDermott A. B. (2012). Maturation of Spinal Motor Neurons Derived from Human Embryonic Stem Cells. PLoS ONE 7:e40154. 10.1371/journal.pone.0040154 PubMed DOI PMC

Thomson C. E., McCulloch M., Sorenson A., Barnett S. C., Seed B. V., Griffiths I. R., et al. (2008). Myelinated, synapsing cultures of murine spinal cord – validation as an in vitro model of the central nervous system. Eur. J. Neurosci. 28 1518–1535. 10.1111/j.1460-9568.2008.06415.x PubMed DOI PMC

Todd A. J., Spike R. C., Polgár E. (1998). A quantitative study of neurons which express neurokinin-1 or somatostatin sst2a receptor in rat spinal dorsal horn. Neuroscience 85 459–473. 10.1016/S0306-4522(97)00669-6 PubMed DOI

Uyeda A., Muramatsu R. (2020). Molecular Mechanisms of Central Nervous System Axonal Regeneration and Remyelination: A Review. Int. J. Mol. Sci. 21:8116. 10.3390/ijms21218116 PubMed DOI PMC

van Niekerk E. A., Tuszynski M. H., Lu P., Dulin J. N. (2016). Molecular and Cellular Mechanisms of Axonal Regeneration After Spinal Cord Injury. Mol. Cell. Proteomics 15 394–408. 10.1074/mcp.R115.053751 PubMed DOI PMC

Wilson J. M., Hartley R., Maxwell D. J., Todd A. J., Lieberam I., Kaltschmidt J. A., et al. (2005). Conditional Rhythmicity of Ventral Spinal Interneurons Defined by Expression of the Hb9 Homeodomain Protein. J. Neurosci. 25 5710–5719. 10.1523/JNEUROSCI.0274-05.2005 PubMed DOI PMC

Zeng H., Sanes J. R. (2017). Neuronal cell-type classification: challenges, opportunities and the path forward. Nat. Rev. Neurosci. 18 530–546. 10.1038/nrn.2017.85 PubMed DOI

Zhong G., Díaz-Ríos M., Harris-Warrick R. M. (2006). Intrinsic and Functional Differences among Commissural Interneurons during Fictive Locomotion and Serotonergic Modulation in the Neonatal Mouse. J. Neurosci. 26 6509–6517. 10.1523/JNEUROSCI.1410-06.2006 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...