Axonal Organelles as Molecular Platforms for Axon Growth and Regeneration after Injury
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
MR/R004463/1
Medical Research Council - United Kingdom
MR/R004544/1
Medical Research Council - United Kingdom
RG88062
International Foundation for Research in Paraplegia
CZ.02.1.01/0.0./0.0/ 15_003/0000419
Czech Ministry of Education
MR/V002694/1
Medical Research Council - United Kingdom
PubMed
33670312
PubMed Central
PMC7918155
DOI
10.3390/ijms22041798
PII: ijms22041798
Knihovny.cz E-zdroje
- Klíčová slova
- axon growth, axon regeneration, inter-organelle membrane contact sites, organelles,
- MeSH
- lidé MeSH
- organely metabolismus patologie MeSH
- poranění míchy * metabolismus patologie terapie MeSH
- regenerace nervu * MeSH
- růstové kužele metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Investigating the molecular mechanisms governing developmental axon growth has been a useful approach for identifying new strategies for boosting axon regeneration after injury, with the goal of treating debilitating conditions such as spinal cord injury and vision loss. The picture emerging is that various axonal organelles are important centers for organizing the molecular mechanisms and machinery required for growth cone development and axon extension, and these have recently been targeted to stimulate robust regeneration in the injured adult central nervous system (CNS). This review summarizes recent literature highlighting a central role for organelles such as recycling endosomes, the endoplasmic reticulum, mitochondria, lysosomes, autophagosomes and the proteasome in developmental axon growth, and describes how these organelles can be targeted to promote axon regeneration after injury to the adult CNS. This review also examines the connections between these organelles in developing and regenerating axons, and finally discusses the molecular mechanisms within the axon that are required for successful axon growth.
Zobrazit více v PubMed
Banker G. The development of neuronal polarity: A retrospective view. J. Neurosci. 2018;38:1867–1873. doi: 10.1523/JNEUROSCI.1372-16.2018. PubMed DOI PMC
Schelski M., Bradke F. Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol. Cell. Neurosci. 2017;84:11–28. doi: 10.1016/j.mcn.2017.03.008. PubMed DOI
Dotti C.G., Sullivan C.A., Banker G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 1988;8:1454–1468. doi: 10.1523/JNEUROSCI.08-04-01454.1988. PubMed DOI PMC
Esch T., Lemmon V., Banker G. Local presentation of substrate molecules directs axon specification by cultured hippocampal neurons. J. Neurosci. 1999;19:6417–6426. doi: 10.1523/JNEUROSCI.19-15-06417.1999. PubMed DOI PMC
O’Donnell M., Chance R.K., Bashaw G.J. Axon Growth and Guidance: Receptor Regulation and Signal Transduction. Annu. Rev. Neurosci. 2009;32:383–412. doi: 10.1146/annurev.neuro.051508.135614. PubMed DOI PMC
Pfenninger K.H. Plasma membrane expansion: A neuron’s Herculean task. Nat. Rev. Neurosci. 2009;10:251–261. doi: 10.1038/nrn2593. PubMed DOI
Shen K., Scheiffele P. Genetics and cell biology of building specific synaptic connectivity. Annu. Rev. Neurosci. 2010;33:473–507. doi: 10.1146/annurev.neuro.051508.135302. PubMed DOI PMC
Lu Y., Brommer B., Tian X., Krishnan A., Meer M., Wang C., Vera D.L., Zeng Q., Yu D., Bonkowski M.S., et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature. 2020;588:124–129. doi: 10.1038/s41586-020-2975-4. PubMed DOI PMC
Hilton B.J., Bradke F. Can injured adult CNS axons regenerate by recapitulating development? Development. 2017;144:3417–3429. doi: 10.1242/dev.148312. PubMed DOI
He Z., Jin Y. Intrinsic Control of Axon Regeneration. Neuron. 2016;90:437–451. doi: 10.1016/j.neuron.2016.04.022. PubMed DOI
Kiyoshi C., Tedeschi A. Axon growth and synaptic function: A balancing act for axonal regeneration and neuronal circuit formation in CNS trauma and disease. Dev. Neurobiol. 2020;80:277–301. doi: 10.1002/dneu.22780. PubMed DOI PMC
Petrova V., Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev. Neurobiol. 2018;78:898–925. doi: 10.1002/dneu.22608. PubMed DOI
Schwab M.E., Strittmatter S.M. Nogo limits neural plasticity and recovery from injury. Curr. Opin. Neurobiol. 2014;27:53–60. doi: 10.1016/j.conb.2014.02.011. PubMed DOI PMC
Bradke F., Fawcett J.W., Spira M.E. Assembly of a new growth cone after axotomy: The precursor to axon regeneration. Nat. Rev. Neurosci. 2012;13:183–193. doi: 10.1038/nrn3176. PubMed DOI
Ziv N.E., Spira M.E. Localized and transient elevations of intracellular Ca2+ induce the dedifferentiation of axonal segments into growth cones. J. Neurosci. 1997;17:3568–3579. doi: 10.1523/JNEUROSCI.17-10-03568.1997. PubMed DOI PMC
Chandran V., Coppola G., Nawabi H., Omura T., Versano R., Huebner E.A., Zhang A., Costigan M., Yekkirala A., Barrett L., et al. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program. Neuron. 2016;89:956–970. doi: 10.1016/j.neuron.2016.01.034. PubMed DOI PMC
Costigan M., Befort K., Karchewski L., Griffin R.S., D’Urso D., Allchorne A., Sitarski J., Mannion J.W., Pratt R.E., Woolf C.J. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci. 2002;3:16. doi: 10.1186/1471-2202-3-16. PubMed DOI PMC
Park K.K., Liu K., Hu Y., Smith P.D., Wang C., Cai B., Xu B., Connolly L., Kramvis I., Sahin M., et al. Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science. 2008;322:963–966. doi: 10.1126/science.1161566. PubMed DOI PMC
Liu K., Lu Y., Lee J.K., Samara R., Willenberg R., Sears-Kraxberger I., Tedeschi A., Park K.K., Jin D., Cai B., et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 2010;13:1075–1081. doi: 10.1038/nn.2603. PubMed DOI PMC
Nieuwenhuis B., Barber A.C., Evans R.S., Pearson C.S., Fuchs J., MacQueen A.R., Erp S., Haenzi B., Hulshof L.A., Osborne A., et al. PI 3-kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS. EMBO Mol. Med. 2020;12:e11674. doi: 10.15252/emmm.201911674. PubMed DOI PMC
Sun F., Park K.K., Belin S., Wang D., Lu T., Chen G., Zhang K., Yeung C., Feng G., Yankner B.A., et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature. 2011;480:372–375. doi: 10.1038/nature10594. PubMed DOI PMC
Smith P.D., Sun F., Park K.K., Cai B., Wang C., Kuwako K., Martinez-Carrasco I., Connolly L., He Z. SOCS3 Deletion Promotes Optic Nerve Regeneration In Vivo. Neuron. 2009;64:617–623. doi: 10.1016/j.neuron.2009.11.021. PubMed DOI PMC
Dupraz S., Grassi D., Bernis M.E., Sosa L., Bisbal M., Gastaldi L., Jausoro I., Caceres A., Pfenninger K.H., Quiroga S. The TC10-Exo70 Complex Is Essential for Membrane Expansion and Axonal Specification in Developing Neurons. J. Neurosci. 2009;29:13292–13301. doi: 10.1523/JNEUROSCI.3907-09.2009. PubMed DOI PMC
Porter K.R., Blum J. A study in microtomy for electron microscopy. Anat. Rec. 1953;117:685–709. doi: 10.1002/ar.1091170403. PubMed DOI
Nixon-Abell J., Obara C.J., Weigel A.V., Li D., Legant W.R., Xu C.S., Pasolli H.A., Harvey K., Hess H.F., Betzig E., et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science. 2016;354:aaf3928. doi: 10.1126/science.aaf3928. PubMed DOI PMC
King C., Sengupta P., Seo A.Y., Lippincott-Schwartz J. ER membranes exhibit phase behavior at sites of organelle contact. Proc. Natl. Acad. Sci. USA. 2020;117:7225–7235. doi: 10.1073/pnas.1910854117. PubMed DOI PMC
Tsukita S., Ishikawa H. Three-Dimensional Distributionof Smooth Endoplasmic Reticulum in Myelinated Axons. J. Electron Microsc. 1976;25:141–149. PubMed
Droz B., Rambourg A., Koenig H.L. The smooth endoplasmic reticulum: Structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal tranport. Brain Res. 1975;93:1–13. doi: 10.1016/0006-8993(75)90282-6. PubMed DOI
González C., Cánovas J., Fresno J., Couve E., Court F.A., Couve A. Axons provide the secretory machinery for trafficking of voltage-gated sodium channels in peripheral nerve. Proc. Natl. Acad. Sci. USA. 2016;113:1823–1828. doi: 10.1073/pnas.1514943113. PubMed DOI PMC
Cioni J.-M., Lin J.Q., Holtermann A.V., Koppers M., Jakobs M.A.H., Azizi A., Turner-Bridger B., Shigeoka T., Franze K., Harris W.A., et al. Late Endosomes Act as mRNA Translation Platforms and Sustain Mitochondria in Axons. Cell. 2019;176:56–72.e15. doi: 10.1016/j.cell.2018.11.030. PubMed DOI PMC
Wu Y., Whiteus C., Xu C.S., Hayworth K.J., Weinberg R.J., Hess H.F., De Camilli P. Contacts between the endoplasmic reticulum and other membranes in neurons. Proc. Natl. Acad. Sci. USA. 2017;114:E4859–E4867. doi: 10.1073/pnas.1701078114. PubMed DOI PMC
Öztürk Z., O’Kane C.J., Pérez-Moreno J.J. Axonal Endoplasmic Reticulum Dynamics and Its Roles in Neurodegeneration. Front. Neurosci. 2020;14:48. doi: 10.3389/fnins.2020.00048. PubMed DOI PMC
Westrate L.M., Lee J.E., Prinz W.A., Voeltz G.K. Form follows function: The importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 2015;84:791–811. doi: 10.1146/annurev-biochem-072711-163501. PubMed DOI
Zhang H., Hu J. Shaping the Endoplasmic Reticulum into a Social Network. Trends Cell Biol. 2016;26:934–943. doi: 10.1016/j.tcb.2016.06.002. PubMed DOI
Hübner C.A., Kurth I. Membrane-shaping disorders: A common pathway in axon degeneration. Brain. 2014;137:3109–3121. doi: 10.1093/brain/awu287. PubMed DOI
Blackstone C. Cellular Pathways of Hereditary Spastic Paraplegia. Annu. Rev. Neurosci. 2012;35:25–47. doi: 10.1146/annurev-neuro-062111-150400. PubMed DOI PMC
Blackstone C., O’Kane C.J., Reid E. Hereditary spastic paraplegias: Membrane traffic and the motor pathway. Nat. Rev. Neurosci. 2011;12:31–42. doi: 10.1038/nrn2946. PubMed DOI PMC
Yalçın B., Zhao L., Stofanko M., O’Sullivan N.C., Kang Z.H., Roost A., Thomas M.R., Zaessinger S., Blard O., Patto A.L., et al. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. Elife. 2017;6:e23882. doi: 10.7554/eLife.23882. PubMed DOI PMC
O’Sullivan N.C., Jahn T.R., Reid E., O’Kane C.J. Reticulon-like-1, the Drosophila orthologue of the Hereditary Spastic Paraplegia gene reticulon 2, is required for organization of endoplasmic reticulum and of distal motor axons. Hum. Mol. Genet. 2012;21:3356–3365. doi: 10.1093/hmg/dds167. PubMed DOI PMC
Oliva M.K., Pérez-Moreno J.J., O’Shaughnessy J., Wardill T.J., O’Kane C.J. Endoplasmic Reticulum Lumenal Indicators in Drosophila Reveal Effects of HSP-Related Mutations on Endoplasmic Reticulum Calcium Dynamics. Front. Neurosci. 2020;14:816. doi: 10.3389/fnins.2020.00816. PubMed DOI PMC
English A.R., Voeltz G.K. Endoplasmic reticulum structure and interconnections with other organelles. Cold Spring Harb. Perspect. Biol. 2013;5:1–16. doi: 10.1101/cshperspect.a013227. PubMed DOI PMC
Farías G.G., Fréal A., Tortosa E., Stucchi R., Pan X., Portegies S., Will L., Altelaar M., Hoogenraad C.C. Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity. Neuron. 2019;102:184–201.e8. doi: 10.1016/j.neuron.2019.01.030. PubMed DOI
Petrova V., Pearson C.S., Ching J., Tribble J.R., Solano A.G., Yang Y., Love F.M., Watt R.J., Osborne A., Reid E., et al. Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat. Commun. 2020;11:5614. doi: 10.1038/s41467-020-19436-y. PubMed DOI PMC
Park S.H., Zhu P.P., Parker R.L., Blackstone C. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J. Clin. Investig. 2010;120:1097–1110. doi: 10.1172/JCI40979. PubMed DOI PMC
Lim Y., Cho I.T., Schoel L.J., Cho G., Golden J.A. Hereditary spastic paraplegia-linked REEP1 modulates endoplasmic reticulum/mitochondria contacts. Ann. Neurol. 2015;78:679–696. doi: 10.1002/ana.24488. PubMed DOI PMC
Rao K., Stone M.C., Weiner A.T., Gheres K.W., Zhou C., Deitcher D.L., Levitan E.S., Rolls M.M. Spastin, atlastin, and ER relocalization are involved in axon but not dendrite regeneration. Mol. Biol. Cell. 2016;27:3245–3256. doi: 10.1091/mbc.E16-05-0287. PubMed DOI PMC
Shorey M., Stone M.C., Mandel J., Rolls M.M. Neurons survive simultaneous injury to axons and dendrites and regrow both types of processes in vivo. Dev. Biol. 2020;465:108–118. doi: 10.1016/j.ydbio.2020.07.006. PubMed DOI PMC
Zhu P.P., Soderblom C., Tao-Cheng J.H., Stadler J., Blackstone C. SPG3A protein atlastin-1 is enriched in growth cones and promotes axon elongation during neuronal development. Hum. Mol. Genet. 2006;15:1343–1353. doi: 10.1093/hmg/ddl054. PubMed DOI
Nozumi M., Togano T., Takahashi-Niki K., Lu J., Honda A., Taoka M., Shinkawa T., Koga H., Takeuchi K., Isobe T., et al. Identification of functional marker proteins in the mammalian growth cone. Proc. Natl. Acad. Sci. USA. 2009;106:17211–17216. doi: 10.1073/pnas.0904092106. PubMed DOI PMC
Saita S., Shirane M., Natume T., Iemura S., Nakayama K.I. Promotion of Neurite Extension by Protrudin Requires Its Interaction with Vesicle-associated Membrane Protein-associated Protein. J. Biol. Chem. 2009;284:13766–13777. doi: 10.1074/jbc.M807938200. PubMed DOI PMC
De Vincentiis S., Falconieri A., Mainardi M., Cappello V., Scribano V., Bizzarri R., Storti B., Dente L., Costa M., Raffa V. Extremely Low Forces Induce Extreme Axon Growth. J. Neurosci. 2020;40:4997–5007. doi: 10.1523/JNEUROSCI.3075-19.2020. PubMed DOI PMC
Vance J.E. Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J. Biol. Chem. 1991;266:89–97. doi: 10.1016/S0021-9258(18)52406-6. PubMed DOI
Vance J.E., Pan D., Campenot R.B., Bussiere M., Vance D.E. Evidence that the Major Membrane Lipids, Except Cholesterol, Are Made in Axons of Cultured Rat Sympathetic Neurons. J. Neurochem. 2008;62:329–337. doi: 10.1046/j.1471-4159.1994.62010329.x. PubMed DOI
De Chaves E.P., Vance D.E., Campenot R.B., Vance J.E. Axonal synthesis of phosphatidylcholine is required for normal axonal growth in rat sympathetic neurons. J. Cell Biol. 1995;128:913–918. doi: 10.1083/jcb.128.5.913. PubMed DOI PMC
Luarte A., Cornejo V.H., Bertin F., Gallardo J., Couve A. The axonal endoplasmic reticulum: One organelle—many functions in development, maintenance, and plasticity. Dev. Neurobiol. 2018;78:181–208. doi: 10.1002/dneu.22560. PubMed DOI
Jacquemyn J., Cascalho A., Goodchild R.E. The ins and outs of endoplasmic reticulum-controlled lipid biosynthesis. EMBO Rep. 2017;18:1905–1921. doi: 10.15252/embr.201643426. PubMed DOI PMC
Rodríguez-Berdini L., Orlando Ferrero G., Bustos Plonka F., Mauricio Cardozo Gizzi A., Prucca C.G., Quiroga S., Leonor Caputto B., Orio O.A. The moonlighting protein c-Fos activates lipid synthesis in neurons, an activity that is critical for cellular differentiation and cortical development. J. Biol. Chem. 2020;295:8808–8818. doi: 10.1074/jbc.RA119.010129. PubMed DOI PMC
Bakan I., Laplante M. Connecting mTORC1 signaling to SREBP-1 activation. Curr. Opin. Lipidol. 2012;23:226–234. doi: 10.1097/MOL.0b013e328352dd03. PubMed DOI
Ricoult S.J.H., Yecies J.L., Ben-Sahra I., Manning B.D. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene. 2016;35:1250–1260. doi: 10.1038/onc.2015.179. PubMed DOI PMC
Ricoult S.J.H., Manning B.D. The multifaceted role of mTORC1 in the control of lipid metabolism. EMBO Rep. 2013;14:242–251. doi: 10.1038/embor.2013.5. PubMed DOI PMC
Lev S. Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 2012;4:a013300. doi: 10.1101/cshperspect.a013300. PubMed DOI PMC
Lev S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat. Rev. Mol. Cell Biol. 2010;11:739–750. doi: 10.1038/nrm2971. PubMed DOI
Wojnacki J., Galli T. Membrane traffic during axon development. Dev. Neurobiol. 2016;76:1185–1200. doi: 10.1002/dneu.22390. PubMed DOI
Kaplan M.R., Simoni R.D. Intracellular transport of phosphatidylcholine to the plasma membrane. J. Cell Biol. 1985;101:441–445. doi: 10.1083/jcb.101.2.441. PubMed DOI PMC
Petkovic M., Jemaiel A., Daste F., Specht C.G., Izeddin I., Vorkel D., Verbavatz J.-M., Darzacq X., Triller A., Pfenninger K.H., et al. The SNARE Sec22b has a non-fusogenic function in plasma membrane expansion. Nat. Cell Biol. 2014;16:434–444. doi: 10.1038/ncb2937. PubMed DOI
Gallo A., Vannier C., Galli T. Endoplasmic Reticulum–Plasma Membrane Associations:Structures and Functions. Annu. Rev. Cell Dev. Biol. 2016;32:279–301. doi: 10.1146/annurev-cellbio-111315-125024. PubMed DOI
Gallo A., Danglot L., Giordano F., Hewlett B., Binz T., Vannier C., Galli T. Role of the Sec22b-E-Syt complex in neurite growth and ramification. J. Cell Sci. 2020;133:jcs247148. doi: 10.1242/jcs.247148. PubMed DOI
Blackmore M., Letourneau P.C. Protein synthesis in distal axons is not required for axon growth in the embryonic spinal cord. Dev. Neurobiol. 2007;67:976–986. doi: 10.1002/dneu.20395. PubMed DOI
Twiss J.L., Fainzilber M. Ribosomes in axons-scrounging from the neighbors? Trends Cell Biol. 2009;19:236–243. doi: 10.1016/j.tcb.2009.02.007. PubMed DOI
Tuck E., Cavalli V. Roles of membrane trafficking in nerve repair and regeneration. Commun. Integr. Biol. 2010;3:209–214. doi: 10.4161/cib.3.3.11555. PubMed DOI PMC
Gumy L.F., Tan C.L., Fawcett J.W. The role of local protein synthesis and degradation in axon regeneration. Exp. Neurol. 2010;223:28–37. doi: 10.1016/j.expneurol.2009.06.004. PubMed DOI PMC
Willis D., Ka W.L., Zheng J.Q., Chang J.H., Smit A., Kelly T., Merianda T.T., Sylvester J., Van Minnen J., Twiss J.L. Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J. Neurosci. 2005;25:778–791. doi: 10.1523/JNEUROSCI.4235-04.2005. PubMed DOI PMC
Kalinski A.L., Sachdeva R., Gomes C., Lee S.J., Shah Z., Houle J.D., Twiss J.L. mRNAs and protein synthetic machinery localize into regenerating spinal cord axons when they are provided a substrate that supports growth. J. Neurosci. 2015;35:10357–10370. doi: 10.1523/JNEUROSCI.1249-15.2015. PubMed DOI PMC
Verma P., Chierzi S., Codd A.M., Campbell D.S., Meyer R.L., Holt C.E., Fawcett J.W. Axonal Protein Synthesis and Degradation Are Necessary for Efficient Growth Cone Regeneration. J. Neurosci. 2005;25:331–342. doi: 10.1523/JNEUROSCI.3073-04.2005. PubMed DOI PMC
Merianda T.T., Lin A.C., Lam J.S.Y., Vuppalanchi D., Willis D.E., Karin N., Holt C.E., Twiss J.L. A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Mol. Cell. Neurosci. 2009;40:128–142. doi: 10.1016/j.mcn.2008.09.008. PubMed DOI PMC
Van Erp S., van Berkel A.A., Feenstra E.M., Sahoo P.K., Wagstaff L., Twiss J.L., Fawcett J.W., Eva R., Ffrench-Constant C. Age-related loss of axonal regeneration is reflected by the level of local translation. Exp. Neurol. 2021:113594. doi: 10.1016/j.expneurol.2020.113594. PubMed DOI PMC
Holt C.E., Martin K.C., Schuman E.M. Local translation in neurons: Visualization and function. Nat. Struct. Mol. Biol. 2019;26:557–566. doi: 10.1038/s41594-019-0263-5. PubMed DOI
Vuppalanchi D., Merianda T.T., Donnelly C., Pacheco A., Williams G., Yoo S., Ratan R.R., Willis D.E., Twiss J.L. Lysophosphatidic acid differentially regulates axonal mRNA translation through 5’UTR elements. Mol. Cell. Neurosci. 2012;50:136–146. doi: 10.1016/j.mcn.2012.04.001. PubMed DOI PMC
Ying Z., Misra V., Verge V.M.K. Sensing nerve injury at the axonal ER: Activated Luman/CREB3 serves as a novel axonally synthesized retrograde regeneration signal. Proc. Natl. Acad. Sci. USA. 2014;111:16142–16147. doi: 10.1073/pnas.1407462111. PubMed DOI PMC
Friedman J.R., Voeltz G.K. The ER in 3D: A multifunctional dynamic membrane network. Trends Cell Biol. 2011;21:709–717. doi: 10.1016/j.tcb.2011.07.004. PubMed DOI PMC
De Gregorio C., Delgado R., Ibacache A., Sierralta J., Couve A. Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function. J. Cell Sci. 2017;130:3507–3516. doi: 10.1242/jcs.201657. PubMed DOI
Liu Y., Vidensky S., Ruggiero A.M., Maier S., Sitte H.H., Rothstein J.D. Reticulon RTN2B regulates trafficking and function of neuronal glutamate transporter EAAC1. J. Biol. Chem. 2008;283:6561–6571. doi: 10.1074/jbc.M708096200. PubMed DOI PMC
Kamemura K., Chihara T. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. J. Biochem. 2019;165:391–400. doi: 10.1093/jb/mvz011. PubMed DOI
Esk C., Lindenhofer D., Haendeler S., Wester R.A., Pflug F., Schroeder B., Bagley J.A., Elling U., Zuber J., von Haeseler A., et al. A human tissue screen identifies a regulator of ER secretion as a brain size determinant. Science. 2020;370:eabb5390. doi: 10.1126/science.abb5390. PubMed DOI
Cui-Wang T., Hanus C., Cui T., Helton T., Bourne J., Watson D., Harris K.M., Ehlers M.D. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell. 2012;148:309–321. doi: 10.1016/j.cell.2011.11.056. PubMed DOI PMC
Valenzuela J.I., Jaureguiberry-Bravo M., Salas D.A., Ramírez O.A., Cornejo V.H., Lu H.E., Blanpied T.A., Couve A. Transport along the dendritic endoplasmic reticulum mediates the trafficking of GABAB receptors. J. Cell Sci. 2014;127:3382–3395. doi: 10.1242/jcs.151092. PubMed DOI PMC
Bowen A.B., Bourke A.M., Hiester B.G., Hanus C., Kennedy M.J. Golgi-Independent secretory trafficking through recycling endosomes in neuronal dendrites and spines. Elife. 2017;6:e27362. doi: 10.7554/eLife.27362. PubMed DOI PMC
Tojima T., Akiyama H., Itofusa R., Li Y., Katayama H., Miyawaki A., Kamiguchi H. Attractive axon guidance involves asymmetric membrane transport and exocytosis in the growth cone. Nat. Neurosci. 2007;10:58–66. doi: 10.1038/nn1814. PubMed DOI
Tojima T., Hines J.H., Henley J.R., Kamiguchi H. Second messengers and membrane trafficking direct and organize growth cone steering. Nat. Rev. Neurosci. 2011;12:191–203. doi: 10.1038/nrn2996. PubMed DOI PMC
Wada F., Nakata A., Tatsu Y., Ooashi N., Fukuda T., Nabetani T., Kamiguchi H. Myosin Va and Endoplasmic Reticulum Calcium Channel Complex Regulates Membrane Export during Axon Guidance. CellReports. 2016;15:1329–1344. doi: 10.1016/j.celrep.2016.04.021. PubMed DOI
Pavez M., Thompson A.C., Arnott H.J., Mitchell C.B., D’Atri I., Don E.K., Chilton J.K., Scott E.K., Lin J.Y., Young K.M., et al. STIM1 is required for remodeling of the endoplasmic reticulum and microtubule cytoskeleton in steering growth cones. J. Neurosci. 2019;39:5095–5114. doi: 10.1523/JNEUROSCI.2496-18.2019. PubMed DOI PMC
Kang F., Zhou M., Huang X., Fan J., Wei L., Boulanger J., Liu Z., Salamero J., Liu Y., Chen L. E-syt1 Re-arranges STIM1 Clusters to Stabilize Ring-shaped ER-PM Contact Sites and Accelerate Ca 2+ Store Replenishment. Sci. Rep. 2019;9:1–11. PubMed PMC
Zaman M.F., Nenadic A., Radojičić A., Rosado A., Beh C.T. Sticking With It: ER-PM Membrane Contact Sites as a Coordinating Nexus for Regulating Lipids and Proteins at the Cell Cortex. Front. Cell Dev. Biol. 2020;8:675. doi: 10.3389/fcell.2020.00675. PubMed DOI PMC
Cho Y., Sloutsky R., Naegle K.M., Cavalli V. XInjury-Induced HDAC5 nuclear export is essential for axon regeneration. Cell. 2013;155:894. doi: 10.1016/j.cell.2013.10.004. PubMed DOI PMC
Ohtake Y., Matsuhisa K., Kaneko M., Kanemoto S., Asada R., Imaizumi K., Saito A. Axonal Activation of the Unfolded Protein Response Promotes Axonal Regeneration Following Peripheral Nerve Injury. Neuroscience. 2018;375:34–48. doi: 10.1016/j.neuroscience.2018.02.003. PubMed DOI
Oñate M., Catenaccio A., Martínez G., Armentano D., Parsons G., Kerr B., Hetz C., Court F.A. Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep21709. PubMed DOI PMC
Valenzuela V., Collyer E., Armentano D., Parsons G.B., Court F.A., Hetz C. Activation of the unfolded protein response enhances motor recovery after spinal cord injury. Cell Death Dis. 2012;3:272. doi: 10.1038/cddis.2012.8. PubMed DOI PMC
Hu Y., Park K.K., Yang L., Wei X., Yang Q., Cho K.S., Thielen P., Lee A.H., Cartoni R., Glimcher L.H., et al. Differential effects of unfolded protein response pathways on axon injury-induced death of retinal ganglion cells. Neuron. 2012;73:445–452. doi: 10.1016/j.neuron.2011.11.026. PubMed DOI PMC
Halliday M., Mallucci G.R. Review: Modulating the unfolded protein response to prevent neurodegeneration and enhance memory Modulating the unfolded protein response to prevent neurodegeneration and enhance memory. Neuropathol. Appl. Neurobiol. 2015;41:414–427. doi: 10.1111/nan.12211. PubMed DOI PMC
Hetz C., Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat. Rev. Neurosci. 2014;15:233–249. doi: 10.1038/nrn3689. PubMed DOI
De Juan-Sanz J., Holt G.T., Schreiter E.R., de Juan F., Kim D.S., Ryan T.A. Axonal Endoplasmic Reticulum Ca2+ Content Controls Release Probability in CNS Nerve Terminals. Neuron. 2017;93:867–881.e6. doi: 10.1016/j.neuron.2017.01.010. PubMed DOI PMC
Lindhout F.W., Cao Y., Kevenaar J.T., Bodzęta A., Stucchi R., Boumpoutsari M.M., Katrukha E.A., Altelaar M., MacGillavry H.D., Hoogenraad C.C. VAP-SCRN1 interaction regulates dynamic endoplasmic reticulum remodeling and presynaptic function. EMBO J. 2019;38:e101345. doi: 10.15252/embj.2018101345. PubMed DOI PMC
Kuijpers M., Kochlamazashvili G., Stumpf A., Puchkov D., Swaminathan A., Lucht M.T., Krause E., Maritzen T., Schmitz D., Haucke V. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2020;109:299–313.e9. doi: 10.1016/j.neuron.2020.10.005. PubMed DOI PMC
Ferri K.F., Kroemer G. Organelle-specific initiation of cell death pathways. Nat. Cell Biol. 2001;3:E255–E263. doi: 10.1038/ncb1101-e255. PubMed DOI
Rizzuto R., Pozzan T. Microdomains of intracellular Ca2+: Molecular determinants and functional consequences. Physiol. Rev. 2006;86:369–408. doi: 10.1152/physrev.00004.2005. PubMed DOI
Bock F.J., Tait S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2020;21:85–100. doi: 10.1038/s41580-019-0173-8. PubMed DOI
Lewis T.L., Turi G.F., Kwon S.-K., Losonczy A., Polleux F. Progressive Decrease of Mitochondrial Motility during Maturation of Cortical Axons In Vitro and In Vivo. Curr. Biol. 2016;26:2602–2608. doi: 10.1016/j.cub.2016.07.064. PubMed DOI PMC
Smit-Rigter L., Rajendran R., Silva C.A., Spierenburg L., Groeneweg F., Ruimschotel E.M., van Versendaal D., van der Togt C., Eysel U.T., Alexander Heimel J., et al. Mitochondrial Dynamics in Visual Cortex Are Limited In Vivo and Not Affected by Axonal Structural Plasticity. Curr. Biol. 2016;26:2609–2616. doi: 10.1016/j.cub.2016.07.033. PubMed DOI
Mar F.M., Simões A.R., Leite S., Morgado M.M., Santos T.E., Rodrigo I.S., Teixeira C.A., Misgeld T., Sousa M.M. CNS axons globally increase axonal transport after peripheral conditioning. J. Neurosci. 2014;34:5965–5970. doi: 10.1523/JNEUROSCI.4680-13.2014. PubMed DOI PMC
Misgeld T., Kerschensteiner M., Bareyre F.M., Burgess R.W., Lichtman J.W. Imaging axonal transport of mitochondria in vivo. Nat. Methods. 2007;4:559–561. doi: 10.1038/nmeth1055. PubMed DOI
O’Donnell K.C., Vargas M.E., Sagasti A. Wlds and PGC-1α regulate mitochondrial transport and oxidation state after axonal injury. J. Neurosci. 2013;33:14778–14790. doi: 10.1523/JNEUROSCI.1331-13.2013. PubMed DOI PMC
Han S.M., Baig H.S., Hammarlund M. Mitochondria Localize to Injured Axons to Support Regeneration. Neuron. 2016;92:1308–1323. doi: 10.1016/j.neuron.2016.11.025. PubMed DOI PMC
Hirokawa N., Noda Y., Tanaka Y., Niwa S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 2009;10:682–696. doi: 10.1038/nrm2774. PubMed DOI
Saxton W.M., Hollenbeck P.J. The axonal transport of mitochondria. J. Cell Sci. 2012;125:2095–2104. doi: 10.1242/jcs.053850. PubMed DOI PMC
Lin M.Y., Sheng Z.H. Regulation of mitochondrial transport in neurons. Exp. Cell Res. 2015;334:35–44. doi: 10.1016/j.yexcr.2015.01.004. PubMed DOI PMC
Schwarz T.L. Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. 2013;5:a011304. doi: 10.1101/cshperspect.a011304. PubMed DOI PMC
Chang D.T.W., Reynolds I.J. Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture. Neuroscience. 2006;141:727–736. doi: 10.1016/j.neuroscience.2006.01.034. PubMed DOI
Zhou B., Yu P., Lin M.-Y., Sun T., Chen Y., Sheng Z.-H. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 2016;214:103–119. doi: 10.1083/jcb.201605101. PubMed DOI PMC
Kang J.-S., Tian J.-H., Pan P.-Y., Zald P., Li C., Deng C., Sheng Z.-H. Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-Term Facilitation. Cell. 2008;132:137–148. doi: 10.1016/j.cell.2007.11.024. PubMed DOI PMC
Sun T., Qiao H., Pan P.Y., Chen Y., Sheng Z.H. Motile axonal mitochondria contribute to the variability of presynaptic strength. Cell Rep. 2013;4:413–419. doi: 10.1016/j.celrep.2013.06.040. PubMed DOI PMC
Steketee M.B., Moysidis S.N., Weinstein J.E., Kreymerman A., Silva J.P., Iqbal S., Goldberg J.L. Mitochondrial dynamics regulate growth cone motility, guidance, and neurite growth rate in perinatal retinal ganglion cells in vitro. Investig. Ophthalmol. Vis. Sci. 2012;53:7402–7411. doi: 10.1167/iovs.12-10298. PubMed DOI PMC
Kreymerman A., Buickians D.N., Nahmou M.M., Tran T., Galvao J., Wang Y., Sun N., Bazik L., Huynh S.K., Cho I.J., et al. MTP18 is a Novel Regulator of Mitochondrial Fission in CNS Neuron Development, Axonal Growth, and Injury Responses. Sci. Rep. 2019;9:1–13. doi: 10.1038/s41598-019-46956-5. PubMed DOI PMC
Chen H., Detmer S.A., Ewald A.J., Griffin E.E., Fraser S.E., Chan D.C. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 2003;160:189–200. doi: 10.1083/jcb.200211046. PubMed DOI PMC
Davies V.J., Hollins A.J., Piechota M.J., Yip W., Davies J.R., White K.E., Nicols P.P., Boulton M.E., Votruba M. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum. Mol. Genet. 2007;16:1307–1318. doi: 10.1093/hmg/ddm079. PubMed DOI
Lewis T.L., Kwon S.K., Lee A., Shaw R., Polleux F. MFF-dependent mitochondrial fission regulates presynaptic release and axon branching by limiting axonal mitochondria size. Nat. Commun. 2018;9:1–15. doi: 10.1038/s41467-018-07416-2. PubMed DOI PMC
Kiryu-Seo S., Tamada H., Kato Y., Yasuda K., Ishihara N., Nomura M., Mihara K., Kiyama H. Mitochondrial fission is an acute and adaptive response in injured motor neurons. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep28331. PubMed DOI PMC
Mattson M.P., Partin J. Evidence for mitochondrial control of neuronal polarity. J. Neurosci. Res. 1999;56:8–20. doi: 10.1002/(SICI)1097-4547(19990401)56:1<8::AID-JNR2>3.0.CO;2-G. PubMed DOI
Vaarmann A., Mandel M., Zeb A., Wareski P., Liiv J., Kuum M., Antsov E., Liiv M., Cagalinec M., Choubey V., et al. Mitochondrial biogenesis is required for axonal growth. Development. 2016;143:1981–1992. doi: 10.1242/dev.128926. PubMed DOI
Van Spronsen M., Mikhaylova M., Lipka J., Schlager M.A., van den Heuvel D.J., Kuijpers M., Wulf P.S., Keijzer N., Demmers J., Kapitein L.C., et al. TRAK/Milton Motor-Adaptor Proteins Steer Mitochondrial Trafficking to Axons and Dendrites. Neuron. 2013;77:485–502. doi: 10.1016/j.neuron.2012.11.027. PubMed DOI
Kalinski A.L., Kar A.N., Craver J., Tosolini A.P., Sleigh J.N., Lee S.J., Hawthorne A., Brito-Vargas P., Miller-Randolph S., Passino R., et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J. Cell Biol. 2019;218:1871–1890. doi: 10.1083/jcb.201702187. PubMed DOI PMC
Cavallucci V., Bisicchia E., Cencioni M.T., Ferri A., Latini L., Nobili A., Biamonte F., Nazio F., Fanelli F., Moreno S., et al. Acute focal brain damage alters mitochondrial dynamics and autophagy in axotomized neurons. Cell Death Dis. 2014;5:e1545. doi: 10.1038/cddis.2014.511. PubMed DOI PMC
Sheng Z.H. The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring. Trends Cell Biol. 2017;27:403–416. doi: 10.1016/j.tcb.2017.01.005. PubMed DOI PMC
Cartoni R., Norsworthy M.W., Bei F., Wang C., Li S., Zhang Y., Gabel C.V., Schwarz T.L., He Z. The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration. Neuron. 2016;92:1294–1307. doi: 10.1016/j.neuron.2016.10.060. PubMed DOI PMC
Han Q., Xie Y., Ordaz J.D., Huh A.J., Huang N., Wu W., Liu N., Chamberlain K.A., Sheng Z.H., Xu X.M. Restoring Cellular Energetics Promotes Axonal Regeneration and Functional Recovery after Spinal Cord Injury. Cell Metab. 2020;31:623–641.e8. doi: 10.1016/j.cmet.2020.02.002. PubMed DOI PMC
Knowlton W.M., Hubert T., Wu Z., Chisholm A.D., Jin Y. A select subset of electron transport chain genes associated with optic atrophy link mitochondria to axon regeneration in Caenorhabditis elegans. Front. Neurosci. 2017;11:263. doi: 10.3389/fnins.2017.00263. PubMed DOI PMC
Rawson R.L., Yam L., Weimer R.M., Bend E.G., Hartwieg E., Horvitz H.R., Clark S.G., Jorgensen E.M. Axons degenerate in the absence of mitochondria in C. elegans. Curr. Biol. 2014;24:760–765. doi: 10.1016/j.cub.2014.02.025. PubMed DOI PMC
Tang N.H., Kim K.W., Xu S., Blazie S.M., Yee B.A., Yeo G.W., Jin Y., Chisholm A.D. The mRNA Decay Factor CAR-1/LSM14 Regulates Axon Regeneration via Mitochondrial Calcium Dynamics. Curr. Biol. 2020;30:865–876.e7. doi: 10.1016/j.cub.2019.12.061. PubMed DOI PMC
Chen Y., Sheng Z.H. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 2013;202:351–364. doi: 10.1083/jcb.201302040. PubMed DOI PMC
Wang X., Schwarz T.L. The Mechanism of Ca2+-Dependent Regulation of Kinesin-Mediated Mitochondrial Motility. Cell. 2009;136:163–174. doi: 10.1016/j.cell.2008.11.046. PubMed DOI PMC
Courchet J., Lewis T.L., Lee S., Courchet V., Liou D.Y., Aizawa S., Polleux F. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell. 2013;153:1510. doi: 10.1016/j.cell.2013.05.021. PubMed DOI PMC
Tao K., Matsuki N., Koyama R. AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon. Dev. Neurobiol. 2014;74:557–573. doi: 10.1002/dneu.22149. PubMed DOI
Mehta S.T., Luo X., Park K.K., Bixby J.L., Lemmon V.P. Hyperactivated Stat3 boosts axon regeneration in the CNS. Exp. Neurol. 2016;280:115–120. doi: 10.1016/j.expneurol.2016.03.004. PubMed DOI PMC
Luo X., Ribeiro M., Bray E.R., Lee D.H., Yungher B.J., Mehta S.T., Thakor K.A., Diaz F., Lee J.K., Moraes C.T., et al. Enhanced Transcriptional Activity and Mitochondrial Localization of STAT3 Co-induce Axon Regrowth in the Adult Central Nervous System. Cell Rep. 2016;15:398–410. doi: 10.1016/j.celrep.2016.03.029. PubMed DOI PMC
Fang Y., Soares L., Teng X., Geary M., Bonini N.M. A novel Drosophila model of nerve injury reveals an essential role of Nmnat in maintaining axonal integrity. Curr. Biol. 2012;22:590–595. doi: 10.1016/j.cub.2012.01.065. PubMed DOI PMC
Perry V.H., Brown M.C., Lunn E.R., Tree P., Gordon S. Evidence that Very Slow Wallerian Degeneration in C57BL/Ola Mice is an Intrinsic Property of the Peripheral Nerve. Eur. J. Neurosci. 1990;2:802–808. doi: 10.1111/j.1460-9568.1990.tb00472.x. PubMed DOI
Avery M.A., Rooney T.M., Pandya J.D., Wishart T.M., Gillingwater T.H., Geddes J.W., Sullivan P.G., Freeman M.R. Wld S prevents axon degeneration through increased mitochondrial flux and enhanced mitochondrial Ca 2+ buffering. Curr. Biol. 2012;22:596–600. doi: 10.1016/j.cub.2012.02.043. PubMed DOI PMC
Yap C.C., Winckler B. Harnessing the Power of the Endosome to Regulate Neural Development. Neuron. 2012;74:440–451. doi: 10.1016/j.neuron.2012.04.015. PubMed DOI PMC
Hausott B., Klimaschewski L. Membrane turnover and receptor trafficking in regenerating axons. Eur. J. Neurosci. 2016;43:309–317. doi: 10.1111/ejn.13025. PubMed DOI
Tojima T., Kamiguchi H. Exocytic and endocytic membrane trafficking in axon development. Dev. Growth Differ. 2015;57:291–304. doi: 10.1111/dgd.12218. PubMed DOI
Villarroel-Campos D., Bronfman F.C., Gonzalez-Billault C. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton. 2016;73:498–507. doi: 10.1002/cm.21303. PubMed DOI
Donaldson J.G., Johnson D.L., Dutta D. Rab and Arf G proteins in endosomal trafficking and cell surface homeostasis. Small GTPases. 2016;7:247–251. doi: 10.1080/21541248.2016.1212687. PubMed DOI PMC
Raiborg C., Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature. 2009;458:445–452. doi: 10.1038/nature07961. PubMed DOI
Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 2009;10:513–525. doi: 10.1038/nrm2728. PubMed DOI
Welz T., Wellbourne-Wood J., Kerkhoff E. Orchestration of cell surface proteins by Rab11. Trends Cell Biol. 2014;24:407–415. doi: 10.1016/j.tcb.2014.02.004. PubMed DOI
Van Bergeijk P., Adrian M., Hoogenraad C.C., Kapitein L.C. Optogenetic control of organelle transport and positioning. Nature. 2015;518:111–114. doi: 10.1038/nature14128. PubMed DOI PMC
Eva R., Dassie E., Caswell P.T., Dick G., ffrench-Constant C., Norman J.C., Fawcett J.W. Rab11 and Its Effector Rab Coupling Protein Contribute to the Trafficking of 1 Integrins during Axon Growth in Adult Dorsal Root Ganglion Neurons and PC12 Cells. J. Neurosci. 2010;30:11654–11669. doi: 10.1523/JNEUROSCI.2425-10.2010. PubMed DOI PMC
Shirane M., Nakayama K.I. Protrudin Induces Neurite Formation by Directional Membrane Trafficking. Science. 2006;314:818–821. doi: 10.1126/science.1134027. PubMed DOI
Fujita A., Koinuma S., Yasuda S., Nagai H., Kamiguchi H., Wada N., Nakamura T. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70. PLoS ONE. 2013;8:e79689. doi: 10.1371/journal.pone.0079689. PubMed DOI PMC
Takano T., Urushibara T., Yoshioka N., Saito T., Fukuda M., Tomomura M., Hisanaga S.I. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes. Mol. Biol. Cell. 2014;25:1755–1768. doi: 10.1091/mbc.e14-01-0675. PubMed DOI PMC
Takano T., Tomomura M., Yoshioka N., Tsutsumi K., Terasawa Y., Saito T., Kawano H., Kamiguchi H., Fukuda M., Hisanaga S.I. LMTK1/AATYK1 is a novel regulator of axonal outgrowth that acts via Rab11 in a Cdk5-dependent manner. J. Neurosci. 2012;32:6587–6599. doi: 10.1523/JNEUROSCI.5317-11.2012. PubMed DOI PMC
Hisanaga S.I., Wei R., Huo A., Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front. Mol. Neurosci. 2020;13 doi: 10.3389/fnmol.2020.00112. PubMed DOI PMC
Koseki H., Donegá M., Lam B.Y., Petrova V., van Erp S., Yeo G.S., Kwok J.C., ffrench-Constant C., Eva R., Fawcett J.W. Selective rab11 transport and the intrinsic regenerative ability of CNS axons. Elife. 2017;6:e26956. doi: 10.7554/eLife.26956. PubMed DOI PMC
Montagnac G., Sibarita J.B., Loubéry S., Daviet L., Romao M., Raposo G., Chavrier P. ARF6 Interacts with JIP4 to Control a Motor Switch Mechanism Regulating Endosome Traffic in Cytokinesis. Curr. Biol. 2009;19:184–195. doi: 10.1016/j.cub.2008.12.043. PubMed DOI
Eva R., Crisp S., Marland J.R.K., Norman J.C., Kanamarlapudi V., ffrench-Constant C., Fawcett J.W. ARF6 Directs Axon Transport and Traffic of Integrins and Regulates Axon Growth in Adult DRG Neurons. J. Neurosci. 2012;32:10352–10364. doi: 10.1523/JNEUROSCI.1409-12.2012. PubMed DOI PMC
Franssen E.H.P., Zhao R.-R., Koseki H., Kanamarlapudi V., Hoogenraad C.C., Eva R., Fawcett J.W. Exclusion of Integrins from CNS Axons Is Regulated by Arf6 Activation and the AIS. J. Neurosci. 2015;35:8359–8375. doi: 10.1523/JNEUROSCI.2850-14.2015. PubMed DOI PMC
Eva R., Koseki H., Kanamarlapudi V., Fawcett J.W. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J. Cell Sci. 2017;130:3663–3675. doi: 10.1242/jcs.207423. PubMed DOI PMC
Quiroga S., Bisbal M., Cáceres A. Regulation of plasma membrane expansion during axon formation. Dev. Neurobiol. 2018;78:170–180. doi: 10.1002/dneu.22553. PubMed DOI
Winckler B., Yap C.C. Endocytosis and Endosomes at the Crossroads of Regulating Trafficking of Axon Outgrowth-Modifying Receptors. Traffic. 2011;12:1099–1108. doi: 10.1111/j.1600-0854.2011.01213.x. PubMed DOI PMC
Rozés-Salvador V., González-Billault C., Conde C. The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All? Front. Cell Dev. Biol. 2020;8:1479. doi: 10.3389/fcell.2020.603794. PubMed DOI PMC
Falk J., Konopacki F.A., Zivraj K.H., Holt C.E. Rab5 and rab4 regulate axon elongation in the Xenopus visual system. J. Neurosci. 2014;34:373–391. doi: 10.1523/JNEUROSCI.0876-13.2014. PubMed DOI PMC
Ponomareva O.Y., Eliceiri K.W., Halloran M.C. Charcot-Marie-Tooth 2b associated Rab7 mutations cause axon growth and guidance defects during vertebrate sensory neuron development. Neural Dev. 2016;11:2. doi: 10.1186/s13064-016-0058-x. PubMed DOI PMC
Nakazawa H., Sada T., Toriyama M., Tago K., Sugiura T., Fukuda M., Inagaki N. Rab33a mediates anterograde vesicular transport for membrane exocytosis and axon outgrowth. J. Neurosci. 2012;32:12712–12725. doi: 10.1523/JNEUROSCI.0989-12.2012. PubMed DOI PMC
Villarroel-Campos D., Henríquez D.R., Bodaleo F.J., Oguchi M.E., Bronfman F.C., Fukuda M., Gonzalez-Billault C. Rab35 functions in axon elongation are regulated by P53-related protein kinase in a mechanism that involves Rab35 protein degradation and the microtubule-associated protein 1B. J. Neurosci. 2016;36:7298–7313. doi: 10.1523/JNEUROSCI.4064-15.2016. PubMed DOI PMC
Deng C.Y., Lei W.L., Xu X.H., Ju X.C., Liu Y., Luo Z.G. JIP1 mediates anterograde transport of Rab10 cargos during neuronal polarization. J. Neurosci. 2014;34:1710–1723. doi: 10.1523/JNEUROSCI.4496-13.2014. PubMed DOI PMC
Liu Y., Xu X.H., Chen Q., Wang T., Deng C.Y., Song B.L., Du J.L., Luo Z.G. Myosin Vb controls biogenesis of post-Golgi Rab10 carriers during axon development. Nat. Commun. 2013;4:2005. doi: 10.1038/ncomms3005. PubMed DOI
Xu X.H., Deng C.Y., Liu Y., He M., Peng J., Wang T., Yuan L., Zheng Z.S., Blackshear P.J., Luo Z.G. MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Res. 2014;24:576–594. doi: 10.1038/cr.2014.33. PubMed DOI PMC
Hervera A., De Virgiliis F., Palmisano I., Zhou L., Tantardini E., Kong G., Hutson T., Danzi M.C., Perry R.B.T., Santos C.X.C., et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat. Cell Biol. 2018;20:307–319. doi: 10.1038/s41556-018-0039-x. PubMed DOI
Sekine Y., Lin-Moore A., Chenette D.M., Wang X., Jiang Z., Cafferty W.B., Hammarlund M., Strittmatter S.M. Functional Genome-wide Screen Identifies Pathways Restricting Central Nervous System Axonal Regeneration. Cell Rep. 2018;23:415–428. doi: 10.1016/j.celrep.2018.03.058. PubMed DOI PMC
Xu H., Ren D. Lysosomal physiology. Annu. Rev. Physiol. 2015;77:57–80. doi: 10.1146/annurev-physiol-021014-071649. PubMed DOI PMC
Ferguson S.M. Axonal transport and maturation of lysosomes. Curr. Opin. Neurobiol. 2018;51:45–51. doi: 10.1016/j.conb.2018.02.020. PubMed DOI PMC
Inpanathan S., Botelho R.J. The lysosome signaling platform: Adapting with the Times. Front. Cell Dev. Biol. 2019;7:113. doi: 10.3389/fcell.2019.00113. PubMed DOI PMC
Ballabio A., Bonifacino J.S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nat. Rev. Mol. Cell Biol. 2020;21:101–118. doi: 10.1038/s41580-019-0185-4. PubMed DOI
Farías G.G., Guardia C.M., De Pace R., Britt D.J., Bonifacino J.S. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc. Natl. Acad. Sci. USA. 2017;114:E2955–E2964. doi: 10.1073/pnas.1616363114. PubMed DOI PMC
Kenific C.M., Wittmann T., Debnath J. Autophagy in adhesion and migration. J. Cell Sci. 2016;129:3685–3693. doi: 10.1242/jcs.188490. PubMed DOI PMC
Stavoe A.K.H., Holzbaur E.L.F. Autophagy in neurons. Annu. Rev. Cell Dev. Biol. 2019;35:477–500. doi: 10.1146/annurev-cellbio-100818-125242. PubMed DOI PMC
Maday S., Holzbaur E.L.F. Compartment-Specific Regulation of Autophagy in Primary Neurons. J. Neurosci. 2016;36:5933–5945. doi: 10.1523/JNEUROSCI.4401-15.2016. PubMed DOI PMC
Maday S., Wallace K.E., Holzbaur E.L.F. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 2012;196:407–417. doi: 10.1083/jcb.201106120. PubMed DOI PMC
Maday S., Holzbaur E.L.F. Article Autophagosome Biogenesis in Primary Neurons Follows an Ordered and Spatially Regulated Pathway. Dev. Cell. 2014;30:71–85. doi: 10.1016/j.devcel.2014.06.001. PubMed DOI PMC
Stavoe A.K.H., Hill S.E., Hall D.H., Colón-Ramos D.A. KIF1A/UNC-104 Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. Dev. Cell. 2016;38:171–185. doi: 10.1016/j.devcel.2016.06.012. PubMed DOI PMC
Puri C., Vicinanza M., Ashkenazi A., Gratian M.J., Zhang Q., Bento C.F., Renna M., Menzies F.M., Rubinsztein D.C. The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Dev. Cell. 2018;45:114–131.e8. doi: 10.1016/j.devcel.2018.03.008. PubMed DOI PMC
Shibata M., Lu T., Furuya T., Degterev A., Mizushima N., Yoshimori T., MacDonald M., Yankner B., Yuan J. Regulation of intracellular accumulation of mutant huntingtin by beclin 1. J. Biol. Chem. 2006;281:14474–14485. doi: 10.1074/jbc.M600364200. PubMed DOI
Simonsen A., Cumming R.C., Brech A., Isakson P., Schubert D.R., Finley K.D. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy. 2008;4:176–184. doi: 10.4161/auto.5269. PubMed DOI
Lipinski M.M., Zheng B., Lu T., Yan Z., Py B.F., Ng A., Xavier R.J., Li C., Yankner B.A., Scherzer C.R., et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2010;107:14164–14169. doi: 10.1073/pnas.1009485107. PubMed DOI PMC
Chang J.T., Kumsta C., Hellman A.B., Adams L.M., Hansen M. Spatiotemporal regulation of autophagy during Caenorhabditis elegans aging. Elife. 2017;6:e18459. doi: 10.7554/eLife.18459. PubMed DOI PMC
Glatigny M., Moriceau S., Rivagorda M., Ramos-Brossier M., Nascimbeni A.C., Lante F., Shanley M.R., Boudarene N., Rousseaud A., Friedman A.K., et al. Autophagy Is Required for Memory Formation and Reverses Age-Related Memory Decline. Curr. Biol. 2019;29:435–448.e8. doi: 10.1016/j.cub.2018.12.021. PubMed DOI
Sakamoto K., Ozaki T., Ko Y.C., Tsai C.F., Gong Y., Morozumi M., Ishikawa Y., Uchimura K., Nadanaka S., Kitagawa H., et al. Glycan sulfation patterns define autophagy flux at axon tip via PTPRσ-cortactin axis. Nat. Chem. Biol. 2019;15:699–709. doi: 10.1038/s41589-019-0274-x. PubMed DOI
Tran A.P., Warren P.M., Silver J. Regulation of autophagy by inhibitory CSPG interactions with receptor PTPσ and its impact on plasticity and regeneration after spinal cord injury. Exp. Neurol. 2020;328:113276. doi: 10.1016/j.expneurol.2020.113276. PubMed DOI PMC
Galluzzi L., Green D.R. Autophagy-Independent Functions of the Autophagy Machinery. Cell. 2019;177:1682–1699. doi: 10.1016/j.cell.2019.05.026. PubMed DOI PMC
He M., Ding Y., Chu C., Tang J., Xiao Q., Luo Z.G. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury. Proc. Natl. Acad. Sci. USA. 2016;113:11324–11329. doi: 10.1073/pnas.1611282113. PubMed DOI PMC
Kannan M., Bayam E., Wagner C., Rinaldi B., Kretz P.F., Tilly P., Roos M., McGillewie L., Bär S., Minocha S., et al. WD40-repeat 47, a microtubule-associated protein, is essential for brain development and autophagy. Proc. Natl. Acad. Sci. USA. 2017;114:E9308–E9317. doi: 10.1073/pnas.1713625114. PubMed DOI PMC
Wang B., Iyengar R., Li-Harms X., Joo J.H., Wright C., Lavado A., Horner L., Yang M., Guan J.L., Frase S., et al. The autophagy-inducing kinases, ULK1 and ULK2, regulate axon guidance in the developing mouse forebrain via a noncanonical pathway. Autophagy. 2018;14:796–811. doi: 10.1080/15548627.2017.1386820. PubMed DOI PMC
Nikoletopoulou V., Sidiropoulou K., Kallergi E., Dalezios Y., Tavernarakis N. Modulation of Autophagy by BDNF Underlies Synaptic Plasticity. Cell Metab. 2017;26:230–242.e5. doi: 10.1016/j.cmet.2017.06.005. PubMed DOI
Ban B.-K., Jun M.-H., Ryu H.-H., Jang D.-J., Ahmad S.T., Lee J.-A. Autophagy Negatively Regulates Early Axon Growth in Cortical Neurons. Mol. Cell. Biol. 2013;33:3907–3919. doi: 10.1128/MCB.00627-13. PubMed DOI PMC
Clarke J.-P., Mearow K. Autophagy inhibition in endogenous and nutrient-deprived conditions reduces dorsal root ganglia neuron survival and neurite growth in vitro. J. Neurosci. Res. 2016;94:653–670. doi: 10.1002/jnr.23733. PubMed DOI
Rabanal-Ruiz Y., Korolchuk V.I. mTORC1 and nutrient homeostasis: The central role of the lysosome. Int. J. Mol. Sci. 2018;19:818. doi: 10.3390/ijms19030818. PubMed DOI PMC
Wei X., Luo L., Chen J. Roles of mTOR Signaling in Tissue Regeneration. Cells. 2019;8:1075. doi: 10.3390/cells8091075. PubMed DOI PMC
Kim J., Guan K.L. mTOR as a central hub of nutrient signalling and cell growth. Nat. Cell Biol. 2019;21:63–71. doi: 10.1038/s41556-018-0205-1. PubMed DOI
Abe N., Borson S.H., Gambello M.J., Wang F., Cavalli V. Mammalian Target of Rapamycin (mTOR) activation increases axonal growth capacity of injured peripheral nerves. J. Biol. Chem. 2010;285:28034–28043. doi: 10.1074/jbc.M110.125336. PubMed DOI PMC
Danilov C.A., Steward O. Conditional genetic deletion of PTEN after a spinal cord injury enhances regenerative growth of CST axons and motor function recovery in mice. Exp. Neurol. 2015;266:147–160. doi: 10.1016/j.expneurol.2015.02.012. PubMed DOI PMC
Geoffroy C.G., Hilton B.J., Tetzlaff W., Zheng B. Evidence for an Age-Dependent Decline in Axon Regeneration in the Adult Mammalian Central Nervous System. Cell Rep. 2016;15:238–246. doi: 10.1016/j.celrep.2016.03.028. PubMed DOI PMC
Leibinger M., Andreadaki A., Golla R., Levin E., Hilla A.M., Diekmann H., Fischer D. Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3 activity. Proc. Natl. Acad. Sci. USA. 2017;114:E5454–E5463. doi: 10.1073/pnas.1621225114. PubMed DOI PMC
Leibinger M., Hilla A.M., Andreadaki A., Fischer D. GSK3-CRMP2 signaling mediates axonal regeneration induced by Pten knockout. Commun. Biol. 2019;2:318. doi: 10.1038/s42003-019-0524-1. PubMed DOI PMC
Miao L., Yang L., Huang H., Liang F., Ling C., Hu Y. MTORC1 is necessary but mTORC2 and GSK3β are inhibitory for AKT3-induced axon regeneration in the central nervous system. Elife. 2016;5:e14908. doi: 10.7554/eLife.14908. PubMed DOI PMC
Tassew N.G., Charish J., Shabanzadeh A.P., Luga V., Harada H., Farhani N., D’Onofrio P., Choi B., Ellabban A., Nickerson P.E.B., et al. Exosomes Mediate Mobilization of Autocrine Wnt10b to Promote Axonal Regeneration in the Injured CNS. Cell Rep. 2017;20:99–111. doi: 10.1016/j.celrep.2017.06.009. PubMed DOI
Pita-Thomas W., Mahar M., Joshi A., Gan D., Cavalli V. HDAC5 promotes optic nerve regeneration by activating the mTOR pathway. Exp. Neurol. 2019;317:271–283. doi: 10.1016/j.expneurol.2019.03.011. PubMed DOI PMC
Poulopoulos A., Murphy A.J., Ozkan A., Davis P., Hatch J., Kirchner R., Macklis J.D. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature. 2019;565:356–360. doi: 10.1038/s41586-018-0847-y. PubMed DOI PMC
Rodríguez A., Webster P., Ortego J., Andrews N.W. Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J. Cell Biol. 1997;137:93–104. doi: 10.1083/jcb.137.1.93. PubMed DOI PMC
Reddy A., Caler E.V., Andrews N.W. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell. 2001;106:157–169. doi: 10.1016/S0092-8674(01)00421-4. PubMed DOI
Jaiswal J.K., Andrews N.W., Simon S.M. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 2002;159:625–635. doi: 10.1083/jcb.200208154. PubMed DOI PMC
Arantes R.M.E., Andrews N.W. A role for synaptotagmin VII-regulated exocytosis of lysosomes in neurite outgrowth from primary sympathetic neurons. J. Neurosci. 2006;26:4630–4637. doi: 10.1523/JNEUROSCI.0009-06.2006. PubMed DOI PMC
Czibener C., Sherer N.M., Becker S.M., Pypaert M., Hui E., Chapman E.R., Mothes W., Andrews N.W. Ca2+ and synaptotagmin VII-dependent delivery of lysosomal membrane to nascent phagosomes. J. Cell Biol. 2006;174:997–1007. doi: 10.1083/jcb.200605004. PubMed DOI PMC
Sato M., Yoshimura S., Hirai R., Goto A., Kunii M., Atik N., Sato T., Sato K., Harada R., Shimada J., et al. The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo. Traffic. 2011;12:1383–1393. doi: 10.1111/j.1600-0854.2011.01247.x. PubMed DOI
Naegeli K.M., Hastie E., Garde A., Wang Z., Keeley D.P., Gordon K.L., Pani A.M., Kelley L.C., Morrissey M.A., Chi Q., et al. Cell Invasion In Vivo via Rapid Exocytosis of a Transient Lysosome-Derived Membrane Domain. Dev. Cell. 2017;43:403–417.e10. doi: 10.1016/j.devcel.2017.10.024. PubMed DOI PMC
Jiang M., Meng J., Zeng F., Qing H., Hook G., Hook V., Wu Z., Ni J. Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling. J. Neurochem. 2020;155:300–312. doi: 10.1111/jnc.15032. PubMed DOI PMC
Jung J., Shin Y.H., Konishi H., Lee S.J., Kiyama H. Possible ATP release through lysosomal exocytosis from primary sensory neurons. Biochem. Biophys. Res. Commun. 2013;430:488–493. doi: 10.1016/j.bbrc.2012.12.009. PubMed DOI
Tam C., Idone V., Devlin C., Fernandes M.C., Flannery A., He X., Schuchman E., Tabas I., Andrews N.W. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J. Cell Biol. 2010;189:1027–1038. doi: 10.1083/jcb.201003053. PubMed DOI PMC
Castro-Gomes T., Corrotte M., Tam C., Andrews N.W. Plasma membrane repair is regulated extracellularly by proteases released from lysosomes. PLoS ONE. 2016;11:e0152583. PubMed PMC
Korhonen L., Lindholm D. The ubiquitin proteasome system in synaptic and axonal degeneration: A new twist to an old cycle. J. Cell Biol. 2004;165:27–30. doi: 10.1083/jcb.200311091. PubMed DOI PMC
Lee M., Liu Y.C., Chen C., Lu C.H., Lu S.T., Huang T.N., Hsu M.T., Hsueh Y.P., Cheng P.L. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain. J. Cell Biol. 2020;219:e201903033. doi: 10.1083/jcb.201903033. PubMed DOI PMC
Minis A., Rodriguez J.A., Levin A., Liu K., Govek E.E., Hatten M.E., Steller H. The proteasome regulator PI31 is required for protein homeostasis, synapse maintenance, and neuronal survival in mice. Proc. Natl. Acad. Sci. USA. 2019;116:24639–24650. doi: 10.1073/pnas.1911921116. PubMed DOI PMC
Otero M.G., Alloatti M., Cromberg L.E., Almenar-Queralt A., Encalada S.E., Pozo Devoto V.M., Bruno L., Goldstein L.S.B., Falzone T.L. Fast axonal transport of the proteasome complex depends on membrane interaction and molecular motor function. J. Cell Sci. 2014;127:1537–1549. doi: 10.1242/jcs.140780. PubMed DOI
Bingol B., Schuman E.M. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature. 2006;441:1144–1148. doi: 10.1038/nature04769. PubMed DOI
Hamilton A.M., Zito K. Breaking it down: The ubiquitin proteasome system in neuronal morphogenesis. Neural Plast. 2013;2013:196848. doi: 10.1155/2013/196848. PubMed DOI PMC
DiAntonio A., Hicke L. Ubiquitin-Dependent Regulation of the Synapse. Annu. Rev. Neurosci. 2004;27:223–246. doi: 10.1146/annurev.neuro.27.070203.144317. PubMed DOI
Ohtani-Kaneko R., Takada K., Iigo M., Hara M., Yokosawa H., Kawashima S., Ohkawa K., Hirata K. Proteasome inhibitors which induce neurite outgrowth from PC12h cells cause different subcellular accumulations of multi-ubiquitin chains. Neurochem. Res. 1998;23:1435–1443. doi: 10.1023/A:1020763009488. PubMed DOI
Obin M., Mesco E., Gong X., Haas A.L., Joseph J., Taylor A. Neurite outgrowth in PC12 cells: Distinguishing the roles of ubiquitylation and ubiquitin-dependent proteolysis. J. Biol. Chem. 1999;274:11789–11795. doi: 10.1074/jbc.274.17.11789. PubMed DOI
Ōmura S., Fujimoto T., Otoguro K., Matsuzaki K., Moriguchi R., Tanaka H., Sasaki Y. Lactacystin, a novel microbial metabolite, induces neurito-genesis of neuroblastoma cells. J. Antibiot. 1991;44:113–116. doi: 10.7164/antibiotics.44.113. PubMed DOI
Klimaschewski L., Hausott B., Ingorokva S., Pfaller K. Constitutively expressed catalytic proteasomal subunits are up-regulated during neuronal differentiation and required for axon initiation, elongation and maintenance. J. Neurochem. 2006;96:1708–1717. doi: 10.1111/j.1471-4159.2006.03694.x. PubMed DOI
Laser H., Mack T.G.A., Wagner D., Coleman M.P. Proteasome inhibition arrests neurite outgrowth and causes dying-back degeneration in primary culture. J. Neurosci. Res. 2003;74:906–916. doi: 10.1002/jnr.10806. PubMed DOI
Zheng Q., Huang T., Zhang L., Zhou Y., Luo H., Xu H., Wang X. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front. Aging Neurosci. 2016;8:303. doi: 10.3389/fnagi.2016.00303. PubMed DOI PMC
Njomen E., Tepe J.J. Proteasome Activation as a New Therapeutic Approach to Target Proteotoxic Disorders. J. Med. Chem. 2019;62:6469–6481. doi: 10.1021/acs.jmedchem.9b00101. PubMed DOI PMC
Tanaka K., Matsuda N. Proteostasis and neurodegeneration: The roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta-Mol. Cell Res. 2014;1843:197–204. doi: 10.1016/j.bbamcr.2013.03.012. PubMed DOI
Jin E.J., Ko H.R., Hwang I., Kim B.S., Choi J.Y., Park K.W., Cho S.W., Ahn J.Y. Akt regulates neurite growth by phosphorylation-dependent inhibition of radixin proteasomal degradation. Sci. Rep. 2018;8:2557. doi: 10.1038/s41598-018-20755-w. PubMed DOI PMC
Tursun B., Schlüter A., Peters M.A., Viehweger B., Ostendorff H.P., Soosairajah J., Drung A., Bossenz M., Johnsen S.A., Schweizer M., et al. The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones. Genes Dev. 2005;19:2307–2319. doi: 10.1101/gad.1340605. PubMed DOI PMC
Yan D., Guo L., Wang Y. Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J. Cell Biol. 2006;174:415–424. doi: 10.1083/jcb.200511028. PubMed DOI PMC
Takabatake M., Goshima Y., Sasaki Y. Semaphorin-3A Promotes Degradation of Fragile X Mental Retardation Protein in Growth Cones via the Ubiquitin-Proteasome Pathway. Front. Neural Circuits. 2020;14:5. doi: 10.3389/fncir.2020.00005. PubMed DOI PMC
Campbell D.S., Holt C.E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron. 2001;32:1013–1026. doi: 10.1016/S0896-6273(01)00551-7. PubMed DOI
Hsu M.-T., Guo C.-L., Liou A.Y., Chang T.-Y., Ng M.-C., Florea B.I., Overkleeft H.S., Wu Y.-L., Liao J.-C., Cheng P.-L. Stage-Dependent Axon Transport of Proteasomes Contributes to Axon Development. Dev. Cell. 2015;35:418–431. doi: 10.1016/j.devcel.2015.10.018. PubMed DOI
Knöferle J., Ramljak S., Koch J.C., Tönges L., Asif A.R., Michel U., Wouters F.S., Heermann S., Krieglstein K., Zerr I., et al. TGF-β 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiol. Dis. 2010;38:395–404. doi: 10.1016/j.nbd.2010.02.011. PubMed DOI
Park J.Y., Jang S.Y., Shin Y.K., Suh D.J., Park H.T. Calcium-dependent proteasome activation is required for axonal neurofilament degradation. Neural Regen. Res. 2013;8:3401. PubMed PMC
Staal J.A., Dickson T.C., Chung R.S., Vickers J.C. Disruption of the Ubiquitin Proteasome System following Axonal Stretch Injury Accelerates Progression to Secondary Axotomy. J. Neurotrauma. 2009;26:781–788. doi: 10.1089/neu.2008.0669. PubMed DOI
Valm A.M., Cohen S., Legant W.R., Melunis J., Hershberg U., Wait E., Cohen A.R., Davidson M.W., Betzig E., Lippincott-Schwartz J. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 2017;546:162–167. doi: 10.1038/nature22369. PubMed DOI PMC
Lee S., Wang W., Hwang J., Namgung U., Min K.T. Increased ER–mitochondria tethering promotes axon regeneration. Proc. Natl. Acad. Sci. USA. 2019;116:16074–16079. doi: 10.1073/pnas.1818830116. PubMed DOI PMC
Krauß M., Haucke V. A grab to move on: ER –endosome contacts in membrane protrusion formation and neurite outgrowth. EMBO J. 2015;34:1442–1444. doi: 10.15252/embj.201591553. PubMed DOI PMC
Wu H., Carvalho P., Voeltz G.K. Here, there, and everywhere: The importance of ER membrane contact sites. Science. 2018;361 doi: 10.1126/science.aan5835. PubMed DOI PMC
Mannan A.U., Krawen P., Sauter S.M., Boehm J., Chronowska A., Paulus W., Neesen J., Engel W. ZFYVE27 (SPG33), a Novel Spastin-Binding Protein, Is Mutated in Hereditary Spastic Paraplegia. Am. J. Hum. Genet. 2006;79:351–357. doi: 10.1086/504927. PubMed DOI PMC
Evans K., Keller C., Pavur K., Glasgow K., Conn B., Lauring B. Interaction of two hereditary spastic paraplegia gene products, spastin and atlastin, suggests a common pathway for axonal maintenance. Proc. Natl. Acad. Sci. USA. 2006;103:10666–10671. doi: 10.1073/pnas.0510863103. PubMed DOI PMC
Züchner S., Wang G., Tran-Viet K.N., Nance M.A., Gaskell P.C., Vance J.M., Ashley-Koch A.E., Pericak-Vance M.A. Mutations in the novel mitochondrial protein REEP1 cause hereditary spastic paraplegia type 31. Am. J. Hum. Genet. 2006;79:365–369. doi: 10.1086/505361. PubMed DOI PMC
Beetz C., Schüle R., Deconinck T., Tran-Viet K.N., Zhu H., Kremer B.P.H., Frints S.G.M., Van Zelst-Stams W.A.G., Byrne P., Otto S., et al. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31. Brain. 2008;131:1078–1086. doi: 10.1093/brain/awn026. PubMed DOI PMC
Nishimura A.L., Mitne-Neto M., Silva H.C.A., Richieri-Costa A., Middleton S., Cascio D., Kok F., Oliveira J.R.M., Gillingwater T., Webb J., et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am. J. Hum. Genet. 2004;75:822–831. doi: 10.1086/425287. PubMed DOI PMC
Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y., Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–608. doi: 10.1038/33416. PubMed DOI
Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M.K., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304:1158–1160. doi: 10.1126/science.1096284. PubMed DOI
Valente E.M., Salvi S., Ialongo T., Marongiu R., Elia A.E., Caputo V., Romito L., Albanese A., Dallapiccola B., Bentivoglio A.R. PINK1 mutations are associated with sporadic early-onset Parkinsonism. Ann. Neurol. 2004;56:336–341. doi: 10.1002/ana.20256. PubMed DOI
Züchner S., Mersiyanova I.V., Muglia M., Bissar-Tadmouri N., Rochelle J., Dadali E.L., Zappia M., Nelis E., Patitucci A., Senderek J., et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 2004;36:449–451. doi: 10.1038/ng1341. PubMed DOI
Sidiropoulos P.N.M., Miehe M., Bock T., Tinelli E., Oertli C.I., Kuner R., Meijer D., Wollscheid B., Niemann A., Suter U. Dynamin 2 mutations in Charcot-Marie-Tooth neuropathy highlight the importance of clathrin-mediated endocytosis in myelination. Brain. 2012;135:1395–1411. doi: 10.1093/brain/aws061. PubMed DOI
Böhm J., Bulla M., Urquhart J.E., Malfatti E., Williams S.G., O’Sullivan J., Szlauer A., Koch C., Baranello G., Mora M., et al. ORAI1 Mutations with Distinct Channel Gating Defects in Tubular Aggregate Myopathy. Hum. Mutat. 2017;38:426–438. doi: 10.1002/humu.23172. PubMed DOI
Xu L., Wang X., Tong C. Endoplasmic Reticulum–Mitochondria Contact Sites and Neurodegeneration. Front. Cell Dev. Biol. 2020;8:428. doi: 10.3389/fcell.2020.00428. PubMed DOI PMC
Rieusset J. The role of endoplasmic reticulum-mitochondria contact sites in the control of glucose homeostasis: An update. Cell Death Dis. 2018;9:388. doi: 10.1038/s41419-018-0416-1. PubMed DOI PMC
Rowland A.A., Voeltz G.K. Endoplasmic reticulum-mitochondria contacts: Function of the junction. Nat. Rev. Mol. Cell Biol. 2012;13:607–615. doi: 10.1038/nrm3440. PubMed DOI PMC
Marchi S., Patergnani S., Pinton P. The endoplasmic reticulum-mitochondria connection: One touch, multiple functions. Biochim. Biophys. Acta-Bioenerg. 2014;1837:461–469. doi: 10.1016/j.bbabio.2013.10.015. PubMed DOI
Bravo-Sagua R., Torrealba N., Paredes F., Morales P.E., Pennanen C., López-Crisosto C., Troncoso R., Criollo A., Chiong M., Hill J.A., et al. Organelle communication: Signaling crossroads between homeostasis and disease. Int. J. Biochem. Cell Biol. 2014;50:55–59. doi: 10.1016/j.biocel.2014.01.019. PubMed DOI
Grimm S. The ER-mitochondria interface: The social network of cell death. Biochim. Biophys. Acta-Mol. Cell Res. 2012;1823:327–334. doi: 10.1016/j.bbamcr.2011.11.018. PubMed DOI
Bernard-Marissal N., Médard J.J., Azzedine H., Chrast R. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain. 2015;138:875–890. doi: 10.1093/brain/awv008. PubMed DOI
Bernard-Marissal N., Chrast R., Schneider B.L. Endoplasmic reticulum and mitochondria in diseases of motor and sensory neurons: A broken relationship? Cell Death Dis. 2018;9:1–16. doi: 10.1038/s41419-017-0125-1. PubMed DOI PMC
Stoica R., De Vos K.J., Paillusson S., Mueller S., Sancho R.M., Lau K.F., Vizcay-Barrena G., Lin W.L., Xu Y.F., Lewis J., et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 2014;5:399. doi: 10.1038/ncomms4996. PubMed DOI PMC
Guardia-Laguarta C., Area-Gomez E., Rüb C., Liu Y., Magrané J., Becker D., Voos W., Schon E.A., Przedborski S. α-synuclein is localized to mitochondria-associated ER membranes. J. Neurosci. 2014;34:249–259. doi: 10.1523/JNEUROSCI.2507-13.2014. PubMed DOI PMC
Schon E.A., Area-Gomez E. Mitochondria-associated ER membranes in Alzheimer disease. Mol. Cell. Neurosci. 2013;55:26–36. doi: 10.1016/j.mcn.2012.07.011. PubMed DOI
Calì T., Ottolini D., Negro A., Brini M. α-synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J. Biol. Chem. 2012;287:17914–17929. doi: 10.1074/jbc.M111.302794. PubMed DOI PMC
Zampese E., Fasolato C., Kipanyula M.J., Bortolozzi M., Pozzan T., Pizzo P. Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc. Natl. Acad. Sci. USA. 2011;108:2777–2782. doi: 10.1073/pnas.1100735108. PubMed DOI PMC
Szabadkai G., Bianchi K., Várnai P., De Stefani D., Wieckowski M.R., Cavagna D., Nagy A.I., Balla T., Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 2006;175:901–911. doi: 10.1083/jcb.200608073. PubMed DOI PMC
Trigo D., Goncalves M.B., Corcoran J.P.T. The regulation of mitochondrial dynamics in neurite outgrowth by retinoic acid receptor β signaling. FASEB J. 2019;33:7225–7235. doi: 10.1096/fj.201802097R. PubMed DOI PMC
Friedman J.R., DiBenedetto J.R., West M., Rowland A.A., Voeltz G.K. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol. Biol. Cell. 2013;24:1030–1040. doi: 10.1091/mbc.e12-10-0733. PubMed DOI PMC
Raiborg C., Wenzel E.M., Stenmark H. ER –endosome contact sites: Molecular compositions and functions. EMBO J. 2015;34:1848–1858. doi: 10.15252/embj.201591481. PubMed DOI PMC
Lu M., van Tartwijk F.W., Lin J.Q., Nijenhuis W., Parutto P., Fantham M., Christensen C.N., Avezov E., Holt C.E., Tunnacliffe A., et al. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Sci. Adv. 2020;6:eabc7209. doi: 10.1126/sciadv.abc7209. PubMed DOI PMC
Raiborg C., Wenzel E.M., Pedersen N.M., Olsvik H., Schink K.O., Schultz S.W., Vietri M., Nisi V., Bucci C., Brech A., et al. Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature. 2015;520:234–238. doi: 10.1038/nature14359. PubMed DOI
Allison R., Lumb J.H., Fassier C., Connell J.W., Martin D.T., Seaman M.N.J., Hazan J., Reid E. An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. J. Cell Biol. 2013;202:527–543. doi: 10.1083/jcb.201211045. PubMed DOI PMC
Allison R., Edgar J.R., Pearson G., Rizo T., Newton T., Günther S., Berner F., Hague J., Connell J.W., Winkler J., et al. Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J. Cell Biol. 2017;216:1337–1355. doi: 10.1083/jcb.201609033. PubMed DOI PMC
Eden E.R., White I.J., Tsapara A., Futter C.E. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat. Cell Biol. 2010;12:267–272. doi: 10.1038/ncb2026. PubMed DOI
Eden E.R., Sanchez-Heras E., Tsapara A., Sobota A., Levine T.P., Futter C.E. Annexin A1 Tethers Membrane Contact Sites that Mediate ER to Endosome Cholesterol Transport. Dev. Cell. 2016;37:473–483. doi: 10.1016/j.devcel.2016.05.005. PubMed DOI PMC
Kilpatrick B.S., Eden E.R., Hockey L.N., Yates E., Futter C.E., Patel S. An Endosomal NAADP-Sensitive Two-Pore Ca2+ Channel Regulates ER-Endosome Membrane Contact Sites to Control Growth Factor Signaling. Cell Rep. 2017;18:1636–1645. doi: 10.1016/j.celrep.2017.01.052. PubMed DOI PMC
Petkovic M., Oses-Prieto J., Burlingame A., Jan L.Y., Jan Y.N. TMEM16K is an interorganelle regulator of endosomal sorting. Nat. Commun. 2020;11:1–16. doi: 10.1038/s41467-020-17016-8. PubMed DOI PMC
Elbaz-Alon Y., Guo Y., Segev N., Harel M., Quinnell D.E., Geiger T., Avinoam O., Li D., Nunnari J. PDZD8 interacts with Protrudin and Rab7 at ER-late endosome membrane contact sites associated with mitochondria. Nat. Commun. 2020;11:1–14. doi: 10.1038/s41467-020-17451-7. PubMed DOI PMC
Hirabayashi Y., Kwon S.K., Paek H., Pernice W.M., Paul M.A., Lee J., Erfani P., Raczkowski A., Petrey D.S., Pon L.A., et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science. 2017;358:623–630. doi: 10.1126/science.aan6009. PubMed DOI PMC
Liao Y.C., Fernandopulle M.S., Wang G., Choi H., Hao L., Drerup C.M., Patel R., Qamar S., Nixon-Abell J., Shen Y., et al. RNA Granules Hitchhike on Lysosomes for Long-Distance Transport, Using Annexin A11 as a Molecular Tether. Cell. 2019;179:147–164.e20. doi: 10.1016/j.cell.2019.08.050. PubMed DOI PMC
Lee J.E., Cathey P.I., Wu H., Parker R., Voeltz G.K. Endoplasmic reticulum contact sites regulate the dynamics of membraneless organelles. Science. 2020;367:eaay7108. doi: 10.1126/science.aay7108. PubMed DOI PMC
Cai Q., Zakaria H.M., Simone A., Sheng Z.H. Spatial parkin translocation and degradation of damaged mitochondria via mitophagy in live cortical neurons. Curr. Biol. 2012;22:545–552. doi: 10.1016/j.cub.2012.02.005. PubMed DOI PMC
Miller K.E., Sheetz M.P. Axonal mitochondrial transport and potential are correlated. J. Cell Sci. 2004;117:2791–2804. doi: 10.1242/jcs.01130. PubMed DOI
Lin M.Y., Cheng X.T., Tammineni P., Xie Y., Zhou B., Cai Q., Sheng Z.H. Releasing Syntaphilin Removes Stressed Mitochondria from Axons Independent of Mitophagy under Pathophysiological Conditions. Neuron. 2017;94:595–610.e6. doi: 10.1016/j.neuron.2017.04.004. PubMed DOI PMC
Zheng Y., Zhang X., Wu X., Jiang L., Ahsan A., Ma S., Xiao Z., Han F., Qin Z.H., Hu W., et al. Somatic autophagy of axonal mitochondria in ischemic neurons. J. Cell Biol. 2019;218:1891–1907. doi: 10.1083/jcb.201804101. PubMed DOI PMC
Wang X., Winter D., Ashrafi G., Schlehe J., Wong Y.L., Selkoe D., Rice S., Steen J., Lavoie M.J., Schwarz T.L. PINK1 and Parkin target miro for phosphorylation and degradation to arrest mitochondrial motility. Cell. 2011;147:893–906. doi: 10.1016/j.cell.2011.10.018. PubMed DOI PMC
Ashrafi G., Schlehe J.S., LaVoie M.J., Schwarz T.L. Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin. J. Cell Biol. 2014;206:655–670. doi: 10.1083/jcb.201401070. PubMed DOI PMC
Gabriela Otero M., Fernandez Bessone I., Earle Hallberg A., Eneas Cromberg L., Cecilia De Rossi M., Saez T.M., Levi V., Almenar-Queralt A., Luis Falzone T. Proteasome Stress Leads to APP Axonal Transport Defects by Promoting Its Amyloidogenic Processing in Lysosomes. [(accessed on 6 March 2019)];2018 Available online: http://jcs.biologists.org/content/joces/early/2018/05/02/jcs.214536.full.pdf. PubMed
Neuronal maturation and axon regeneration: unfixing circuitry to enable repair
Long-Term Cultures of Spinal Cord Interneurons