Neuronal maturation and axon regeneration: unfixing circuitry to enable repair

. 2024 Oct ; 25 (10) : 649-667. [epub] 20240820

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39164450
Odkazy

PubMed 39164450
DOI 10.1038/s41583-024-00849-3
PII: 10.1038/s41583-024-00849-3
Knihovny.cz E-zdroje

Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.

Zobrazit více v PubMed

He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437–451 (2016). PubMed DOI

Zheng, B. & Tuszynski, M. H. Regulation of axonal regeneration after mammalian spinal cord injury. Nat. Rev. Mol. Cell Biol. 24, 396–413 (2023). PubMed DOI

Björklund, A. Long distance axonal growth in the adult central nervous system. J. Neurol. 242, S33–S35 (1994). PubMed DOI

Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012). PubMed DOI PMC

Wang, X., Terman, J. & Martin, G. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana. J. Comp. Neurol. 398, 83–97 (1998). PubMed DOI

Ruven, C. et al. Long-distance axon growth ability of corticospinal neurons is lost in a segmentally-distinct manner. Preprint in bioRxiv https://doi.org/10.1101/2022.03.20.484375 (2022). Using a novel microsurgical approach to lesion axons in the developing mouse, this preprint reports that neurons lose the ability to regenerate as they transition from elongating to arborizing axons during early postnatal development. DOI

Mahar, M. & Cavalli, V. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 19, 323–337 (2018). PubMed DOI PMC

Palmisano, I. & Di Giovanni, S. Advances and limitations of current epigenetic studies investigating mammalian axonal regeneration. Neurotherapeutics 15, 529–540 (2018). PubMed DOI PMC

Blanquie, O. & Bradke, F. Cytoskeleton dynamics in axon regeneration. Curr. Opin. Neurobiol. 51, 60–69 (2018). PubMed DOI

Bradke, F., Di Giovanni, S. & Fawcett, J. Neuronal maturation: challenges and opportunities in a nascent field. Trends Neurosci. 43, 360–362 (2020). PubMed DOI

Fawcett, J. W. The struggle to make CNS axons regenerate: why has it been so difficult? Neurochem. Res. 45, 144–158 (2020). PubMed DOI

Hilton, B. J. et al. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 110, 51–69.e7 (2022). Core molecular components of the presynaptic active zone with a limited role in axon growth during neuronal development play a major role in preventing axon growth and regeneration in mature neurons. PubMed DOI PMC

Hollville, E., Romero, S. E. & Deshmukh, M. Apoptotic cell death regulation in neurons. FEBS J. 286, 3276–3298 (2019). PubMed DOI PMC

Schelski, M. & Bradke, F. Neuronal polarization: from spatiotemporal signaling to cytoskeletal dynamics. Mol. Cell. Neurosci. 84, 11–28 (2017). PubMed DOI

Coles, C. H. & Bradke, F. Coordinating neuronal actin–microtubule dynamics. Curr. Biol. 25, R677–R691 (2015). PubMed DOI

Wallace, J. L. & Pollen, A. A. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat. Rev. Neurosci. 25, 7–29 (2023). PubMed DOI

Bareyre, F. M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269 (2004). PubMed DOI

Fouad, K., Pedersen, V., Schwab, M. E. & Brösamle, C. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr. Biol. 11, 1766–1770 (2001). PubMed DOI

Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020). Neonatal microglia resolve inflammation by secreting peptidase inhibitors to prevent fibrotic scarring and enable robust repair following spinal cord injury. PubMed DOI PMC

Schwab, M. E. Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11, 799–811 (2010). PubMed DOI

Vinopal, S. et al. Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain. Neuron 111, 1241–1263.e16 (2023). This study shows how the two interwoven dynamic processes — radial migration and axon growth — are separately controlled: by selective dependence of centrosomal and acentrosomal microtubule nucleation. PubMed DOI

Luo, L. & O’Leary, D. D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005). PubMed DOI

O’Leary, D. D. & Terashima, T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods”. Neuron 1, 901–910 (1988). PubMed DOI

Stanfield, B. B., O’Leary, D. D. & Fricks, C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 298, 371–373 (1982). PubMed DOI

Südhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018). PubMed DOI PMC

Südhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012). PubMed DOI PMC

Washbourne, P. et al. Cell adhesion molecules in synapse formation. J. Neurosci. 24, 9244–9249 (2004). PubMed DOI PMC

Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011). PubMed DOI PMC

Kano, M. & Hashimoto, K. Synapse elimination in the central nervous system. Curr. Opin. Neurobiol. 19, 154–161 (2009). PubMed DOI

Kano, M. et al. Persistent multiple climbing fiber innervation of cerebellar purkinje cells in mice lacking mGluR1. Neuron 18, 71–79 (1997). PubMed DOI

Caceres, A., Ye, B. & Dotti, C. G. Neuronal polarity: demarcation, growth and commitment. Curr. Opin. Cell Biol. 24, 547–553 (2012). PubMed DOI PMC

Haas, K. in Molecular Mechanisms of Synaptogenesis (eds Dityatev, A. & El-Husseini, A.) 297–309 (Springer, 2006).

Ambrogini, P. et al. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res. 1017, 21–31 (2004). PubMed DOI

Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007). PubMed DOI

Atwood, H. L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3, 497–516 (2002). PubMed DOI

Canty, A. & Murphy, M. Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog. Neurobiol. 85, 214–235 (2008). PubMed DOI

Goldberg, J. L., Klassen, M. P., Hua, Y. & Barres, B. A. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296, 1860–1864 (2002). PubMed DOI

Tedeschi, A. et al. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 92, 419–434 (2016). PubMed DOI

Kitao, Y., Robertson, B., Kudo, M. & Grant, G. Neurogenesis of subpopulations of rat lumbar dorsal root ganglion neurons including neurons projecting to the dorsal column nuclei. J. Comp. Neurol. 371, 249–257 (1996). PubMed DOI

Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398 (2020). This paper presents a transcriptomic atlas of the developing mouse dorsal root ganglion and shows that primary sensory neurons mature owing to the expression of subtype-restricted transcription factors in response to extrinsic cues. PubMed DOI PMC

Prasad, T. & Weiner, J. A. Direct and indirect regulation of spinal cord Ia afferent terminal formation by the γ-protocadherins. Front. Mol. Neurosci. 4, 54 (2011). PubMed DOI PMC

Ramón y Cajal, S. Asociación método del nitrato de plata con el embrionario para el estudio de los focos motores y sensitivos. Trab. Lab. Invest. Biol. Univ. Madr. 3, 65–96 (1904).

Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999). PubMed DOI

Ylera, B. et al. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr. Biol. 19, 930–936 (2009). PubMed DOI

Richardson, P. & Issa, V. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984). PubMed DOI

Karimi-Abdolrezaee, S., Verge, V. M. & Schreyer, D. J. Developmental down-regulation of GAP-43 expression and timing of target contact in rat corticospinal neurons. Exp. Neurol. 176, 390–401 (2002). PubMed DOI

Koseki, H. et al. Selective rab11 transport and the intrinsic regenerative ability of CNS axons. eLife 6, e26956 (2017). PubMed DOI PMC

Lorenzana, A. O., Lee, J. K., Mui, M., Chang, A. & Zheng, B. A surviving intact branch stabilizes remaining axon architecture after injury as revealed by in vivo imaging in the mouse spinal cord. Neuron 86, 947–954 (2015). PubMed DOI PMC

Kim, H. et al. Oligodendrocyte precursor cells stop sensory axons regenerating into the spinal cord. Cell Rep. 42, 113068 (2023). PubMed DOI

Filous, A. R. et al. Entrapment via synaptic-like connections between NG2 proteoglycan + cells and dystrophic axons in the lesion plays a role in regeneration failure after spinal cord injury. J. Neurosci. 34, 16369–16384 (2014). PubMed DOI PMC

Liu, K. et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 13, 1075–1081 (2010). PubMed DOI PMC

Enes, J. et al. Electrical activity suppresses axon growth through Cav1.2 channels in adult primary sensory neurons. Curr. Biol. 20, 1154–1164 (2010). PubMed DOI

Eggermann, E., Bucurenciu, I., Goswami, S. P. & Jonas, P. Nanodomain coupling between Ca DOI

Calloway, N., Gouzer, G., Xue, M. & Ryan, T. A. The active-zone protein Munc13 controls the use-dependence of presynaptic voltage-gated calcium channels. eLife 4, e07728 (2015). PubMed DOI PMC

Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999). PubMed DOI

van de Bospoort, R. et al. Munc13 controls the location and efficiency of dense-core vesicle release in neurons. J. Cell Biol. 199, 883–891 (2012). PubMed DOI PMC

Panayotis, N., Karpova, A., Kreutz, M. R. & Fainzilber, M. Macromolecular transport in synapse to nucleus communication. Trends Neurosci. 38, 108–116 (2015). PubMed DOI

Hardingham, G. E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002). PubMed DOI

Herold, S., Jagasia, R., Merz, K., Wassmer, K. & Lie, D. C. CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol. Cell Neurosci. 46, 79–88 (2011). PubMed DOI

Bloom, O. E. & Morgan, J. R. Membrane trafficking events underlying axon repair, growth, and regeneration. Mol. Cell. Neurosci. 48, 339–348 (2011). PubMed DOI

Broeke, J. H. et al. Munc18 and Munc13 regulate early neurite outgrowth. Biol. Cell 102, 479–488 (2010). PubMed DOI PMC

Zhu, X.-H. et al. Quantitative imaging of energy expenditure in human brain. Neuroimage 60, 2107–2117 (2012). PubMed DOI

Zhou, B. et al. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 214, 103–119 (2016). PubMed DOI PMC

Aprea, J. et al. Transcriptome sequencing during mouse brain development identifies long non‐coding RNAs functionally involved in neurogenic commitment. EMBO J. 32, 3145–3160 (2013). PubMed DOI PMC

Gallegos, D. A., Chan, U., Chen, L.-F. & West, A. E. Chromatin regulation of neuronal maturation and plasticity. Trends Neurosci. 41, 311–324 (2018). PubMed DOI PMC

Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018). PubMed DOI

Zhang, Y. et al. Overview of histone modification. Adv. Exp. Med. Biol. 1283, 1–16 (2021). PubMed DOI

Guibert, S. & Weber, M. Functions of DNA methylation and hydroxymethylation in mammalian development. Curr. Top. Dev. Biol. 104, 47–83 (2013). PubMed DOI

Yoo, A. S. & Crabtree, G. R. ATP-dependent chromatin remodeling in neural development. Curr. Opin. Neurobiol. 19, 120–126 (2009). PubMed DOI PMC

Venkatesh, I., Simpson, M. T., Coley, D. M. & Blackmore, M. G. Epigenetic profiling reveals a developmental decrease in promoter accessibility during cortical maturation in vivo. Neuroepigenetics 8, 19–26 (2016). PubMed DOI PMC

Wang, X.-W. et al. Histone methyltransferase Ezh2 coordinates mammalian axon regeneration via regulation of key regenerative pathways. J. Clin. Invest. 134, e163145 (2023). This paper demonstrates the importance of histone methylation in axon regeneration. PubMed DOI

Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron 108, 128–144.e9 (2020). Single-nucleus RNA sequencing demonstrates that peripheral axotomy of primary sensory neurons triggers reversible transcriptional reprogramming to enable axon regeneration. PubMed DOI PMC

Tetzlaff, W., Alexander, S. W., Miller, F. D. & Bisby, M. A. Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J. Neurosci. 11, 2528–2544 (1991). PubMed DOI PMC

Poplawski, G. H. et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature 581, 77–82 (2020). Gene expression profiling of corticospinal neurons following spinal cord injury reveals that mature neurons can upregulate the expression of regeneration-associated genes following axotomy but fail to sustain their expression. PubMed DOI

Fernandes, K. J., Fan, D. P., Tsui, B., Cassar, S. & Tetzlaff, W. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP‐43, tubulins, and neurofilament‐M. J. Comp. Neurol. 414, 495–510 (1999). PubMed DOI

Wang, Z. et al. Injury distance limits the transcriptional response to spinal injury. Preprint at bioRxiv https://doi.org/10.1101/2024.05.27.596075 (2024). PubMed DOI PMC

Kim, H. J. et al. Deep scRNA sequencing reveals a broadly applicable Regeneration Classifier and implicates antioxidant response in corticospinal axon regeneration. Neuron 111, 3953–3969.e5 (2023). Single-cell sequencing (at high depth yet with a low throughput) of corticospinal neurons that regenerate due to genetic deletion of the tumour suppressor genes PTEN and SOCS3 establishes a role for antioxidant response in axon regeneration. PubMed DOI

Moore, D. L. et al. KLF family members regulate intrinsic axon regeneration ability. Science 326, 298–301 (2009). PubMed DOI PMC

Norsworthy, M. W. et al. Sox11 expression promotes regeneration of some retinal ganglion cell types but kills others. Neuron 94, 1112–1120.e4 (2017). PubMed DOI PMC

Venkatesh, I., Mehra, V., Wang, Z., Califf, B. & Blackmore, M. G. Developmental chromatin restriction of ro‐growth gene networks acts as an epigenetic barrier to axon regeneration in cortical neurons. Dev. Neurobiol. 78, 960–977 (2018). PubMed DOI PMC

Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011). PubMed DOI PMC

Weng, Y.-L. et al. An intrinsic epigenetic barrier for functional axon regeneration. Neuron 94, 337–346.e6 (2017). PubMed DOI PMC

Loh, Y.-H. E. et al. Comprehensive mapping of 5-hydroxymethylcytosine epigenetic dynamics in axon regeneration. Epigenetics 12, 77–92 (2017). PubMed DOI

Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020). Overexpression of Yamanaka factors in mature retinal ganglion cell neurons elicits axon regeneration by reverting these neurons to a more youthful DNA methylation pattern. PubMed DOI PMC

Oh, Y. M. et al. Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc. Natl Acad. Sci. USA 115, E12417–E12426 (2018). PubMed DOI PMC

Smith, J., Sen, S., Weeks, R. J., Eccles, M. R. & Chatterjee, A. Promoter DNA hypermethylation and paradoxical gene activation. Trends cancer 6, 392–406 (2020). PubMed DOI

Reverdatto, S. et al. Developmental and injury-induced changes in DNA methylation in regenerative versus non-regenerative regions of the vertebrate central nervous system. BMC Genomics 23, 2 (2022). PubMed DOI PMC

Lindner, R., Puttagunta, R., Nguyen, T. & Di Giovanni, S. DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Sci. Data 1, 140038 (2014). PubMed DOI PMC

Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011). PubMed DOI PMC

Pereira, J. D. et al. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc. Natl Acad. Sci. USA 107, 15957–15962 (2010). PubMed DOI PMC

Zhang, M. et al. Neuronal histone methyltransferase EZH2 regulates neuronal morphogenesis, synaptic plasticity, and cognitive behavior in mice. Neurosci. Bull. 39, 1512–1532 (2023). PubMed DOI PMC

Henriquez, B. et al. Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons. Mol. Cell. Neurosci. 57, 130–143 (2013). PubMed DOI

Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell. Neurosci. 8, 161 (2014). PubMed DOI PMC

Habib, A. A. et al. Expression of the oligodendrocyte‐myelin glycoprotein by neurons in the mouse central nervous system. J. Neurochem. 70, 1704–1711 (1998). PubMed DOI

Becker, T. et al. Tenascin‐R inhibits regrowth of optic fibers in vitro and persists in the optic nerve of mice after injury. Glia 29, 330–346 (2000). PubMed DOI

Hollis, E. R. II Axon guidance molecules and neural circuit remodeling after spinal cord injury. Neurotherapeutics 13, 360–369 (2016). PubMed DOI

Kim, J. et al. Polycomb-and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 25, 2808–2820.e4 (2018). PubMed DOI PMC

Laugesen, A., Højfeldt, J. W. & Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8–18 (2019). PubMed DOI PMC

Jambhekar, A., Dhall, A. & Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. 20, 625–641 (2019). PubMed DOI PMC

Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022). PubMed DOI

Gräff, J. & Tsai, L.-H. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 14, 97–111 (2013). PubMed DOI

Gaub, P. et al. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ. 17, 1392–1408 (2010). PubMed DOI

Cho, Y., Sloutsky, R., Naegle, K. M. & Cavalli, V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894–908 (2013). PubMed DOI PMC

Puttagunta, R. et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat. Commun. 5, 3527 (2014). PubMed DOI

Jiang, J. et al. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression. Cell Death Dis. 6, e1865 (2015). PubMed DOI PMC

Wu, D. & Murashov, A. K. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front. Mol. Neurosci. 6, 35 (2013). PubMed DOI PMC

Liu, C.-M., Wang, R.-Y., Jiao, Z.-X., Zhang, B.-Y. & Zhou, F.-Q. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev. 27, 1473–1483 (2013). PubMed DOI PMC

Kebede, A. F., Schneider, R. & Daujat, S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J. 282, 1658–1674 (2015). PubMed DOI

Richmond, S. et al. Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Neuroscience 75, 69–82 (1996). PubMed DOI

Bradke, F. & Dotti, C. G. Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175–1186 (1997). PubMed DOI

Eva, R., Koseki, H., Kanamarlapudi, V. & Fawcett, J. W. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J. Cell Sci. 130, 3663–3675 (2017). PubMed DOI PMC

Rasband, M. N. The axon initial segment and the maintenance of neuronal polarity. Nat. Rev. Neurosci. 11, 552–562 (2010). PubMed DOI

Yoshimura, T. & Rasband, M. N. Axon initial segments: diverse and dynamic neuronal compartments. Curr. Opin. Neurobiol. 27, 96–102 (2014). PubMed DOI

Eichel, K. & Shen, K. The function of the axon initial segment in neuronal polarity. Dev. Biol. 489, 47–54 (2022). PubMed DOI

Maeder, C. I., Shen, K. & Hoogenraad, C. C. Axon and dendritic trafficking. Curr. Opin. Neurobiol. 27, 165–170 (2014). PubMed DOI

Villarroel‐Campos, D., Bronfman, F. C. & Gonzalez‐Billault, C. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton 73, 498–507 (2016). PubMed DOI

Britt, D. J., Farias, G. G., Guardia, C. M. & Bonifacino, J. S. Mechanisms of polarized organelle distribution in neurons. Front. Cell Neurosci. 10, 88 (2016). PubMed DOI PMC

Guedes-Dias, P. & Holzbaur, E. L. F. Axonal transport: driving synaptic function. Science 366, eaaw9997 (2019). PubMed DOI PMC

Gerges, N. Z., Backos, D. S. & Esteban, J. A. Local control of AMPA receptor trafficking at the postsynaptic terminal by a small GTPase of the Rab family. J. Biol. Chem. 279, 43870–43878 (2004). PubMed DOI

Gonzalez-Gutierrez, A., Lazo, O. M. & Bronfman, F. C. The Rab5-Rab11 endosomal pathway is required for BDNF-induced CREB transcriptional regulation in hippocampal neurons. J. Neurosci. 40, 8042–8054 (2020). PubMed DOI PMC

Yap, C. C., Digilio, L., McMahon, L. P., Garcia, A. D. R. & Winckler, B. Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J. Cell Biol. 217, 3141–3159 (2018). PubMed DOI PMC

Petrova, V., Nieuwenhuis, B., Fawcett, J. W. & Eva, R. Axonal organelles as molecular platforms for axon growth and regeneration after injury. Int. J. Mol. Sci. 22, 1798 (2021). PubMed DOI PMC

Cheah, M. et al. Expression of an activated integrin promotes long-distance sensory axon regeneration in the spinal cord. J. Neurosci. 36, 7283–7297 (2016). PubMed DOI PMC

Yap, C. C. et al. The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM. J. Cell Biol. 180, 827–842 (2008). PubMed DOI PMC

Hollis, E. R., Jamshidi, P., Low, K., Blesch, A. & Tuszynski, M. H. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc. Natl Acad. Sci. USA 106, 7215–7220 (2009). PubMed DOI PMC

Duan, X. et al. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85, 1244–1256 (2015). PubMed DOI PMC

Maday, S. & Holzbaur, E. L. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev. Cell 30, 71–85 (2014). PubMed DOI PMC

Nieuwenhuis, B. et al. PI 3-kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS. EMBO Mol. Med. 12, e11674 (2020). PubMed DOI PMC

Petrova, V. et al. Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat. Commun. 11, 5614 (2020). This paper demonstrates the importance of endoplasmic reticulum and associated proteins in axon regeneration. PubMed DOI PMC

Ferguson, S. M. Axonal transport and maturation of lysosomes. Curr. Opin. Neurobiol. 51, 45–51 (2018). PubMed DOI PMC

Devine, M. J. & Kittler, J. T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 19, 63–80 (2018). PubMed DOI

Cheng, X. T. & Sheng, Z. H. Developmental regulation of microtubule-based trafficking and anchoring of axonal mitochondria in health and diseases. Dev. Neurobiol. 81, 284–299 (2021). PubMed DOI

Andrews, M. R. et al. Axonal localization of integrins in the CNS is neuronal type and age dependent. eNeuro 3, ENEURO.0029-16.2016 (2016). PubMed DOI PMC

Franssen, E. H. et al. Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. J. Neurosci. 35, 8359–8375 (2015). PubMed DOI PMC

Montagnac, G. et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr. Biol. 19, 184–195 (2009). PubMed DOI

Werner, A. et al. Impaired axonal regeneration in α7 integrin-deficient mice. J. Neurosci. 20, 1822–1830 (2000). PubMed DOI PMC

Hight-Warburton, W. & Parsons, M. Regulation of cell migration by α4 and α9 integrins. Biochem. J. 476, 705–718 (2019). PubMed DOI

Cheah, M. et al. Integrin-driven axon regeneration in the spinal cord activates a distinctive CNS regeneration program. J. Neurosci. 43, 4775–4794 (2023). PubMed DOI PMC

Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018). PubMed DOI PMC

Santos, T. E. et al. Axon growth of CNS neurons in three dimensions is amoeboid and independent of adhesions. Cell Rep. 32, 107907 (2020). This paper challenges the classical concept of how CNS axons grow: not pulling with their growth cones on the substrate to move themselves forward but rather through an amoeboid movement, where microtubules protrude further distally. PubMed DOI

Witte, H., Neukirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008). PubMed DOI PMC

Kamiguchi, H. The role of cell adhesion molecules in axon growth and guidance. Adv. Exp. Med. Biol. 621, 95–103 (2007). PubMed DOI

Haspel, J. et al. Critical and optimal Ig domains for promotion of neurite outgrowth by L1/Ng-CAM. J. Neurobiol. 42, 287–302 (2000). PubMed DOI

Maness, P. F. & Schachner, M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat. Neurosci. 10, 19–26 (2007). PubMed DOI

Chen, J. et al. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. Brain 130, 954–969 (2007). PubMed DOI

Verma, P. et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25, 331–342 (2005). PubMed DOI PMC

Hanz, S. et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40, 1095–1104 (2003). PubMed DOI

Holt, C. E. & Schuman, E. M. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80, 648–657 (2013). PubMed DOI PMC

Bourke, A. M., Schwarz, A. & Schuman, E. M. De-centralizing the central dogma: mRNA translation in space and time. Mol. Cell 83, 452–468 (2023). PubMed DOI

Costa, R. O. et al. Synaptogenesis stimulates a proteasome-mediated ribosome reduction in axons. Cell Rep. 28, 864–876.e6 (2019). PubMed DOI PMC

Kim, E. & Jung, H. Local mRNA translation in long-term maintenance of axon health and function. Curr. Opin. Neurobiol. 63, 15–22 (2020). PubMed DOI

Dalla Costa, I. et al. The functional organization of axonal mRNA transport and translation. Nat. Rev. Neurosci. 22, 77–91 (2021). PubMed DOI

Luarte, A., Cornejo, V. H., Bertin, F., Gallardo, J. & Couve, A. The axonal endoplasmic reticulum: one organelle-many functions in development, maintenance, and plasticity. Dev. Neurobiol. 78, 181–208 (2018). PubMed DOI

Yalcin, B. et al. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. eLife 6, e23882 (2017). PubMed DOI PMC

Rao, K. et al. Spastin, atlastin, and ER relocalization are involved in axon but not dendrite regeneration. Mol. Biol. Cell 27, 3245–3256 (2016). PubMed DOI PMC

Farias, G. G. et al. Feedback-driven mechanisms between microtubules and the endoplasmic reticulum instruct neuronal polarity. Neuron 102, 184–201.e8 (2019). PubMed DOI

Kurowska, Z., Brundin, P., Schwab, M. E. & Li, J. Y. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro. Neuroscience 256, 456–466 (2014). PubMed DOI

Cartoni, R., Pekkurnaz, G., Wang, C., Schwarz, T. L. & He, Z. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity. PLoS One 12, e0184672 (2017). PubMed DOI PMC

Cartoni, R. et al. The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron 92, 1294–1307 (2016). PubMed DOI PMC

Han, Q. et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab. 31, 623–641.e8 (2020). Removing an anchor on mitochondria that becomes active as neurons mature enhances mitochondrial transport and enables corticospinal regeneration following CNS injury. PubMed DOI PMC

Govek, E.-E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005). PubMed DOI

Rosenberg, S. S. & Spitzer, N. C. Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, a004259 (2011). PubMed DOI PMC

Sánchez-Alegría, K., Flores-León, M., Avila-Muñoz, E., Rodríguez-Corona, N. & Arias, C. PI3K signaling in neurons: a central node for the control of multiple functions. Int. J. Mol. Sci. 19, 3725 (2018). PubMed DOI PMC

Garvalov, B. K. et al. Cdc42 regulates cofilin during the establishment of neuronal polarity. J. Neurosci. 27, 13117–13129 (2007). PubMed DOI PMC

Tahirovic, S. et al. Rac1 regulates neuronal polarization through the WAVE complex. J. Neurosci. 30, 6930–6943 (2010). PubMed DOI PMC

Dupraz, S. et al. RhoA controls axon extension independent of specification in the developing brain. Curr. Biol. 29, 3874–3886.e9 (2019). PubMed DOI

Ng, J. & Luo, L. Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 44, 779–793 (2004). PubMed DOI

West, A. E., Griffith, E. C. & Greenberg, M. E. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931 (2002). PubMed DOI

Hausser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000). PubMed DOI

Thomas, G. M. & Huganir, R. L. MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173–183 (2004). PubMed DOI

Kennedy, M. B. Synaptic signaling in learning and memory. Cold Spring Harb. Perspect. Biol. 8, a016824 (2016). DOI PMC

Czech, M. P. PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603–606 (2000). PubMed DOI

Park, K. K. et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–966 (2008). PubMed DOI PMC

Geoffroy, C. G., Hilton, B. J., Tetzlaff, W. & Zheng, B. Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system. Cell Rep. 15, 238–246 (2016). PubMed DOI PMC

Du, K. et al. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. J. Neurosci. 35, 9754–9763 (2015). PubMed DOI PMC

Lewandowski, G. & Steward, O. AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J. Neurosci. 34, 9951–9962 (2014). PubMed DOI PMC

Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E. M. & Bastiani, M. Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802–806 (2009). PubMed DOI PMC

Chen, L. et al. Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron 71, 1043–1057 (2011). PubMed DOI PMC

Shin, J. E. et al. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74, 1015–1022 (2012). PubMed DOI PMC

Watkins, T. A. et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc. Natl Acad. Sci. USA 110, 4039–4044 (2013). PubMed DOI PMC

Saikia, J. M. et al. A critical role for DLK and LZK in axonal repair in the mammalian spinal cord. J. Neurosci. 42, 3716–3732 (2022). Two kinases implicated in retrograde injury signalling, DLK and LZK, have redundant roles in promoting axon regeneration and compensatory sprouting following axonal injury in the mature mammalian CNS. PubMed DOI PMC

Hannila, S. S. & Filbin, M. T. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp. Neurol. 209, 321–332 (2008). PubMed DOI

Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002). PubMed DOI

Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A. I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002). PubMed DOI

Gao, Y. et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44, 609–621 (2004). PubMed DOI

Chierzi, S., Ratto, G. M., Verma, P. & Fawcett, J. W. The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Eur. J. Neurosci. 21, 2051–2062 (2005). PubMed DOI

Flynn, K. C. et al. ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76, 1091–1107 (2012). PubMed DOI

Tomasek, J. J., Haaksma, C. J., Eddy, R. J. & Vaughan, M. B. Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat. Rec. 232, 359–368 (1992). PubMed DOI

Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999). PubMed DOI

Schelski, M. & Bradke, F. Microtubule retrograde flow retains neuronal polarization in a fluctuating state. Sci. Adv. 8, eabo2336 (2022). This paper and Burute et al. PubMed DOI PMC

Burute, M., Jansen, K. I., Mihajlovic, M., Vermonden, T. & Kapitein, L. C. Local changes in microtubule network mobility instruct neuronal polarization and axon specification. Sci. Adv. 8, eabo2343 (2022). PubMed DOI PMC

Stiess, M. et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704–707 (2010). PubMed DOI

Erez, H. et al. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J. Cell Biol. 176, 497–507 (2007). PubMed DOI PMC

Ertürk, A., Hellal, F., Enes, J. & Bradke, F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 27, 9169–9180 (2007). PubMed DOI PMC

Ruschel, J. et al. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348, 347–352 (2015). PubMed DOI PMC

Hellal, F. et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331, 928–931 (2011). PubMed DOI PMC

Griffin, J. M. et al. Rehabilitation enhances epothilone-induced locomotor recovery after spinal cord injury. Brain Commun. 5, fcad005 (2023). PubMed DOI PMC

Ruschel, J. & Bradke, F. Systemic administration of epothilone D improves functional recovery of walking after rat spinal cord contusion injury. Exp. Neurol. 306, 243–249 (2018). PubMed DOI

O’Shea, T. M., Burda, J. E. & Sofroniew, M. V. Cell biology of spinal cord injury and repair. J. Clin. Invest. 127, 3259–3270 (2017). PubMed DOI PMC

Dent, E. W. Dynamic microtubules at the synapse. Curr. Opin. Neurobiol. 63, 9–14 (2020). PubMed DOI PMC

Guedes-Dias, P. et al. Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr. Biol. 29, 268–282.e8 (2019). PubMed DOI PMC

Bharat, V. et al. Capture of dense core vesicles at synapses by JNK-dependent phosphorylation of synaptotagmin-4. Cell Rep. 21, 2118–2133 (2017). PubMed DOI PMC

Zhang, W. & Benson, D. L. Stages of synapse development defined by dependence on F-actin. J. Neurosci. 21, 5169–5181 (2001). PubMed DOI PMC

Chia, P. H., Patel, M. R. & Shen, K. NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins. Nat. Neurosci. 15, 234–242 (2012). PubMed DOI PMC

Chia, P. H., Chen, B., Li, P., Rosen, M. K. & Shen, K. Local F-actin network links synapse formation and axon branching. Cell 156, 208–220 (2014). PubMed DOI PMC

Rust, M. B. ADF/cofilin: a crucial regulator of synapse physiology and behavior. Cell. Mol. Life Sci. 72, 3521–3529 (2015). PubMed DOI PMC

Tedeschi, A. et al. ADF/cofilin-mediated actin turnover promotes axon regeneration in the adult CNS. Neuron 103, 1073–1085.e6 (2019). Rejuvenating actin dynamics at the growth cone — a major intracellular process enabling rapid axon growth during embryonic development — promotes regeneration of mature axons following CNS injury. PubMed DOI PMC

Pinto-Costa, R. et al. Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration. J. Clin. Invest. 130, 2024–2040 (2020). PubMed DOI PMC

Stern, S. et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron 109, 3436–3455.e9 (2021). The small GTPase RhoA has opposing roles in neurons and reactive astrocytes following CNS injury: neuronal RhoA prevents axon regeneration but astrocytic RhoA is beneficial for regenerating axons. PubMed DOI

Shekhtmeyster, P. et al. Trans-segmental imaging in the spinal cord of behaving mice. Nat. Biotechnol. 41, 1729–1733 (2023). PubMed DOI PMC

Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126.e20 (2023). PubMed DOI PMC

Skinnider, M. A. et al. Single-cell and spatial atlases of spinal cord injury in the Tabulae Paralytica. Nature 631, 150–163 (2024). PubMed DOI

Matson, K. J. et al. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 13, 5628 (2022). This paper generated an atlas using single-nucleus sequencing to profile how different cell types respond to spinal cord injury and showed that a specific subpopulation (spinocerebellar neurons) has a higher capacity to sprout and form new circuits in the injured spinal cord. PubMed DOI PMC

Squair, J. W. et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science 381, 1338–1345 (2023). This paper demonstrates the importance of neuronal identity in functional axon regeneration following CNS injury. PubMed DOI

Yang, S.-G., Wang, X.-W., Qian, C. & Zhou, F.-Q. Reprogramming neurons for regeneration: the fountain of youth. Prog. Neurobiol. 214, 102284 (2022). PubMed DOI

Lundberg, E. & Borner, G. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019). PubMed DOI

Banker, G. The development of neuronal polarity: a retrospective view. J. Neurosci. 38, 1867–1873 (2018). PubMed DOI PMC

Hilton, B. J. & Bradke, F. Can injured adult CNS axons regenerate by recapitulating development? Development 144, 3417–3429 (2017). PubMed DOI

Shen, Y. et al. PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592–596 (2009). PubMed DOI PMC

Smith, G. M. & Gallo, G. The role of mitochondria in axon development and regeneration. Dev. Neurobiol. 78, 221–237 (2018). PubMed DOI

Kapitein, L. C. & Hoogenraad, C. C. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol. Cell Neurosci. 46, 9–20 (2011). PubMed DOI

Farias, G. G., Guardia, C. M., Britt, D. J., Guo, X. & Bonifacino, J. S. Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep. 13, 1221–1232 (2015). PubMed DOI PMC

Huber, L. A. et al. Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p. J. Cell Biol. 123, 47–55 (1993). PubMed DOI

Mignogna, M. L. & D’Adamo, P. Critical importance of RAB proteins for synaptic function. Small GTPases 9, 145–157 (2018). PubMed DOI

Zhou, F.-Q. & Snider, W. D. Intracellular control of developmental and regenerative axon growth. Philos. Trans. R. Soc. B Biol. Sci. 361, 1575–1592 (2006). DOI

Park, K. K., Liu, K., Hu, Y., Kanter, J. L. & He, Z. PTEN/mTOR and axon regeneration. Exp. Neurol. 223, 45–50 (2010). PubMed DOI

Gentile, J. E., Carrizales, M. G. & Koleske, A. J. Control of synapse structure and function by actin and its regulators. Cells 11, 603 (2022). PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Activated alpha 9 integrin expression enables sensory pathway reconstruction after spinal cord injury

. 2025 May 02 ; 13 (1) : 89. [epub] 20250502

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...