Neuronal maturation and axon regeneration: unfixing circuitry to enable repair
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39164450
DOI
10.1038/s41583-024-00849-3
PII: 10.1038/s41583-024-00849-3
Knihovny.cz E-zdroje
- MeSH
- axony * fyziologie MeSH
- lidé MeSH
- neurogeneze * fyziologie MeSH
- neurony fyziologie MeSH
- regenerace nervu * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Zobrazit více v PubMed
He, Z. & Jin, Y. Intrinsic control of axon regeneration. Neuron 90, 437–451 (2016). PubMed DOI
Zheng, B. & Tuszynski, M. H. Regulation of axonal regeneration after mammalian spinal cord injury. Nat. Rev. Mol. Cell Biol. 24, 396–413 (2023). PubMed DOI
Björklund, A. Long distance axonal growth in the adult central nervous system. J. Neurol. 242, S33–S35 (1994). PubMed DOI
Lu, P. et al. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150, 1264–1273 (2012). PubMed DOI PMC
Wang, X., Terman, J. & Martin, G. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana. J. Comp. Neurol. 398, 83–97 (1998). PubMed DOI
Ruven, C. et al. Long-distance axon growth ability of corticospinal neurons is lost in a segmentally-distinct manner. Preprint in bioRxiv https://doi.org/10.1101/2022.03.20.484375 (2022). Using a novel microsurgical approach to lesion axons in the developing mouse, this preprint reports that neurons lose the ability to regenerate as they transition from elongating to arborizing axons during early postnatal development. DOI
Mahar, M. & Cavalli, V. Intrinsic mechanisms of neuronal axon regeneration. Nat. Rev. Neurosci. 19, 323–337 (2018). PubMed DOI PMC
Palmisano, I. & Di Giovanni, S. Advances and limitations of current epigenetic studies investigating mammalian axonal regeneration. Neurotherapeutics 15, 529–540 (2018). PubMed DOI PMC
Blanquie, O. & Bradke, F. Cytoskeleton dynamics in axon regeneration. Curr. Opin. Neurobiol. 51, 60–69 (2018). PubMed DOI
Bradke, F., Di Giovanni, S. & Fawcett, J. Neuronal maturation: challenges and opportunities in a nascent field. Trends Neurosci. 43, 360–362 (2020). PubMed DOI
Fawcett, J. W. The struggle to make CNS axons regenerate: why has it been so difficult? Neurochem. Res. 45, 144–158 (2020). PubMed DOI
Hilton, B. J. et al. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 110, 51–69.e7 (2022). Core molecular components of the presynaptic active zone with a limited role in axon growth during neuronal development play a major role in preventing axon growth and regeneration in mature neurons. PubMed DOI PMC
Hollville, E., Romero, S. E. & Deshmukh, M. Apoptotic cell death regulation in neurons. FEBS J. 286, 3276–3298 (2019). PubMed DOI PMC
Schelski, M. & Bradke, F. Neuronal polarization: from spatiotemporal signaling to cytoskeletal dynamics. Mol. Cell. Neurosci. 84, 11–28 (2017). PubMed DOI
Coles, C. H. & Bradke, F. Coordinating neuronal actin–microtubule dynamics. Curr. Biol. 25, R677–R691 (2015). PubMed DOI
Wallace, J. L. & Pollen, A. A. Human neuronal maturation comes of age: cellular mechanisms and species differences. Nat. Rev. Neurosci. 25, 7–29 (2023). PubMed DOI
Bareyre, F. M. et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269 (2004). PubMed DOI
Fouad, K., Pedersen, V., Schwab, M. E. & Brösamle, C. Cervical sprouting of corticospinal fibers after thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr. Biol. 11, 1766–1770 (2001). PubMed DOI
Li, Y. et al. Microglia-organized scar-free spinal cord repair in neonatal mice. Nature 587, 613–618 (2020). Neonatal microglia resolve inflammation by secreting peptidase inhibitors to prevent fibrotic scarring and enable robust repair following spinal cord injury. PubMed DOI PMC
Schwab, M. E. Functions of Nogo proteins and their receptors in the nervous system. Nat. Rev. Neurosci. 11, 799–811 (2010). PubMed DOI
Vinopal, S. et al. Centrosomal microtubule nucleation regulates radial migration of projection neurons independently of polarization in the developing brain. Neuron 111, 1241–1263.e16 (2023). This study shows how the two interwoven dynamic processes — radial migration and axon growth — are separately controlled: by selective dependence of centrosomal and acentrosomal microtubule nucleation. PubMed DOI
Luo, L. & O’Leary, D. D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005). PubMed DOI
O’Leary, D. D. & Terashima, T. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and “waiting periods”. Neuron 1, 901–910 (1988). PubMed DOI
Stanfield, B. B., O’Leary, D. D. & Fricks, C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 298, 371–373 (1982). PubMed DOI
Südhof, T. C. Towards an understanding of synapse formation. Neuron 100, 276–293 (2018). PubMed DOI PMC
Südhof, T. C. The presynaptic active zone. Neuron 75, 11–25 (2012). PubMed DOI PMC
Washbourne, P. et al. Cell adhesion molecules in synapse formation. J. Neurosci. 24, 9244–9249 (2004). PubMed DOI PMC
Petanjek, Z. et al. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 108, 13281–13286 (2011). PubMed DOI PMC
Kano, M. & Hashimoto, K. Synapse elimination in the central nervous system. Curr. Opin. Neurobiol. 19, 154–161 (2009). PubMed DOI
Kano, M. et al. Persistent multiple climbing fiber innervation of cerebellar purkinje cells in mice lacking mGluR1. Neuron 18, 71–79 (1997). PubMed DOI
Caceres, A., Ye, B. & Dotti, C. G. Neuronal polarity: demarcation, growth and commitment. Curr. Opin. Cell Biol. 24, 547–553 (2012). PubMed DOI PMC
Haas, K. in Molecular Mechanisms of Synaptogenesis (eds Dityatev, A. & El-Husseini, A.) 297–309 (Springer, 2006).
Ambrogini, P. et al. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res. 1017, 21–31 (2004). PubMed DOI
Bean, B. P. The action potential in mammalian central neurons. Nat. Rev. Neurosci. 8, 451–465 (2007). PubMed DOI
Atwood, H. L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3, 497–516 (2002). PubMed DOI
Canty, A. & Murphy, M. Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog. Neurobiol. 85, 214–235 (2008). PubMed DOI
Goldberg, J. L., Klassen, M. P., Hua, Y. & Barres, B. A. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296, 1860–1864 (2002). PubMed DOI
Tedeschi, A. et al. The calcium channel subunit Alpha2delta2 suppresses axon regeneration in the adult CNS. Neuron 92, 419–434 (2016). PubMed DOI
Kitao, Y., Robertson, B., Kudo, M. & Grant, G. Neurogenesis of subpopulations of rat lumbar dorsal root ganglion neurons including neurons projecting to the dorsal column nuclei. J. Comp. Neurol. 371, 249–257 (1996). PubMed DOI
Sharma, N. et al. The emergence of transcriptional identity in somatosensory neurons. Nature 577, 392–398 (2020). This paper presents a transcriptomic atlas of the developing mouse dorsal root ganglion and shows that primary sensory neurons mature owing to the expression of subtype-restricted transcription factors in response to extrinsic cues. PubMed DOI PMC
Prasad, T. & Weiner, J. A. Direct and indirect regulation of spinal cord Ia afferent terminal formation by the γ-protocadherins. Front. Mol. Neurosci. 4, 54 (2011). PubMed DOI PMC
Ramón y Cajal, S. Asociación método del nitrato de plata con el embrionario para el estudio de los focos motores y sensitivos. Trab. Lab. Invest. Biol. Univ. Madr. 3, 65–96 (1904).
Neumann, S. & Woolf, C. J. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23, 83–91 (1999). PubMed DOI
Ylera, B. et al. Chronically CNS-injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr. Biol. 19, 930–936 (2009). PubMed DOI
Richardson, P. & Issa, V. Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309, 791–793 (1984). PubMed DOI
Karimi-Abdolrezaee, S., Verge, V. M. & Schreyer, D. J. Developmental down-regulation of GAP-43 expression and timing of target contact in rat corticospinal neurons. Exp. Neurol. 176, 390–401 (2002). PubMed DOI
Koseki, H. et al. Selective rab11 transport and the intrinsic regenerative ability of CNS axons. eLife 6, e26956 (2017). PubMed DOI PMC
Lorenzana, A. O., Lee, J. K., Mui, M., Chang, A. & Zheng, B. A surviving intact branch stabilizes remaining axon architecture after injury as revealed by in vivo imaging in the mouse spinal cord. Neuron 86, 947–954 (2015). PubMed DOI PMC
Kim, H. et al. Oligodendrocyte precursor cells stop sensory axons regenerating into the spinal cord. Cell Rep. 42, 113068 (2023). PubMed DOI
Filous, A. R. et al. Entrapment via synaptic-like connections between NG2 proteoglycan + cells and dystrophic axons in the lesion plays a role in regeneration failure after spinal cord injury. J. Neurosci. 34, 16369–16384 (2014). PubMed DOI PMC
Liu, K. et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat. Neurosci. 13, 1075–1081 (2010). PubMed DOI PMC
Enes, J. et al. Electrical activity suppresses axon growth through Cav1.2 channels in adult primary sensory neurons. Curr. Biol. 20, 1154–1164 (2010). PubMed DOI
Eggermann, E., Bucurenciu, I., Goswami, S. P. & Jonas, P. Nanodomain coupling between Ca DOI
Calloway, N., Gouzer, G., Xue, M. & Ryan, T. A. The active-zone protein Munc13 controls the use-dependence of presynaptic voltage-gated calcium channels. eLife 4, e07728 (2015). PubMed DOI PMC
Augustin, I., Rosenmund, C., Südhof, T. C. & Brose, N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 400, 457–461 (1999). PubMed DOI
van de Bospoort, R. et al. Munc13 controls the location and efficiency of dense-core vesicle release in neurons. J. Cell Biol. 199, 883–891 (2012). PubMed DOI PMC
Panayotis, N., Karpova, A., Kreutz, M. R. & Fainzilber, M. Macromolecular transport in synapse to nucleus communication. Trends Neurosci. 38, 108–116 (2015). PubMed DOI
Hardingham, G. E., Fukunaga, Y. & Bading, H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat. Neurosci. 5, 405–414 (2002). PubMed DOI
Herold, S., Jagasia, R., Merz, K., Wassmer, K. & Lie, D. C. CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol. Cell Neurosci. 46, 79–88 (2011). PubMed DOI
Bloom, O. E. & Morgan, J. R. Membrane trafficking events underlying axon repair, growth, and regeneration. Mol. Cell. Neurosci. 48, 339–348 (2011). PubMed DOI
Broeke, J. H. et al. Munc18 and Munc13 regulate early neurite outgrowth. Biol. Cell 102, 479–488 (2010). PubMed DOI PMC
Zhu, X.-H. et al. Quantitative imaging of energy expenditure in human brain. Neuroimage 60, 2107–2117 (2012). PubMed DOI
Zhou, B. et al. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits. J. Cell Biol. 214, 103–119 (2016). PubMed DOI PMC
Aprea, J. et al. Transcriptome sequencing during mouse brain development identifies long non‐coding RNAs functionally involved in neurogenic commitment. EMBO J. 32, 3145–3160 (2013). PubMed DOI PMC
Gallegos, D. A., Chan, U., Chen, L.-F. & West, A. E. Chromatin regulation of neuronal maturation and plasticity. Trends Neurosci. 41, 311–324 (2018). PubMed DOI PMC
Allshire, R. C. & Madhani, H. D. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19, 229–244 (2018). PubMed DOI
Zhang, Y. et al. Overview of histone modification. Adv. Exp. Med. Biol. 1283, 1–16 (2021). PubMed DOI
Guibert, S. & Weber, M. Functions of DNA methylation and hydroxymethylation in mammalian development. Curr. Top. Dev. Biol. 104, 47–83 (2013). PubMed DOI
Yoo, A. S. & Crabtree, G. R. ATP-dependent chromatin remodeling in neural development. Curr. Opin. Neurobiol. 19, 120–126 (2009). PubMed DOI PMC
Venkatesh, I., Simpson, M. T., Coley, D. M. & Blackmore, M. G. Epigenetic profiling reveals a developmental decrease in promoter accessibility during cortical maturation in vivo. Neuroepigenetics 8, 19–26 (2016). PubMed DOI PMC
Wang, X.-W. et al. Histone methyltransferase Ezh2 coordinates mammalian axon regeneration via regulation of key regenerative pathways. J. Clin. Invest. 134, e163145 (2023). This paper demonstrates the importance of histone methylation in axon regeneration. PubMed DOI
Renthal, W. et al. Transcriptional reprogramming of distinct peripheral sensory neuron subtypes after axonal injury. Neuron 108, 128–144.e9 (2020). Single-nucleus RNA sequencing demonstrates that peripheral axotomy of primary sensory neurons triggers reversible transcriptional reprogramming to enable axon regeneration. PubMed DOI PMC
Tetzlaff, W., Alexander, S. W., Miller, F. D. & Bisby, M. A. Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J. Neurosci. 11, 2528–2544 (1991). PubMed DOI PMC
Poplawski, G. H. et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature 581, 77–82 (2020). Gene expression profiling of corticospinal neurons following spinal cord injury reveals that mature neurons can upregulate the expression of regeneration-associated genes following axotomy but fail to sustain their expression. PubMed DOI
Fernandes, K. J., Fan, D. P., Tsui, B., Cassar, S. & Tetzlaff, W. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP‐43, tubulins, and neurofilament‐M. J. Comp. Neurol. 414, 495–510 (1999). PubMed DOI
Wang, Z. et al. Injury distance limits the transcriptional response to spinal injury. Preprint at bioRxiv https://doi.org/10.1101/2024.05.27.596075 (2024). PubMed DOI PMC
Kim, H. J. et al. Deep scRNA sequencing reveals a broadly applicable Regeneration Classifier and implicates antioxidant response in corticospinal axon regeneration. Neuron 111, 3953–3969.e5 (2023). Single-cell sequencing (at high depth yet with a low throughput) of corticospinal neurons that regenerate due to genetic deletion of the tumour suppressor genes PTEN and SOCS3 establishes a role for antioxidant response in axon regeneration. PubMed DOI
Moore, D. L. et al. KLF family members regulate intrinsic axon regeneration ability. Science 326, 298–301 (2009). PubMed DOI PMC
Norsworthy, M. W. et al. Sox11 expression promotes regeneration of some retinal ganglion cell types but kills others. Neuron 94, 1112–1120.e4 (2017). PubMed DOI PMC
Venkatesh, I., Mehra, V., Wang, Z., Califf, B. & Blackmore, M. G. Developmental chromatin restriction of ro‐growth gene networks acts as an epigenetic barrier to axon regeneration in cortical neurons. Dev. Neurobiol. 78, 960–977 (2018). PubMed DOI PMC
Deaton, A. M. & Bird, A. CpG islands and the regulation of transcription. Genes Dev. 25, 1010–1022 (2011). PubMed DOI PMC
Weng, Y.-L. et al. An intrinsic epigenetic barrier for functional axon regeneration. Neuron 94, 337–346.e6 (2017). PubMed DOI PMC
Loh, Y.-H. E. et al. Comprehensive mapping of 5-hydroxymethylcytosine epigenetic dynamics in axon regeneration. Epigenetics 12, 77–92 (2017). PubMed DOI
Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020). Overexpression of Yamanaka factors in mature retinal ganglion cell neurons elicits axon regeneration by reverting these neurons to a more youthful DNA methylation pattern. PubMed DOI PMC
Oh, Y. M. et al. Epigenetic regulator UHRF1 inactivates REST and growth suppressor gene expression via DNA methylation to promote axon regeneration. Proc. Natl Acad. Sci. USA 115, E12417–E12426 (2018). PubMed DOI PMC
Smith, J., Sen, S., Weeks, R. J., Eccles, M. R. & Chatterjee, A. Promoter DNA hypermethylation and paradoxical gene activation. Trends cancer 6, 392–406 (2020). PubMed DOI
Reverdatto, S. et al. Developmental and injury-induced changes in DNA methylation in regenerative versus non-regenerative regions of the vertebrate central nervous system. BMC Genomics 23, 2 (2022). PubMed DOI PMC
Lindner, R., Puttagunta, R., Nguyen, T. & Di Giovanni, S. DNA methylation temporal profiling following peripheral versus central nervous system axotomy. Sci. Data 1, 140038 (2014). PubMed DOI PMC
Margueron, R. & Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011). PubMed DOI PMC
Pereira, J. D. et al. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc. Natl Acad. Sci. USA 107, 15957–15962 (2010). PubMed DOI PMC
Zhang, M. et al. Neuronal histone methyltransferase EZH2 regulates neuronal morphogenesis, synaptic plasticity, and cognitive behavior in mice. Neurosci. Bull. 39, 1512–1532 (2023). PubMed DOI PMC
Henriquez, B. et al. Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons. Mol. Cell. Neurosci. 57, 130–143 (2013). PubMed DOI
Scimemi, A. Structure, function, and plasticity of GABA transporters. Front. Cell. Neurosci. 8, 161 (2014). PubMed DOI PMC
Habib, A. A. et al. Expression of the oligodendrocyte‐myelin glycoprotein by neurons in the mouse central nervous system. J. Neurochem. 70, 1704–1711 (1998). PubMed DOI
Becker, T. et al. Tenascin‐R inhibits regrowth of optic fibers in vitro and persists in the optic nerve of mice after injury. Glia 29, 330–346 (2000). PubMed DOI
Hollis, E. R. II Axon guidance molecules and neural circuit remodeling after spinal cord injury. Neurotherapeutics 13, 360–369 (2016). PubMed DOI
Kim, J. et al. Polycomb-and methylation-independent roles of EZH2 as a transcription activator. Cell Rep. 25, 2808–2820.e4 (2018). PubMed DOI PMC
Laugesen, A., Højfeldt, J. W. & Helin, K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol. Cell 74, 8–18 (2019). PubMed DOI PMC
Jambhekar, A., Dhall, A. & Shi, Y. Roles and regulation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol. 20, 625–641 (2019). PubMed DOI PMC
Shvedunova, M. & Akhtar, A. Modulation of cellular processes by histone and non-histone protein acetylation. Nat. Rev. Mol. Cell Biol. 23, 329–349 (2022). PubMed DOI
Gräff, J. & Tsai, L.-H. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci. 14, 97–111 (2013). PubMed DOI
Gaub, P. et al. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ. 17, 1392–1408 (2010). PubMed DOI
Cho, Y., Sloutsky, R., Naegle, K. M. & Cavalli, V. Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell 155, 894–908 (2013). PubMed DOI PMC
Puttagunta, R. et al. PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat. Commun. 5, 3527 (2014). PubMed DOI
Jiang, J. et al. MicroRNA-26a supports mammalian axon regeneration in vivo by suppressing GSK3β expression. Cell Death Dis. 6, e1865 (2015). PubMed DOI PMC
Wu, D. & Murashov, A. K. MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front. Mol. Neurosci. 6, 35 (2013). PubMed DOI PMC
Liu, C.-M., Wang, R.-Y., Jiao, Z.-X., Zhang, B.-Y. & Zhou, F.-Q. MicroRNA-138 and SIRT1 form a mutual negative feedback loop to regulate mammalian axon regeneration. Genes Dev. 27, 1473–1483 (2013). PubMed DOI PMC
Kebede, A. F., Schneider, R. & Daujat, S. Novel types and sites of histone modifications emerge as players in the transcriptional regulation contest. FEBS J. 282, 1658–1674 (2015). PubMed DOI
Richmond, S. et al. Localization of the glutamate receptor subunit GluR1 on the surface of living and within cultured hippocampal neurons. Neuroscience 75, 69–82 (1996). PubMed DOI
Bradke, F. & Dotti, C. G. Neuronal polarity: vectorial cytoplasmic flow precedes axon formation. Neuron 19, 1175–1186 (1997). PubMed DOI
Eva, R., Koseki, H., Kanamarlapudi, V. & Fawcett, J. W. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment. J. Cell Sci. 130, 3663–3675 (2017). PubMed DOI PMC
Rasband, M. N. The axon initial segment and the maintenance of neuronal polarity. Nat. Rev. Neurosci. 11, 552–562 (2010). PubMed DOI
Yoshimura, T. & Rasband, M. N. Axon initial segments: diverse and dynamic neuronal compartments. Curr. Opin. Neurobiol. 27, 96–102 (2014). PubMed DOI
Eichel, K. & Shen, K. The function of the axon initial segment in neuronal polarity. Dev. Biol. 489, 47–54 (2022). PubMed DOI
Maeder, C. I., Shen, K. & Hoogenraad, C. C. Axon and dendritic trafficking. Curr. Opin. Neurobiol. 27, 165–170 (2014). PubMed DOI
Villarroel‐Campos, D., Bronfman, F. C. & Gonzalez‐Billault, C. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton 73, 498–507 (2016). PubMed DOI
Britt, D. J., Farias, G. G., Guardia, C. M. & Bonifacino, J. S. Mechanisms of polarized organelle distribution in neurons. Front. Cell Neurosci. 10, 88 (2016). PubMed DOI PMC
Guedes-Dias, P. & Holzbaur, E. L. F. Axonal transport: driving synaptic function. Science 366, eaaw9997 (2019). PubMed DOI PMC
Gerges, N. Z., Backos, D. S. & Esteban, J. A. Local control of AMPA receptor trafficking at the postsynaptic terminal by a small GTPase of the Rab family. J. Biol. Chem. 279, 43870–43878 (2004). PubMed DOI
Gonzalez-Gutierrez, A., Lazo, O. M. & Bronfman, F. C. The Rab5-Rab11 endosomal pathway is required for BDNF-induced CREB transcriptional regulation in hippocampal neurons. J. Neurosci. 40, 8042–8054 (2020). PubMed DOI PMC
Yap, C. C., Digilio, L., McMahon, L. P., Garcia, A. D. R. & Winckler, B. Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J. Cell Biol. 217, 3141–3159 (2018). PubMed DOI PMC
Petrova, V., Nieuwenhuis, B., Fawcett, J. W. & Eva, R. Axonal organelles as molecular platforms for axon growth and regeneration after injury. Int. J. Mol. Sci. 22, 1798 (2021). PubMed DOI PMC
Cheah, M. et al. Expression of an activated integrin promotes long-distance sensory axon regeneration in the spinal cord. J. Neurosci. 36, 7283–7297 (2016). PubMed DOI PMC
Yap, C. C. et al. The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM. J. Cell Biol. 180, 827–842 (2008). PubMed DOI PMC
Hollis, E. R., Jamshidi, P., Low, K., Blesch, A. & Tuszynski, M. H. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc. Natl Acad. Sci. USA 106, 7215–7220 (2009). PubMed DOI PMC
Duan, X. et al. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85, 1244–1256 (2015). PubMed DOI PMC
Maday, S. & Holzbaur, E. L. Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. Dev. Cell 30, 71–85 (2014). PubMed DOI PMC
Nieuwenhuis, B. et al. PI 3-kinase delta enhances axonal PIP3 to support axon regeneration in the adult CNS. EMBO Mol. Med. 12, e11674 (2020). PubMed DOI PMC
Petrova, V. et al. Protrudin functions from the endoplasmic reticulum to support axon regeneration in the adult CNS. Nat. Commun. 11, 5614 (2020). This paper demonstrates the importance of endoplasmic reticulum and associated proteins in axon regeneration. PubMed DOI PMC
Ferguson, S. M. Axonal transport and maturation of lysosomes. Curr. Opin. Neurobiol. 51, 45–51 (2018). PubMed DOI PMC
Devine, M. J. & Kittler, J. T. Mitochondria at the neuronal presynapse in health and disease. Nat. Rev. Neurosci. 19, 63–80 (2018). PubMed DOI
Cheng, X. T. & Sheng, Z. H. Developmental regulation of microtubule-based trafficking and anchoring of axonal mitochondria in health and diseases. Dev. Neurobiol. 81, 284–299 (2021). PubMed DOI
Andrews, M. R. et al. Axonal localization of integrins in the CNS is neuronal type and age dependent. eNeuro 3, ENEURO.0029-16.2016 (2016). PubMed DOI PMC
Franssen, E. H. et al. Exclusion of integrins from CNS axons is regulated by Arf6 activation and the AIS. J. Neurosci. 35, 8359–8375 (2015). PubMed DOI PMC
Montagnac, G. et al. ARF6 Interacts with JIP4 to control a motor switch mechanism regulating endosome traffic in cytokinesis. Curr. Biol. 19, 184–195 (2009). PubMed DOI
Werner, A. et al. Impaired axonal regeneration in α7 integrin-deficient mice. J. Neurosci. 20, 1822–1830 (2000). PubMed DOI PMC
Hight-Warburton, W. & Parsons, M. Regulation of cell migration by α4 and α9 integrins. Biochem. J. 476, 705–718 (2019). PubMed DOI
Cheah, M. et al. Integrin-driven axon regeneration in the spinal cord activates a distinctive CNS regeneration program. J. Neurosci. 43, 4775–4794 (2023). PubMed DOI PMC
Anderson, M. A. et al. Required growth facilitators propel axon regeneration across complete spinal cord injury. Nature 561, 396–400 (2018). PubMed DOI PMC
Santos, T. E. et al. Axon growth of CNS neurons in three dimensions is amoeboid and independent of adhesions. Cell Rep. 32, 107907 (2020). This paper challenges the classical concept of how CNS axons grow: not pulling with their growth cones on the substrate to move themselves forward but rather through an amoeboid movement, where microtubules protrude further distally. PubMed DOI
Witte, H., Neukirchen, D. & Bradke, F. Microtubule stabilization specifies initial neuronal polarization. J. Cell Biol. 180, 619–632 (2008). PubMed DOI PMC
Kamiguchi, H. The role of cell adhesion molecules in axon growth and guidance. Adv. Exp. Med. Biol. 621, 95–103 (2007). PubMed DOI
Haspel, J. et al. Critical and optimal Ig domains for promotion of neurite outgrowth by L1/Ng-CAM. J. Neurobiol. 42, 287–302 (2000). PubMed DOI
Maness, P. F. & Schachner, M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat. Neurosci. 10, 19–26 (2007). PubMed DOI
Chen, J. et al. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury. Brain 130, 954–969 (2007). PubMed DOI
Verma, P. et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25, 331–342 (2005). PubMed DOI PMC
Hanz, S. et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40, 1095–1104 (2003). PubMed DOI
Holt, C. E. & Schuman, E. M. The central dogma decentralized: new perspectives on RNA function and local translation in neurons. Neuron 80, 648–657 (2013). PubMed DOI PMC
Bourke, A. M., Schwarz, A. & Schuman, E. M. De-centralizing the central dogma: mRNA translation in space and time. Mol. Cell 83, 452–468 (2023). PubMed DOI
Costa, R. O. et al. Synaptogenesis stimulates a proteasome-mediated ribosome reduction in axons. Cell Rep. 28, 864–876.e6 (2019). PubMed DOI PMC
Kim, E. & Jung, H. Local mRNA translation in long-term maintenance of axon health and function. Curr. Opin. Neurobiol. 63, 15–22 (2020). PubMed DOI
Dalla Costa, I. et al. The functional organization of axonal mRNA transport and translation. Nat. Rev. Neurosci. 22, 77–91 (2021). PubMed DOI
Luarte, A., Cornejo, V. H., Bertin, F., Gallardo, J. & Couve, A. The axonal endoplasmic reticulum: one organelle-many functions in development, maintenance, and plasticity. Dev. Neurobiol. 78, 181–208 (2018). PubMed DOI
Yalcin, B. et al. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins. eLife 6, e23882 (2017). PubMed DOI PMC
Rao, K. et al. Spastin, atlastin, and ER relocalization are involved in axon but not dendrite regeneration. Mol. Biol. Cell 27, 3245–3256 (2016). PubMed DOI PMC
Farias, G. G. et al. Feedback-driven mechanisms between microtubules and the endoplasmic reticulum instruct neuronal polarity. Neuron 102, 184–201.e8 (2019). PubMed DOI
Kurowska, Z., Brundin, P., Schwab, M. E. & Li, J. Y. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro. Neuroscience 256, 456–466 (2014). PubMed DOI
Cartoni, R., Pekkurnaz, G., Wang, C., Schwarz, T. L. & He, Z. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity. PLoS One 12, e0184672 (2017). PubMed DOI PMC
Cartoni, R. et al. The mammalian-specific protein Armcx1 regulates mitochondrial transport during axon regeneration. Neuron 92, 1294–1307 (2016). PubMed DOI PMC
Han, Q. et al. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab. 31, 623–641.e8 (2020). Removing an anchor on mitochondria that becomes active as neurons mature enhances mitochondrial transport and enables corticospinal regeneration following CNS injury. PubMed DOI PMC
Govek, E.-E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005). PubMed DOI
Rosenberg, S. S. & Spitzer, N. C. Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 3, a004259 (2011). PubMed DOI PMC
Sánchez-Alegría, K., Flores-León, M., Avila-Muñoz, E., Rodríguez-Corona, N. & Arias, C. PI3K signaling in neurons: a central node for the control of multiple functions. Int. J. Mol. Sci. 19, 3725 (2018). PubMed DOI PMC
Garvalov, B. K. et al. Cdc42 regulates cofilin during the establishment of neuronal polarity. J. Neurosci. 27, 13117–13129 (2007). PubMed DOI PMC
Tahirovic, S. et al. Rac1 regulates neuronal polarization through the WAVE complex. J. Neurosci. 30, 6930–6943 (2010). PubMed DOI PMC
Dupraz, S. et al. RhoA controls axon extension independent of specification in the developing brain. Curr. Biol. 29, 3874–3886.e9 (2019). PubMed DOI
Ng, J. & Luo, L. Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 44, 779–793 (2004). PubMed DOI
West, A. E., Griffith, E. C. & Greenberg, M. E. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3, 921–931 (2002). PubMed DOI
Hausser, M., Spruston, N. & Stuart, G. J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000). PubMed DOI
Thomas, G. M. & Huganir, R. L. MAPK cascade signalling and synaptic plasticity. Nat. Rev. Neurosci. 5, 173–183 (2004). PubMed DOI
Kennedy, M. B. Synaptic signaling in learning and memory. Cold Spring Harb. Perspect. Biol. 8, a016824 (2016). DOI PMC
Czech, M. P. PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603–606 (2000). PubMed DOI
Park, K. K. et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322, 963–966 (2008). PubMed DOI PMC
Geoffroy, C. G., Hilton, B. J., Tetzlaff, W. & Zheng, B. Evidence for an age-dependent decline in axon regeneration in the adult mammalian central nervous system. Cell Rep. 15, 238–246 (2016). PubMed DOI PMC
Du, K. et al. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury. J. Neurosci. 35, 9754–9763 (2015). PubMed DOI PMC
Lewandowski, G. & Steward, O. AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J. Neurosci. 34, 9951–9962 (2014). PubMed DOI PMC
Hammarlund, M., Nix, P., Hauth, L., Jorgensen, E. M. & Bastiani, M. Axon regeneration requires a conserved MAP kinase pathway. Science 323, 802–806 (2009). PubMed DOI PMC
Chen, L. et al. Axon regeneration pathways identified by systematic genetic screening in C. elegans. Neuron 71, 1043–1057 (2011). PubMed DOI PMC
Shin, J. E. et al. Dual leucine zipper kinase is required for retrograde injury signaling and axonal regeneration. Neuron 74, 1015–1022 (2012). PubMed DOI PMC
Watkins, T. A. et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury. Proc. Natl Acad. Sci. USA 110, 4039–4044 (2013). PubMed DOI PMC
Saikia, J. M. et al. A critical role for DLK and LZK in axonal repair in the mammalian spinal cord. J. Neurosci. 42, 3716–3732 (2022). Two kinases implicated in retrograde injury signalling, DLK and LZK, have redundant roles in promoting axon regeneration and compensatory sprouting following axonal injury in the mature mammalian CNS. PubMed DOI PMC
Hannila, S. S. & Filbin, M. T. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp. Neurol. 209, 321–332 (2008). PubMed DOI
Qiu, J. et al. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34, 895–903 (2002). PubMed DOI
Neumann, S., Bradke, F., Tessier-Lavigne, M. & Basbaum, A. I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34, 885–893 (2002). PubMed DOI
Gao, Y. et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44, 609–621 (2004). PubMed DOI
Chierzi, S., Ratto, G. M., Verma, P. & Fawcett, J. W. The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Eur. J. Neurosci. 21, 2051–2062 (2005). PubMed DOI
Flynn, K. C. et al. ADF/cofilin-mediated actin retrograde flow directs neurite formation in the developing brain. Neuron 76, 1091–1107 (2012). PubMed DOI
Tomasek, J. J., Haaksma, C. J., Eddy, R. J. & Vaughan, M. B. Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat. Rec. 232, 359–368 (1992). PubMed DOI
Bradke, F. & Dotti, C. G. The role of local actin instability in axon formation. Science 283, 1931–1934 (1999). PubMed DOI
Schelski, M. & Bradke, F. Microtubule retrograde flow retains neuronal polarization in a fluctuating state. Sci. Adv. 8, eabo2336 (2022). This paper and Burute et al. PubMed DOI PMC
Burute, M., Jansen, K. I., Mihajlovic, M., Vermonden, T. & Kapitein, L. C. Local changes in microtubule network mobility instruct neuronal polarization and axon specification. Sci. Adv. 8, eabo2343 (2022). PubMed DOI PMC
Stiess, M. et al. Axon extension occurs independently of centrosomal microtubule nucleation. Science 327, 704–707 (2010). PubMed DOI
Erez, H. et al. Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy. J. Cell Biol. 176, 497–507 (2007). PubMed DOI PMC
Ertürk, A., Hellal, F., Enes, J. & Bradke, F. Disorganized microtubules underlie the formation of retraction bulbs and the failure of axonal regeneration. J. Neurosci. 27, 9169–9180 (2007). PubMed DOI PMC
Ruschel, J. et al. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348, 347–352 (2015). PubMed DOI PMC
Hellal, F. et al. Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331, 928–931 (2011). PubMed DOI PMC
Griffin, J. M. et al. Rehabilitation enhances epothilone-induced locomotor recovery after spinal cord injury. Brain Commun. 5, fcad005 (2023). PubMed DOI PMC
Ruschel, J. & Bradke, F. Systemic administration of epothilone D improves functional recovery of walking after rat spinal cord contusion injury. Exp. Neurol. 306, 243–249 (2018). PubMed DOI
O’Shea, T. M., Burda, J. E. & Sofroniew, M. V. Cell biology of spinal cord injury and repair. J. Clin. Invest. 127, 3259–3270 (2017). PubMed DOI PMC
Dent, E. W. Dynamic microtubules at the synapse. Curr. Opin. Neurobiol. 63, 9–14 (2020). PubMed DOI PMC
Guedes-Dias, P. et al. Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr. Biol. 29, 268–282.e8 (2019). PubMed DOI PMC
Bharat, V. et al. Capture of dense core vesicles at synapses by JNK-dependent phosphorylation of synaptotagmin-4. Cell Rep. 21, 2118–2133 (2017). PubMed DOI PMC
Zhang, W. & Benson, D. L. Stages of synapse development defined by dependence on F-actin. J. Neurosci. 21, 5169–5181 (2001). PubMed DOI PMC
Chia, P. H., Patel, M. R. & Shen, K. NAB-1 instructs synapse assembly by linking adhesion molecules and F-actin to active zone proteins. Nat. Neurosci. 15, 234–242 (2012). PubMed DOI PMC
Chia, P. H., Chen, B., Li, P., Rosen, M. K. & Shen, K. Local F-actin network links synapse formation and axon branching. Cell 156, 208–220 (2014). PubMed DOI PMC
Rust, M. B. ADF/cofilin: a crucial regulator of synapse physiology and behavior. Cell. Mol. Life Sci. 72, 3521–3529 (2015). PubMed DOI PMC
Tedeschi, A. et al. ADF/cofilin-mediated actin turnover promotes axon regeneration in the adult CNS. Neuron 103, 1073–1085.e6 (2019). Rejuvenating actin dynamics at the growth cone — a major intracellular process enabling rapid axon growth during embryonic development — promotes regeneration of mature axons following CNS injury. PubMed DOI PMC
Pinto-Costa, R. et al. Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration. J. Clin. Invest. 130, 2024–2040 (2020). PubMed DOI PMC
Stern, S. et al. RhoA drives actin compaction to restrict axon regeneration and astrocyte reactivity after CNS injury. Neuron 109, 3436–3455.e9 (2021). The small GTPase RhoA has opposing roles in neurons and reactive astrocytes following CNS injury: neuronal RhoA prevents axon regeneration but astrocytic RhoA is beneficial for regenerating axons. PubMed DOI
Shekhtmeyster, P. et al. Trans-segmental imaging in the spinal cord of behaving mice. Nat. Biotechnol. 41, 1729–1733 (2023). PubMed DOI PMC
Schafer, S. T. et al. An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186, 2111–2126.e20 (2023). PubMed DOI PMC
Skinnider, M. A. et al. Single-cell and spatial atlases of spinal cord injury in the Tabulae Paralytica. Nature 631, 150–163 (2024). PubMed DOI
Matson, K. J. et al. Single cell atlas of spinal cord injury in mice reveals a pro-regenerative signature in spinocerebellar neurons. Nat. Commun. 13, 5628 (2022). This paper generated an atlas using single-nucleus sequencing to profile how different cell types respond to spinal cord injury and showed that a specific subpopulation (spinocerebellar neurons) has a higher capacity to sprout and form new circuits in the injured spinal cord. PubMed DOI PMC
Squair, J. W. et al. Recovery of walking after paralysis by regenerating characterized neurons to their natural target region. Science 381, 1338–1345 (2023). This paper demonstrates the importance of neuronal identity in functional axon regeneration following CNS injury. PubMed DOI
Yang, S.-G., Wang, X.-W., Qian, C. & Zhou, F.-Q. Reprogramming neurons for regeneration: the fountain of youth. Prog. Neurobiol. 214, 102284 (2022). PubMed DOI
Lundberg, E. & Borner, G. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019). PubMed DOI
Banker, G. The development of neuronal polarity: a retrospective view. J. Neurosci. 38, 1867–1873 (2018). PubMed DOI PMC
Hilton, B. J. & Bradke, F. Can injured adult CNS axons regenerate by recapitulating development? Development 144, 3417–3429 (2017). PubMed DOI
Shen, Y. et al. PTPσ is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592–596 (2009). PubMed DOI PMC
Smith, G. M. & Gallo, G. The role of mitochondria in axon development and regeneration. Dev. Neurobiol. 78, 221–237 (2018). PubMed DOI
Kapitein, L. C. & Hoogenraad, C. C. Which way to go? Cytoskeletal organization and polarized transport in neurons. Mol. Cell Neurosci. 46, 9–20 (2011). PubMed DOI
Farias, G. G., Guardia, C. M., Britt, D. J., Guo, X. & Bonifacino, J. S. Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep. 13, 1221–1232 (2015). PubMed DOI PMC
Huber, L. A. et al. Protein transport to the dendritic plasma membrane of cultured neurons is regulated by rab8p. J. Cell Biol. 123, 47–55 (1993). PubMed DOI
Mignogna, M. L. & D’Adamo, P. Critical importance of RAB proteins for synaptic function. Small GTPases 9, 145–157 (2018). PubMed DOI
Zhou, F.-Q. & Snider, W. D. Intracellular control of developmental and regenerative axon growth. Philos. Trans. R. Soc. B Biol. Sci. 361, 1575–1592 (2006). DOI
Park, K. K., Liu, K., Hu, Y., Kanter, J. L. & He, Z. PTEN/mTOR and axon regeneration. Exp. Neurol. 223, 45–50 (2010). PubMed DOI
Gentile, J. E., Carrizales, M. G. & Koleske, A. J. Control of synapse structure and function by actin and its regulators. Cells 11, 603 (2022). PubMed DOI PMC