Hydrogen sulfide and its role in female reproduction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38933705
PubMed Central
PMC11202402
DOI
10.3389/fvets.2024.1378435
Knihovny.cz E-zdroje
- Klíčová slova
- cystathionine beta synthase, cystathionine gamma lyase, early embryo development, female reproduction, gravidity, hydrogen sulfide, oocyte physiology, uterus,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.
Zobrazit více v PubMed
Bredt DS, Snyder SH. Nitric oxide, a novel neuronal messenger. Neuron. (1992) 8:3–11. doi: 10.1016/0896-6273(92)90104-L, PMID: PubMed DOI
Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. (1997) 37:517–54. doi: 10.1146/annurev.pharmtox.37.1.517, PMID: PubMed DOI
Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. (1996) 16:1066–71. doi: 10.1523/JNEUROSCI.16-03-01066.1996, PMID: PubMed DOI PMC
Olas B. Hydrogen sulfide in signaling pathways. Clin Chim Acta. (2015) 439:212–8. doi: 10.1016/j.cca.2014.10.037, PMID: PubMed DOI
Wang K, Ahmad S, Cai M, Rennie J, Fujisawa T, Crispi F, et al. . Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation. (2013) 127:2514–22. doi: 10.1161/CIRCULATIONAHA.113.001631, PMID: PubMed DOI
Olas B. Hydrogen sulfide in hemostasis: friend or foe? Chem Biol Interact. (2014) 217:49–56. doi: 10.1016/j.cbi.2014.04.006, PMID: PubMed DOI
Xu S, Liu Z, Liu P. Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int J Cardiol. (2014) 172:313–7. doi: 10.1016/j.ijcard.2014.01.068, PMID: PubMed DOI
Kimura H. Hydrogen sulfide and Polysulfides as biological mediators. Molecules. (2014) 19:16146–57. doi: 10.3390/molecules191016146, PMID: PubMed DOI PMC
Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, et al. . A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun. (2013) 4:1366. doi: 10.1038/ncomms2371 PubMed DOI
Fiorucci S, Distrutti E, Cirino G, Wallace J. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology. (2006) 131:259–71. doi: 10.1053/j.gastro.2006.02.033, PMID: PubMed DOI
Olson K, DeLeon E, Gao Y, Hurley K, Sadauskas V, Batz C, et al. . Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Phys Regul Integr Comp Phys. (2013) 305:592–603. doi: 10.1152/ajpregu.00421.2012 PubMed DOI
d'Emmanuele di Villa Bianca R, Sorrentino R, Maffia P, Mirone V, Imbimbo C, Fusco F, et al. . Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc Natl Acad Sci U S A. (2009) 106:4513–8. doi: 10.1073/pnas.0807974105 PubMed DOI PMC
d’Emmanuele di Villa Bianca R, Sorrentino R, Mirone V, Cirino G. Hydrogen sulfide and erectile function: a novel therapeutic target. Nat. Rev. Uro. (2011) 8:286–9. doi: 10.1038/nrurol.2011.45, PMID: PubMed DOI
Cao Y, Zhu X, Zhen P, Tian Y, Ji D, Xue K, et al. . Cystathionine β‐synthase is required for oocyte quality by ensuring proper meiotic spindle assembly. Cell Prolif. (2022) 55:e13322. doi: 10.1111/cpr.13322 PubMed DOI PMC
Liang R, Yu W, Du J, Yang L, Yang J, Xu J, et al. . Cystathionine β synthase participates in murine oocyte maturatione mediated by homocysteine. Reprod Toxicol. (2007) 24:89–96. doi: 10.1016/j.reprotox.2007.04.002, PMID: PubMed DOI
You X, Chen Z, Zhao H, Xu C, Liu W, Sun Q, et al. . Endogenous hydrogen sulfide contributes to uterine quiescence during pregnancy. Reproduction. (2017) 153:535–43. doi: 10.1530/REP-16-0549, PMID: PubMed DOI
Sun Q, Chen Z, He P, Li Y, Ding X, Huang Y, et al. . Reduced expression of hydrogen sulfide–generating enzymes Down-regulates 15-Hydroxyprostaglandin dehydrogenase in chorion during term and preterm labor. Am J Pathol. (2018) 188:63–71. doi: 10.1016/j.ajpath.2017.09.006, PMID: PubMed DOI
Patel P, Vatish M, Heptinstall J, Wang R, Carson R. The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol. (2009) 7:10. doi: 10.1186/1477-7827-7-10, PMID: PubMed DOI PMC
Nevoral J, Žalmanová T, Zámostná K, Kott T, Kučerová-Chrpová V, Bodart J, et al. . Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro. Nitric Oxide. (2015) 51:24–35. doi: 10.1016/j.niox.2015.09.007, PMID: PubMed DOI
Sheibani L, Lechuga T, Zhang H, Hameed A, Wing D, Kumar S, et al. . Augmented H2S production via cystathionine-beta-synthase upregulation plays a role in pregnancy-associated uterine vasodilation†. Biol Reprod. (2017) 96:664–72. doi: 10.1095/biolreprod.116.143834, PMID: PubMed DOI PMC
Wang M, Wang Z, Miao Y, Wei H, Peng J, Zhou Y. Diallyl Trisulfide promotes placental angiogenesis by regulating lipid metabolism and alleviating inflammatory responses in obese pregnant mice. Nutrients. (2022) 14:2230. doi: 10.3390/nu14112230 PubMed DOI PMC
Sun Q, Huang J, Yue Y, Xu J, Jiang P, Yang D, et al. . Hydrogen sulfide facilitates vaginal lubrication by activation of epithelial ATP-sensitive K+ Channels and cystic fibrosis transmembrane conductance regulator. J Sex Med. (2016) 13:798–807. doi: 10.1016/j.jsxm.2016.03.001, PMID: PubMed DOI
Módis K, Ju Y, Ahmad A, Untereiner A, Altaany Z, Wu L, et al. . S- Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res. (2016) 113:116–24. doi: 10.1016/j.phrs.2016.08.023, PMID: PubMed DOI PMC
Borisov V, Forte E. Impact of hydrogen sulfide on mitochondrial and bacterial bioenergetics. Int J Mol Sci. (2021) 22:12688. doi: 10.3390/ijms222312688 PubMed DOI PMC
Nagahara N, Ito T, Kitamura H, Nishino T. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem Cell Biol. (1998) 110:243–50. doi: 10.1007/s004180050286, PMID: PubMed DOI
Fräsdorf B, Radon C, Leimkühler S. Characterization and interaction studies of two isoforms of the dual localized 3-Mercaptopyruvate Sulfurtransferase TUM1 from humans. J Biol Chem. (2014) 289:34543–56. doi: 10.1074/jbc.M114.605733, PMID: PubMed DOI PMC
Forman H. Glutathione – from antioxidant to post-translational modifier. Arch Biochem Biophys. (2016) 595:64–7. doi: 10.1016/j.abb.2015.11.019, PMID: PubMed DOI PMC
Maclean K, Jiang H, Aivazidis S, Kim E, Shearn C, Harris P, et al. . Taurine treatment prevents derangement of the hepatic γ‐glutamyl cycle and methylglyoxal metabolism in a mouse model of classical homocystinuria: regulatory crosstalk between thiol and sulfinic acid metabolism. FASEB J. (2018) 32:1265–80. doi: 10.1096/fj.201700586R, PMID: PubMed DOI
Chen Z, Zhang M, Zhao Y, Xu W, Xiang F, Li X, et al. . Hydrogen sulfide contributes to uterine quiescence through inhibition of NLRP3 Inflammasome activation by suppressing the TLR4/NF-κB Signalling pathway. J Inflamm Res. (2021) 14:2753–68. doi: 10.2147/JIR.S308558 PubMed DOI PMC
Stuhlmeier K, Bröll J, Iliev B. NF-KappaB independent activation of a series of Proinflammatory genes by hydrogen sulfide. Exp Biol Med. (2009) 234:1327–38. doi: 10.3181/0904-RM-137, PMID: PubMed DOI
Aggarwal B, Kunnumakkara A, Harikumar K, Gupta S, Tharakan S, Koca C, et al. . Signal transducer and activator of transcription‐3, inflammation, and Cancer. Ann N Y Acad Sci. (2009) 1171:59–76. doi: 10.1111/j.1749-6632.2009.04911.x, PMID: PubMed DOI PMC
Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, et al. . Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci. (2009) 106:21972–7. doi: 10.1073/pnas.0908047106, PMID: PubMed DOI PMC
Sun Q, Zhong H, Yue Y, Xiong F, Chen L, Peng X, et al. . Endogenous hydrogen sulfide promotes human preimplantation embryonic development by regulating metabolism-related gene expression. Nitric Oxide. (2022) 120:9–15. doi: 10.1016/j.niox.2021.12.008, PMID: PubMed DOI
Yang G, Sun X, Wang R. Hydrogen sulfide‐induced apoptosis of human aorta smooth muscle cells via the activation of mitogen‐activated protein kinases and caspase‐3. FASEB J. (2004) 18:1782–4. doi: 10.1096/fj.04-2279fje, PMID: PubMed DOI
Zhao K, Ju Y, Li S, Altaany Z, Wang R, Yang G. S‐sulfhydration of MEK 1 leads to PARP ‐1 activation and DNA damage repair. EMBO Rep. (2014) 15:792–800. doi: 10.1002/embr.201338213, PMID: PubMed DOI PMC
Du J, Hui Y, Cheung Y, Bin G, Jiang H, Chen X, et al. . The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessel. (2004) 19:75–80. doi: 10.1007/s00380-003-0743-7, PMID: PubMed DOI
Rinaldi L, Gobbi G, Pambianco M, Micheloni C, Mirandola P, Vitale M. Hydrogen sulfide prevents apoptosis of human PMN via inhibition of p38 and caspase 3. Lab Investig. (2006) 86:391–7. doi: 10.1038/labinvest.3700391, PMID: PubMed DOI
Kimura H. Hydrogen sulfide induces cyclic AMP and modulates the NMDA receptor. Biochem Biophys Res Commun. (2000) 267:129–33. doi: 10.1006/bbrc.1999.1915, PMID: PubMed DOI
Njie-Mbye Y, Kulkarni M, Opere C, Ohia S. Mechanism of action of hydrogen sulfide on cyclic AMP formation in rat retinal pigment epithelial cells. Exp Eye Res. (2012) 98:16–22. doi: 10.1016/j.exer.2012.03.001, PMID: PubMed DOI
Cai W, Wang M, Moore P, Jin H, Yao T, Zhu Y. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res. (2007) 76:29–40. doi: 10.1016/j.cardiores.2007.05.026, PMID: PubMed DOI
Yong Q, Lee S, Foo C, Neo K, Chen X, Bian J. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Phys Heart Circ Phys. (2008) 295:1330–40. doi: 10.1152/ajpheart.00244.2008 PubMed DOI
Wang S, Chen Y, Chen N, Wang L, Chen D, Weng H, et al. . Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis. (2017) 8:2688–8. doi: 10.1038/cddis.2017.18 PubMed DOI PMC
Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, et al. . Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol. (2010) 30:1998–2004. doi: 10.1161/ATVBAHA.110.209783, PMID: PubMed DOI
Bibli S, Yang G, Zhou Z, Wang R, Topouzis S, Papapetropoulos A. Role of cGMP in hydrogen sulfide signaling. Nitric Oxide. (2015) 46:7–13. doi: 10.1016/j.niox.2014.12.004, PMID: PubMed DOI
Mustafa A, Gadalla M, Sen N, Kim S, Mu W, Gazi S, et al. . H2S signals through protein S-Sulfhydration. Sci Signal. (2009):2. doi: 10.1126/scisignal.2000464 PubMed DOI PMC
Li L, Rose P, Moore P. Hydrogen Sulfide and Cell Signaling. Annu Rev Pharmacol Toxicol. (2011) 51:169–87. doi: 10.1146/annurev-pharmtox-010510-100505, PMID: PubMed DOI
Untereiner A, Wu L. Hydrogen sulfide and glucose homeostasis: a tale of sweet and the stink. Antioxid Redox Signal. (2018) 28:1463–82. doi: 10.1089/ars.2017.7046, PMID: PubMed DOI
Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, et al. . The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology. (2005) 42:539–48. doi: 10.1002/hep.20817, PMID: PubMed DOI
Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun. (1997) 237:527–31. doi: 10.1006/bbrc.1997.6878, PMID: PubMed DOI
Distrutti E, Sediari L, Mencarelli A, Renga B, Orlandi S, Antonelli E, et al. . Evidence that hydrogen sulfide exerts Antinociceptive effects in the gastrointestinal tract by activating K ATP Channels. J Pharmacol Exp Ther. (2005) 316:325–35. doi: 10.1124/jpet.105.091595 PubMed DOI
Monjok E, Kulkarni K, Kouamou G, McKoy M, Opere C, Bongmba O, et al. . Inhibitory action of hydrogen sulfide on muscarinic receptor-induced contraction of isolated porcine irides. Exp Eye Res. (2008) 87:612–6. doi: 10.1016/j.exer.2008.09.011, PMID: PubMed DOI
Li Y, Zang Y, Fu S, Zhang H, Gao L, Li J. H2S relaxes vas deferens smooth muscle by modulating the large conductance Ca2+‐activated K+ (BKCa) Channels via a redox mechanism. J Sex Med (2012) 9:2806–2813. doi: 10.1111/j.1743-6109.2012.02879.x, PMID: PubMed DOI
Nevoral J, Zalmanova T, Hoskova K, Stiavnicka M, Hosek P, Petelak A, et al. . Involvement of K+ATP and Ca2+ channels in hydrogen sulfide-suppressed ageing of porcine oocytes. Biol Res. (2018) 51:38. doi: 10.1186/s40659-018-0187-2, PMID: PubMed DOI PMC
Elies J, Scragg J, Dallas M, Huang D, Huang S, Boyle J, et al. . Inhibition of T-type Ca2+ Channels by hydrogen sulfide In: Peers C, Kumar P, Wyatt C, Gauda E, Nurse C, Prabhakar N, editors. Arterial chemoreceptors in physiology and pathophysiology. Cham: Springer International Publishing; (2015)
Kiss L, Deitch E, Szabó C. Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci. (2008) 83:589–94. doi: 10.1016/j.lfs.2008.08.006, PMID: PubMed DOI PMC
Trevisani M, Patacchini R, Nicoletti P, Gatti R, Gazzieri D, Lissi N, et al. . Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways. Br J Pharmacol. (2005) 145:1123–31. doi: 10.1038/sj.bjp.0706277, PMID: PubMed DOI PMC
Streng T, Axelsson H, Hedlund P, Andersson D, Jordt S, Bevan S, et al. . Distribution and function of the hydrogen sulfide–sensitive TRPA1 Ion Channel in rat urinary bladder. Eur Urol. (2008) 53:391–400. doi: 10.1016/j.eururo.2007.10.024, PMID: PubMed DOI
Kloesch B, Steiner G, Mayer B, Schmidt K. Hydrogen sulfide inhibits endothelial nitric oxide formation and receptor ligand-mediated Ca2+ release in endothelial and smooth muscle cells. Pharmacol Rep. (2016) 68:37–43. doi: 10.1016/j.pharep.2015.05.026, PMID: PubMed DOI
Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S‐sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol. (2018) 175:1146–56. doi: 10.1111/bph.13825, PMID: PubMed DOI PMC
Fukami K, Fukami K, Sekiguchi F, Sekiguchi F, Kawabata A, Kawabata A. Hydrogen sulfide and T-type Casup2+/sup Channels in pain processing. Pharmacology. (2017) 99:196–203. doi: 10.1159/000449449, PMID: PubMed DOI
Kubo S, Doe I, Kurokawa Y, Nishikawa H, Kawabata A. Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology. (2007) 232:138–46. doi: 10.1016/j.tox.2006.12.023, PMID: PubMed DOI
Tang G, Wu L, Liang W, Wang R. Direct stimulation of K ATP Channels by exogenous and endogenous hydrogen sulfide in Vascular smooth muscle cells. Mol Pharmacol. (2005) 68:1757–64. doi: 10.1124/mol.105.017467, PMID: PubMed DOI
Zhao Y, Wei H, Kong G, Shim W, Zhang G. Hydrogen sulfide augments the proliferation and survival of human induced pluripotent stem cell–derived mesenchymal stromal cells through inhibition of BKCa. Cytotherapy. (2013) 15:1395–405. doi: 10.1016/j.jcyt.2013.06.004, PMID: PubMed DOI
Guzmán M, Navarro M, Carnicer R, Sarría A, Acín S, Arnal C, et al. . Cystathionine β-synthase is essential for female reproductive function. Hum Mol Genet. (2006) 15:3168–76. doi: 10.1093/hmg/ddl393, PMID: PubMed DOI
Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, et al. . H2S as a physiologic Vasorelaxant: hypertension in mice with deletion of cystathionine γ-Lyase. Science. (2008) 322:587–90. doi: 10.1126/science.1162667, PMID: PubMed DOI PMC
Bok R, Guerra D, Lorca R, Wennersten S, Harris P, Rauniyar A, et al. . Cystathionine γ-lyase promotes estrogen-stimulated uterine artery blood flow via glutathione homeostasis. Redox Biol. (2021) 40:101827. doi: 10.1016/j.redox.2020.101827, PMID: PubMed DOI PMC
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev. (2012) 92:791–896. doi: 10.1152/physrev.00017.2011, PMID: PubMed DOI
Coletti R, Almeida-Pereira G, Elias LLK, Antunes-Rodrigues J. Effects of hydrogen sulfide (H2S) on water intake and vasopressin and oxytocin secretion induced by fluid deprivation. Horm Behav. (2015) 67:12–20. doi: 10.1016/j.yhbeh.2014.11.008, PMID: PubMed DOI
Ishii I, Akahoshi N, Yamada H, Nakano S, Izumi T, Suematsu M. Cystathionine γ-Lyase-deficient mice require dietary cysteine to protect against acute lethal myopathy and oxidative injury. J Biol Chem. (2010) 285:26358–68. doi: 10.1074/jbc.M110.147439, PMID: PubMed DOI PMC
Panagiotopoulos D, Andriopoulou T, Spanou V, Droggiti D, Gkavogianni T, Giamarellos‐Bourboulis E, et al. . Deficiency of hydrogen sulfide production and pregnancy rate in an experimental model: association with preterm delivery. Am J Reprod Immunol. (2023) 90:13764. doi: 10.1111/aji.13764 PubMed DOI
Stipanuk M, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis. (2011) 34:17–32. doi: 10.1007/s10545-009-9006-9, PMID: PubMed DOI PMC
Gelaude A, Slaby S, Cailliau K, Marin M, Lescuyer-Rousseau A, Molinaro C, et al. . Hydrogen sulfide impairs meiosis resumption in Xenopus laevis oocytes. Cells. (2020) 9:237. doi: 10.3390/cells9010237, PMID: PubMed DOI PMC
Carson R, Konje J. Role of hydrogen sulfide in the female reproductive tract. Expert Rev Obstet Gynecol. (2014) 5:203–13. doi: 10.1586/eog.10.5 DOI
Chen X, Jhee K, Kruger W. Production of the neuromodulator H2S by cystathionine β-synthase via the condensation of cysteine and homocysteine. J Biol Chem. (2004) 279:52082–6. doi: 10.1074/jbc.C400481200, PMID: PubMed DOI
Łowicka E, Bełtowski J. Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacol Rep. (2007) 59:4–24. PMID: PubMed
Aubard Y, Darodes N, Cantaloube M. Hyperhomocysteinemia and pregnancy — review of our present understanding and therapeutic implications. Eur J Obstet Gynecol Reprod Biol. (2000) 93:157–65. doi: 10.1016/S0301-2115(00)00282-7, PMID: PubMed DOI
Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H2S biogenesis by human cystathionine γ-Lyase leads to the novel sulfur metabolites Lanthionine and Homolanthionine and is responsive to the grade of Hyperhomocysteinemia. J Biol Chem. (2009) 284:11601–12. doi: 10.1074/jbc.M808026200 PubMed DOI PMC
Fayed MR, Youssef M, Odah MM. Hyperhomocysteinemia is a risk marker for development of maternal pre-eclampsia. Boll Chim Farm. (2004) 143:281–7. PMID: PubMed
Powell M, Somero G. Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull. (1986) 171:274–90. doi: 10.2307/1541923 DOI
Liang R, Yu W, Du J, Yang L, Shang M, Guo J. Localization of cystathionine β synthase in mice ovaries and its expression profile during follicular development. Chin Med J. (2006) 119:1877–83. doi: 10.1097/00029330-200611020-00006, PMID: PubMed DOI
Nevoral J, Zamostna K, Zalmanova T, Kucerova-Chrpova V, Dvorakova M, Hoskova K, et al. . Physiological production of hydrogen sulfide is involved in porcine oocytes maturing in vitro. Nitric Oxide. (2015) 47:59–60. doi: 10.1016/j.niox.2015.02.147 PubMed DOI
Estienne A, Portela V, Choi Y, Zamberlam G, Boerboom D, Roussel V, et al. . The endogenous hydrogen sulfide generating system regulates ovulation. Free Radic Biol Med. (2019) 138:43–52. doi: 10.1016/j.freeradbiomed.2019.03.028, PMID: PubMed DOI
Ning N, Zhu J, Du Y, Gao X, Liu C, Li J. Dysregulation of hydrogen sulphide metabolism impairs oviductal transport of embryos. Nat Commun. (2014) 5:4107: 10.1038/ncomms5107. PubMed
Nevoral J, Petr J, Gelaude A, Bodart J, Kucerova-Chrpova V, Sedmikova M, et al. . Dual effects of hydrogen sulfide donor on meiosis and cumulus expansion of porcine cumulus-oocyte complexes. PLoS One. (2014) 9:e99613. doi: 10.1371/journal.pone.0099613, PMID: PubMed DOI PMC
Nevoral J, Kolbabova T, Krejcova T, Sedmikova M. Influence of hydrogen-sulfide on meiotic maturation and cumulus-expansion of porcine cumulus-oocyte complexes cultivated in vitro. J Reprod Devel Suppl. (2012) 105:1049. doi: 10.14882/jrds.105.0_1049 DOI
Nevoral J, Bodart J, Petr J. Gasotransmitters in gametogenesis and early development: holy trinity for assisted reproductive technology—a review. Oxidative Med Cell Longev. (2016) 2016:1–12. doi: 10.1155/2016/1730750, PMID: PubMed DOI PMC
Hine C, Zhu Y, Hollenberg A, Mitchell J. Dietary and endocrine regulation of endogenous hydrogen sulfide production: implications for longevity. Antioxid Redox Signal. (2018) 28:1483–502. doi: 10.1089/ars.2017.7434, PMID: PubMed DOI PMC
Tyshkovskiy A, Bozaykut P, Borodinova A, Gerashchenko M, Ables G, Garratt M, et al. . Identification and application of gene expression signatures associated with lifespan extension. Cell Metab. (2019) 30:573–93. doi: 10.1016/j.cmet.2019.06.018, PMID: PubMed DOI PMC
Wang X, Tang J. Focal adhesion kinase signaling is necessary for the hydrogen sulfide-enhanced proliferation, migration, and invasion of HTR8/SVneo human trophoblasts. Reprod Dev Med. (2023) 7:75–82. doi: 10.1097/RD9.0000000000000047 DOI
Krejcova T, Smelcova M, Petr J, Bodart J, Sedmikova M, Nevoral J, et al. . Hydrogen sulfide donor protects porcine oocytes against aging and improves the developmental potential of aged porcine oocytes. PLoS One. (2015) 10:0116964. doi: 10.1371/journal.pone.0116964 PubMed DOI PMC
Tang G, Zhang L, Yang G, Wu L, Wang R. Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia. (2013) 56:533–41. doi: 10.1007/s00125-012-2806-8, PMID: PubMed DOI
Srilatha B, Adaikan P, Moore P. Possible role for the novel gasotransmitter hydrogen sulphide in erectile dysfunction—a pilot study. Eur J Pharmacol. (2006) 535:280–2. doi: 10.1016/j.ejphar.2006.02.001, PMID: PubMed DOI
King A, Polhemus D, Bhushan S, Otsuka H, Kondo K, Nicholson C, et al. . Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci. (2014) 111:3182–7. doi: 10.1073/pnas.1321871111, PMID: PubMed DOI PMC
Reynolds L, Caton J, Redmer D, Grazul‐Bilska A, Vonnahme K, Borowicz P, et al. . Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol. (2006) 572:51–8. doi: 10.1113/jphysiol.2005.104430, PMID: PubMed DOI PMC
Carr D, Wallace J, Aitken R, Milne J, Martin J, Zachary I, et al. . Peri- and postnatal effects of prenatal adenoviral VEGF gene therapy in growth-restricted sheep. Biol Reprod. (2016) 94:1–12. doi: 10.1095/biolreprod.115.133744 PubMed DOI
Yang X, Tian X, Liu H, Wang J, Wang F. Homocysteine increases uterine artery blood flow resistance in women with pregnancy loss. J Gynecol Obstet Hum Reprod. (2023) 52:102533. doi: 10.1016/j.jogoh.2023.102533, PMID: PubMed DOI
Zhang H, Chen J, Sheibani L, Lechuga T, Chen D. Pregnancy augments VEGF-stimulated in vitro angiogenesis and vasodilator (NO and H2S) production in human uterine artery endothelial cells. J Clin Endocrinol Metabol. (2017) 102:2382–93. doi: 10.1210/jc.2017-00437 PubMed DOI PMC
Lechuga T, Zhang H, Sheibani L, Karim M, Jia J, Magness R, et al. . Estrogen replacement therapy in Ovariectomized nonpregnant ewes stimulates uterine artery hydrogen sulfide biosynthesis by selectively up-regulating cystathionine β-synthase expression. Endocrinology. (2015) 156:2288–98. doi: 10.1210/en.2015-1086, PMID: PubMed DOI PMC
Krishnamoorthy-Natarajan G, Koide M. BK channels in the vascular system. Int Rev Neurobiol. (2016) 128:401–38. doi: 10.1016/bs.irn.2016.03.017 PubMed DOI
Kang M, Hashimoto A, Gade A, Akbarali H. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the K ATP channel complex. American journal of physiology-gastrointestinal and liver. Physiology. (2015) 308:532–9. doi: 10.1152/ajpgi.00281.2014, PMID: PubMed DOI PMC
Zhao W. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. (2001) 20:6008–16. doi: 10.1093/emboj/20.21.6008, PMID: PubMed DOI PMC
Xiao D, Longo L, Zhang L. Role of KATP and L-type Ca2+ channel activities in regulation of ovine uterine vascular contractility: effect of pregnancy and chronic hypoxia. Am J Obstet Gynecol. (2010) 203:596–6. doi: 10.1016/j.ajog.2010.07.038 PubMed DOI PMC
Li Y, Bai J, Yang Y, Hoshi N, Chen D. Hydrogen sulfide relaxes human uterine artery via activating smooth muscle BKCa Channels. Antioxidants. (2020) 9:1127. doi: 10.3390/antiox9111127, PMID: PubMed DOI PMC
Lechuga T, Qi Q, Kim T, Magness R, Chen D. E2β stimulates ovine uterine artery endothelial cell H2S production in vitro by estrogen receptor-dependent upregulation of cystathionine β-synthase and cystathionine γ-lyase expression†. Biol Reprod. (2019) 100:514–22. doi: 10.1093/biolre/ioy207, PMID: PubMed DOI PMC
Lechuga T, Qi Q, Magness R, Chen D. Ovine uterine artery hydrogen sulfide biosynthesis in vivo: effects of ovarian cycle and pregnancy. Biol Reprod. (2019) 100:1630–6. doi: 10.1093/biolre/ioz027, PMID: PubMed DOI PMC
Zeigler M, Fay E, Moreni S, Mao J, Totah R, Hebert M. Plasma hydrogen sulfide, nitric oxide, and thiocyanate levels are lower during pregnancy compared to postpartum in a cohort of women from the Pacific northwest of the United States. Life Sci. (2023) 322:121625. doi: 10.1016/j.lfs.2023.121625, PMID: PubMed DOI PMC
Bibli S, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, et al. . Mapping the endothelial cell S -Sulfhydrome highlights the crucial role of integrin Sulfhydration in Vascular function. Circulation. (2021) 143:935–48. doi: 10.1161/CIRCULATIONAHA.120.051877, PMID: PubMed DOI
Bai J, Jiao F, Salmeron A, Xu S, Xian M, Huang L, et al. . Mapping pregnancy-dependent Sulfhydrome unfolds diverse functions of protein Sulfhydration in human uterine artery. Endocrinology. (2023) 164:107. doi: 10.1210/endocr/bqad107/7223556 PubMed DOI PMC
Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. (2016) 27:89–94. doi: 10.5830/CVJA-2016-021, PMID: PubMed DOI PMC
Bai J, Li Y, Yan G, Zhou J, Salmeron A, Fategbe O, et al. . ICI 182,780 attenuates selective upregulation of uterine artery cystathionine β-synthase expression in rat pregnancy. Int J Mol Sci. (2023) 24:14384. doi: 10.3390/ijms241814384, PMID: PubMed DOI PMC
Whiteman M, Moore P. Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J Cell Mol Med. (2009) 13:488–507. doi: 10.1111/j.1582-4934.2009.00645.x, PMID: PubMed DOI PMC
Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Módis K, Panopoulos P, et al. . Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci. (2012) 109:9161–6. doi: 10.1073/pnas.1202916109, PMID: PubMed DOI PMC
Mata-Greenwood E, Chen D. Racial differences in nitric oxide—dependent Vasorelaxation. Reprod Sci. (2008) 15:9–25. doi: 10.1177/1933719107312160, PMID: PubMed DOI PMC
You X, Xu C, Lu J, Zhu X, Gao L, Cui X, et al. . Expression of cystathionine β-synthase and cystathionine γ-lyase in human pregnant myometrium and their roles in the control of uterine contractility. PLoS One. (2011) 6:23788. doi: 10.1371/journal.pone.0023788 PubMed DOI PMC
Hayden L, Franklin K, Roth S, Moore G. Inhibition of oxytocin-induced but not angiotensin-induced rat uterine contractions following exposure to sodium sulfide. Life Sci. (1989) 45:2557–60. doi: 10.1016/0024-3205(89)90239-7, PMID: PubMed DOI
Sidhu R, Singh M, Samir G, Carson R. L-cysteine and sodium Hydrosulphide inhibit spontaneous contractility in isolated pregnant rat uterine strips in vitro. Pharmacol Toxicol. (2001) 88:198–203. doi: 10.1111/j.1600-0773.2001.880407.x, PMID: PubMed DOI
Pierce S, Kupittayanant S, Shmygol T, Wray S. The effects of pH change on ca++ signaling and force in pregnant human myometrium. Am J Obstet Gynecol. (2003) 188:1031–8. doi: 10.1067/mob.2003.229, PMID: PubMed DOI
Robinson H, Wray S, Sun K. A new slow releasing, H2S generating compound, GYY4137 relaxes spontaneous and oxytocin-stimulated contractions of human and rat pregnant myometrium. PLoS One. (2012) 7:46278. doi: 10.1371/journal.pone.0046278 PubMed DOI PMC
Hu R, Lu J, You X, Zhu X, Hui N, Ni X. Hydrogen sulfide inhibits the spontaneous and oxytocin-induced contractility of human pregnant myometrium. Gynecol Endocrinol. (2011) 27:900–4. doi: 10.3109/09513590.2010.551563, PMID: PubMed DOI
Srilatha B, Hu L, Adaikan G, Moore P. Initial characterization of hydrogen sulfide effects in female sexual function. J Sex Med. (2009) 6:1875–84. doi: 10.1111/j.1743-6109.2009.01291.x, PMID: PubMed DOI
Kulandavelu S, Whiteley K, Qu D, Mu J, Bainbridge S, Adamson S. Endothelial nitric oxide synthase deficiency reduces uterine blood flow, spiral artery elongation, and placental oxygenation in pregnant mice. Hypertension. (2012) 60:231–8. doi: 10.1161/HYPERTENSIONAHA.111.187559, PMID: PubMed DOI
Nuño-Ayala M, Guillén N, Arnal C, Lou-Bonafonte J, de Martino A, García-de-Jalón J, et al. . Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites. Physiol Genomics. (2012) 44:702–16. doi: 10.1152/physiolgenomics.00189.2010, PMID: PubMed DOI
Gong X, Chen Z, Liu Y, Lu Q, Jin Z. Gene expression profiling of the paracrine effects of uterine natural killer cells on human endometrial epithelial cells. Int J Endocrinol. (2014) 2014:1–15. doi: 10.1155/2014/393707 PubMed DOI PMC
Wang B, Xu T, Li Y, Wang W, Lyu C, Luo D, et al. . Trophoblast H2S maintains early pregnancy via regulating maternal-fetal Interface immune hemostasis. J Clin Endocrinol Metabol. (2020) 105:4275–89. doi: 10.1210/clinem/dgaa357 PubMed DOI PMC
Xu J, Gao D, Peng L, Qiu Z, Ke L, Zhu Y, et al. . The gasotransmitter hydrogen sulfide inhibits transepithelial anion secretion of pregnant mouse endometrial epithelium. Nitric Oxide. (2019) 90:37–46. doi: 10.1016/j.niox.2019.05.011, PMID: PubMed DOI
Cai S, Ye Q, Zeng X, Yang G, Ye C, Chen M, et al. . CBS and MAT2A improve methionine‐mediated DNA synthesis through SAMTOR/mTORC1/S6K1/CAD pathway during embryo implantation. Cell Prolif. (2021) 54:12950. doi: 10.1111/cpr.12950 PubMed DOI PMC
Cai S, Quan S, Yang G, Zeng X, Wang X, Ye C, et al. . DDIT3 regulates key enzymes in the methionine cycle and flux during embryonic development. J Nutr Biochem. (2023) 111:109176. doi: 10.1016/j.jnutbio.2022.109176, PMID: PubMed DOI
Anamthathmakula P, Kyathanahalli C, Ingles J, Hassan S, Condon J, Jeyasuria P. Estrogen receptor alpha isoform ERdelta7 in myometrium modulates uterine quiescence during pregnancy. EBioMedicine. (2019) 39:520–30. doi: 10.1016/j.ebiom.2018.11.038, PMID: PubMed DOI PMC
Condon J, Kyathanahalli C, Anamthathmakula P, Jeyasuria P. Estrogen/estrogen receptor action and the pregnant myometrium. Curr Opin Physio. (2020) 13:135–40. doi: 10.1016/j.cophys.2019.10.017 DOI
Guerra D, Bok R, Breen K, Vyas V, Jiang H, MacLean K, et al. . Estrogen regulates local cysteine metabolism in mouse myometrium. Reprod Sci. (2021) 28:79–90. doi: 10.1007/s43032-020-00284-6, PMID: PubMed DOI
Watanabe M, Osada J, Aratani Y, Kluckman K, Reddick R, Malinow M, et al. . Mice deficient in cystathionine beta-synthase: animal models for mild and severe homocyst(e)inemia. Proc Natl Acad Sci. (1995) 92:1585–9. doi: 10.1073/pnas.92.5.1585, PMID: PubMed DOI PMC
Vanaerts L, Blom H, Deabreu R, Trijbels F, Eskes T, Peereboom-Stegeman J, et al. . Prevention of neural tube defects by and toxicity ofL-homocysteine in cultured postimplantation rat embryos. Teratology. (1994) 50:348–60. doi: 10.1002/tera.1420500506, PMID: PubMed DOI
Mislanova C, Martsenyuk O, Huppertz B, Obolenskaya M. Placental markers of folate-related metabolism in preeclampsia. Reproduction. (2011) 142:467–76. doi: 10.1530/REP-10-0484, PMID: PubMed DOI
Akahoshi N, Handa H, Takemoto R, Kamata S, Yoshida M, Onaka T, et al. . Preeclampsia-like features and partial lactation failure in mice lacking cystathionine γ-Lyase—an animal model of Cystathioninuria. Int J Mol Sci. (2019) 20:3507. doi: 10.3390/ijms20143507, PMID: PubMed DOI PMC
Wang K, Cai M, Abu-Alkheir W, Ahmad S, Ahmed A. Dysregulation of placental cystathionine-β-synthase promotes fetal growth restriction. Nitric Oxide. (2015) 47:57–8. doi: 10.1016/j.niox.2015.02.138 DOI
Stipanuk M. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr. (2004) 24:539–77. doi: 10.1146/annurev.nutr.24.012003.132418, PMID: PubMed DOI
Iciek M, Bilska A, Ksiazek L, Srebro Z, Włodek L. Allyl disulfide as donor and cyanide as acceptor of sulfane sulfur in the mouse tissues. Pharmacol Rep. (2005) 57:212–8. PMID: PubMed
Holwerda K, Burke S, Faas M, Zsengeller Z, Stillman I, Kang P, et al. . Hydrogen sulfide attenuates sFlt1-induced hypertension and renal damage by upregulating Vascular endothelial growth factor. J Am Soc Nephrol. (2014) 25:717–25. doi: 10.1681/ASN.2013030291, PMID: PubMed DOI PMC
Solanky N, Requena Jimenez A, D'Souza S, Sibley C, Glazier J. Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta. (2010) 31:134–43. doi: 10.1016/j.placenta.2009.11.017, PMID: PubMed DOI
Holwerda K, Bos E, Rajakumar A, Ris-Stalpers C, van Pampus M, Timmer A, et al. . Hydrogen sulfide producing enzymes in pregnancy and preeclampsia. Placenta. (2012) 33:518–21. doi: 10.1016/j.placenta.2012.02.014, PMID: PubMed DOI
Cindrova-Davies T. The therapeutic potential of antioxidants, ER chaperones, NO and H2S donors, and statins for treatment of preeclampsia. Front Pharmacol. (2014) 5:119. doi: 10.3389/fphar.2014.00119 PubMed DOI PMC
Hu T, Wang G, Guo X, Sun Q, He P, Gu H, et al. . MiR 20a,-20b and -200c are involved in hydrogen sulfide stimulation of VEGF production in human placental trophoblasts. Placenta. (2016) 39:101–10. doi: 10.1016/j.placenta.2016.01.019, PMID: PubMed DOI
Chen D, Feng L, Hodges J, Lechuga T, Zhang H. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis†. Biol Reprod. (2017) 97:478–89. doi: 10.1093/biolre/iox105, PMID: PubMed DOI PMC
Chen DB, Zheng J. Regulation of placental angiogenesis. Microcirculation. (2014) 21:15–25. doi: 10.1111/micc.12093, PMID: PubMed DOI PMC
Belardinelli M, Chabli A, Chadefaux-Vekemans B, Kamoun P. Urinary sulfur compounds in down syndrome. Clin Chem. (2001) 47:1500–1. doi: 10.1093/clinchem/47.8.1500, PMID: PubMed DOI
Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids. (2004) 26:243–54. doi: 10.1007/s00726-004-0072-x, PMID: PubMed DOI
Pinilla J, Ayala-Ramírez P, García-Robles R, Olaya-C M, Bermúdez M. Expression of cystathionine beta-synthase and histopathological observations in placentas of patients with down syndrome. J Neonatal-Perinatal Med. (2015) 8:77–84. doi: 10.3233/NPM-15814092, PMID: PubMed DOI
Oh G, Pae H, Lee B, Kim B, Kim J, Kim H, et al. . Hydrogen sulfide inhibits nitric oxide production and nuclear factor-κB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med. (2006) 41:106–19. doi: 10.1016/j.freeradbiomed.2006.03.021, PMID: PubMed DOI
Moustafa A, Habara Y. Hydrogen sulfide regulates ca 2+ homeostasis mediated by concomitantly produced nitric oxide via a novel synergistic pathway in exocrine pancreas. Antioxid Redox Signal. (2014) 20:747–58. doi: 10.1089/ars.2012.5108, PMID: PubMed DOI PMC
Salmina A, Komleva Y, Szijártó I, Gorina Y, Lopatina O, Gertsog G, et al. . H2S- and NO-signaling pathways in Alzheimer's amyloid vasculopathy: synergism or antagonism? Front Physiol. (2015):6. doi: 10.3389/fphys.2015.00361 PubMed DOI PMC
Miyamoto R, Koike S, Takano Y, Shibuya N, Kimura Y, Hanaoka K, et al. . Polysulfides (H2Sn) produced from the interaction of hydrogen sulfide (H2S) and nitric oxide (NO) activate TRPA1 channels. Sci Rep. (2017) 7:45995. PubMed PMC
Guo F, Li X, Liang D, Li T, Zhu P, Guo H, et al. . Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. (2014) 15:447–59. doi: 10.1016/j.stem.2014.08.003, PMID: PubMed DOI
Yang R, Qu C, Zhou Y, Konkel J, Shi S, Liu Y, et al. . Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity. (2015) 43:251–63. doi: 10.1016/j.immuni.2015.07.017, PMID: PubMed DOI PMC
Li L, Liu D, Bu D, Chen S, Wu J, Tang C, et al. . Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. Biochimica et Biophysica Acta (BBA) - molecular. Cell Res. (2013) 1833:1347–55. doi: 10.1016/j.bbamcr.2013.03.002 PubMed DOI
Gupta S, Mochan S, Arora P, Rani N, Luthra K, Dwivedi S, et al. . Hydrogen sulfide promotes migration of trophoblast cells by a rho GTPase mediated actin cytoskeleton reorganization. Placenta. (2023) 142:135–46. doi: 10.1016/j.placenta.2023.09.004, PMID: PubMed DOI
Hess R, Niu Y, Garrud T, Botting K, Ford S, Giussani D. Embryonic cardioprotection by hydrogen sulphide: studies of isolated cardiac function and ischaemia‐reperfusion injury in the chicken embryo. J Physiol. (2020) 598:4197–208. doi: 10.1113/JP279978, PMID: PubMed DOI
Postlethwait J, Woods I, Ngo-Hazelett P, Yan Y, Kelly P, Chu F, et al. . Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. (2000) 10:1890–902. doi: 10.1101/gr.164800, PMID: PubMed DOI
Prabhudesai S, Koceja C, Dey A, Eisa-Beygi S, Leigh N, Bhattacharya R, et al. . Cystathionine β-synthase is necessary for Axis development in vivo. Front Cell Dev Biol. (2018):6. doi: 10.3389/fcell.2018.00014 PubMed DOI PMC
Kumai Y, Porteus C, Kwong R, Perry S. Hydrogen sulfide inhibits Na+ uptake in larval zebrafish, Danio rerio. Pflugers Arch - Eur J Physiol. (2015) 467:651–64. doi: 10.1007/s00424-014-1550-y, PMID: PubMed DOI
Mitidieri E, Vanacore D, Turnaturi C, Sorrentino R, di Villa d’E, Bianca R. Uterine dysfunction in diabetic mice: the role of hydrogen sulfide. Antioxidants. (2020) 9:917. doi: 10.3390/antiox9100917, PMID: PubMed DOI PMC
Bhattacharyya S, Saha S, Giri K, Lanza I, Nair K, Jennings N, et al. . Cystathionine Beta-synthase (CBS) contributes to advanced ovarian Cancer progression and drug resistance. PLoS One. (2013) 8:e79167. doi: 10.1371/journal.pone.0079167, PMID: PubMed DOI PMC
Wang L, Shi H, Liu Y, Zhang W, Duan X, Li M, et al. . Cystathionine‑γ‑lyase promotes the metastasis of breast cancer via the VEGF signaling pathway. Int J Oncol. (2019) 55:473–87. doi: 10.3892/ijo.2019.4823 PubMed DOI PMC
Cindrova-Davies T, Herrera E, Niu Y, Kingdom J, Giussani D, Burton G. Reduced cystathionine γ-Lyase and increased miR-21 expression are associated with increased Vascular resistance in growth-restricted pregnancies. Am J Pathol. (2013) 182:1448–58. doi: 10.1016/j.ajpath.2013.01.001, PMID: PubMed DOI PMC
Zhu XY, Gu H, Ni X. Hydrogen sulfide in the endocrine and reproductive systems. Expert Rev Clin Pharmacol. (2014) 4:75–82. doi: 10.1586/ecp.10.125 PubMed DOI
Hydrogen sulfide and its potential as a possible therapeutic agent in male reproduction