Gasotransmitters in Gametogenesis and Early Development: Holy Trinity for Assisted Reproductive Technology-A Review
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
27579148
PubMed Central
PMC4992752
DOI
10.1155/2016/1730750
Knihovny.cz E-zdroje
- MeSH
- asistovaná reprodukce * MeSH
- gametogeneze fyziologie MeSH
- gasotransmitery metabolismus fyziologie MeSH
- lidé MeSH
- oocyty metabolismus fyziologie MeSH
- oxid dusnatý metabolismus fyziologie MeSH
- oxid uhelnatý metabolismus fyziologie MeSH
- posttranslační úpravy proteinů MeSH
- sulfan metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- gasotransmitery MeSH
- oxid dusnatý MeSH
- oxid uhelnatý MeSH
- sulfan MeSH
Creation of both gametes, sperm and oocyte, and their fusion during fertilization are essential step for beginning of life. Although molecular mechanisms regulating gametogenesis, fertilization, and early embryonic development are still subjected to intensive study, a lot of phenomena remain unclear. Based on our best knowledge and own results, we consider gasotransmitters to be essential for various signalisation in oocytes and embryos. In accordance with nitric oxide (NO) and hydrogen sulfide (H2S) physiological necessity, their involvement during oocyte maturation and regulative role in fertilization followed by embryonic development have been described. During these processes, NO- and H2S-derived posttranslational modifications represent the main mode of their regulative effect. While NO represent the most understood gasotransmitter and H2S is still intensively studied gasotransmitter, appreciation of carbon monoxide (CO) role in reproduction is still missing. Overall understanding of gasotransmitters including their interaction is promising for reproductive medicine and assisted reproductive technologies (ART), because these approaches contend with failure of in vitro assisted reproduction.
Zobrazit více v PubMed
Armstrong D. T., Zhang X., Vanderhyden B. C., Khamsi F. Hormonal actions during oocyte maturation influence fertilization and early embryonic development. Annals of the New York Academy of Sciences. 1991;626(1):137–158. doi: 10.1111/j.1749-6632.1991.tb37908.x. PubMed DOI
Wassarman P., Albertini D. F. The mammalian ovum. In: Knobil E., Neill J., editors. The Physiology of Reproduction. 2nd. New York, NY, USA: Raven Press; 1994. pp. 79–122.
Bavister B. D., Squirrell J. M. Mitochondrial distribution and function in oocytes and early embryos. Human Reproduction. 2000;15(2):189–198. PubMed
Suh N., Blelloch R. Small RNAs in early mammalian development: from gametes to gastrulation. Development. 2011;138(9):1653–1661. doi: 10.1242/dev.056234. PubMed DOI PMC
Keefe D., Kumar M., Kalmbach K. Oocyte competency is the key to embryo potential. Fertility and Sterility. 2015;103(2):317–322. doi: 10.1016/j.fertnstert.2014.12.115. PubMed DOI
Wang W., Hosoe M., Li R., Shioya Y. Development of the competence of bovine oocytes to release cortical granules and block polyspermy after meiotic maturation. Development Growth & Differentiation. 1997;39(5):607–615. doi: 10.1046/j.1440-169x.1997.t01-4-00008.x. PubMed DOI
Wessel G. M., Conner S. D., Berg L. Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte. Development. 2002;129(18):4315–4325. PubMed
Ajduk A., Małagocki A., Maleszewski M. Cytoplasmic maturation of mammalian oocytes: development of a mechanism responsible for sperm-induced Ca2+ oscillations. Reproductive Biology. 2008;8(1):3–22. doi: 10.1016/s1642-431x(12)60001-1. PubMed DOI
Cruz M., Gadea B., Garrido N., et al. Embryo quality, blastocyst and ongoing pregnancy rates in oocyte donation patients whose embryos were monitored by time-lapse imaging. Journal of Assisted Reproduction and Genetics. 2011;28(7):569–573. doi: 10.1007/s10815-011-9549-1. PubMed DOI PMC
Zhou W., Fu L., Sha W., Chu D., Li Y. Relationship of polar bodies morphology to embryo quality and pregnancy outcome. Zygote. 2016;24(3):401–407. doi: 10.1017/s0967199415000325. PubMed DOI
Webb R. J., Bains H., Cruttwell C., Carroll J. Gap-junctional communication in mouse cumulus-oocyte complexes: implications for the mechanism of meiotic maturation. Reproduction. 2002;123(1):41–52. doi: 10.1530/rep.0.1230041. PubMed DOI
Fan H.-Y., Huo L.-J., Meng X.-Q., et al. Involvement of calcium/calmodulin-dependent protein kinase II (CaMKII) in meiotic maturation and activation of pig oocytes. Biology of Reproduction. 2003;69(5):1552–1564. doi: 10.1095/biolreprod.103.015685. PubMed DOI
Liang C.-G., Huo L.-J., Zhong Z.-S., Chen D.-Y., Schatten H., Sun Q.-Y. Cyclic adenosine 3′,5′-monophosphate-dependent activation of mitogen-activated protein kinase in cumulus cells is essential for germinal vesicle breakdown of porcine cumulus-enclosed oocytes. Endocrinology. 2005;146(10):4437–4444. doi: 10.1210/en.2005-0309. PubMed DOI
Zhang D.-X., Park W.-J., Sun S.-C., et al. Regulation of maternal gene expression by MEK/MAPK and MPF signaling in porcine oocytes during in vitro meiotic maturation. Journal of Reproduction and Development. 2011;57(1):49–56. doi: 10.1262/jrd.10-087H. PubMed DOI
Palmer R. M. J., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524–526. doi: 10.1038/327524a0. PubMed DOI
Wang R. U. I. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? The FASEB Journal. 2002;16(13):1792–1798. doi: 10.1096/fj.02-0211hyp. PubMed DOI
Wu L., Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacological Reviews. 2005;57(4):585–630. doi: 10.1124/pr.57.4.3. PubMed DOI
Jablonka-Shariff A., Olson L. M. Nitric oxide is essential for optimal meiotic maturation of murine cumulus-oocyte complexes in vitro. Molecular Reproduction and Development. 2000;55(4):412–421. doi: 10.1002/(SICI)1098-2795(200004)55:4<412::AID-MRD9>3.0.CO;2-W. PubMed DOI
Liang R., Yu W.-D., Du J.-B., Yang L.-J., Shang M., Guo J.-Z. Localization of cystathionine β synthase in mice ovaries and its expression profile during follicular development. Chinese Medical Journal. 2006;119(22):1877–1883. PubMed
Nevoral J., Petr J., Gelaude A., et al. Dual effects of hydrogen sulfide donor on meiosis and cumulus expansion of porcine cumulus-oocyte complexes. PLoS ONE. 2014;9(7) doi: 10.1371/journal.pone.0099613.e99613 PubMed DOI PMC
Hashimoto S., Minami N., Takakura R., Imai H. Bovine immature oocytes acquire developmental competence during meiotic arrest in vitro. Biology of Reproduction. 2002;66(6):1696–1701. doi: 10.1095/biolreprod66.6.1696. PubMed DOI
Yanagimachi R. Mammalian fertilization. In: Knobil E., Neill J., editors. The Physiology of Reproduction. New York, NY, USA: Raven Press; 1988. pp. 230–278.
Burns K. H., Matzuk M. M. Preimplantation embryogenesis. In: Neill J. D., editor. Knobil and Neill's Physiology of Reproduction. 3rd. Elsevier; 2006. pp. 261–310.
Ignarro L. J. Endothelium-derived nitric oxide: pharmacology and relationship to the actions of organic nitrate esters. Pharmaceutical Research. 1989;6(8):651–659. doi: 10.1023/A:1015926119947. PubMed DOI
Shibuki K., Okada D. Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum. Nature. 1991;349(6307):326–328. doi: 10.1038/349326a0. PubMed DOI
Kimura H. Hydrogen sulfide as a neuromodulator. Molecular Neurobiology. 2002;26(1):13–19. doi: 10.1385/MN:26:1:013. PubMed DOI
Cheng Y., Ndisang J. F., Tang G., Cao K., Wang R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. American Journal of Physiology—Heart and Circulatory Physiology. 2004;287(5):H2316–H2323. doi: 10.1152/ajpheart.00331.2004. PubMed DOI
Shen Y., Shen Z., Luo S., Guo W., Zhu Y. Z. The cardioprotective effects of hydrogen sulfide in heart diseases: from molecular mechanisms to therapeutic potential. Oxidative Medicine and Cellular Longevity. 2015;2015:13. doi: 10.1155/2015/925167.925167 PubMed DOI PMC
Jablonka-Shariff A., Olson L. M. The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology. 1998;139(6):2944–2954. doi: 10.1210/en.139.6.2944. PubMed DOI
Jablonka-Shariff A., Olson L. M. Hormonal regulation of nitric oxide synthases and their cell-specific expression during follicular development in the rat ovary. Endocrinology. 1997;138(1):460–468. doi: 10.1210/en.138.1.460. PubMed DOI
Pallares P., Garcia-Fernandez R. A., Criado L. M., et al. Disruption of the endothelial nitric oxide synthase gene affects ovulation, fertilization and early embryo survival in a knockout mouse model. Reproduction. 2008;136(5):573–579. doi: 10.1530/REP-08-0272. PubMed DOI
Chmelíkov E., Ješeta M., Sedmíková M., et al. Nitric oxide synthase isoforms and the effect of their inhibition on meiotic maturation of porcine oocytes. Zygote. 2010;18(3):235–244. doi: 10.1017/S0967199409990268. PubMed DOI
Nevoral J., Krejčová T., Petr J., et al. The role of nitric oxide synthase isoforms in aged porcine oocytes. Czech Journal of Animal Science. 2013;58(10):453–459.
Goud P. T., Goud A. P., Najafi T., et al. Direct real-time measurement of intra-oocyte nitric oxide concentration in vivo. PLoS ONE. 2014;9(6, article e98720) doi: 10.1371/journal.pone.0098720. PubMed DOI PMC
Ha C.-S., Joo B.-S., Kim S.-C., Joo J.-K., Kim H.-G., Lee K.-S. Estrogen administration during superovulation increases oocyte quality and expressions of vascular endothelial growth factor and nitric oxide synthase in the ovary. Journal of Obstetrics and Gynaecology Research. 2010;36(4):789–795. doi: 10.1111/j.1447-0756.2010.01212.x. PubMed DOI
Romero-Aguirregomezcorta J., Santa Á. P., García-Vázquez F. A., Coy P., Matás C. Nitric Oxide Synthase (NOS) inhibition during porcine in vitro maturation modifies oocyte protein S-nitrosylation and in vitro fertilization. PLoS ONE. 2014;9(12) doi: 10.1371/journal.pone.0115044.e115044 PubMed DOI PMC
Montfort W. R., Wales J. A., Weichsel A. Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxidants & Redox Signaling. 2016 doi: 10.1089/ars.2016.6693. PubMed DOI PMC
Bilodeau-Goeseels S. Effects of manipulating the nitric oxide/cyclic GMP pathway on bovine oocyte meiotic resumption in vitro. Theriogenology. 2007;68(5):693–701. doi: 10.1016/j.theriogenology.2007.05.063. PubMed DOI
Carreira B. P., Morte M. I., Lourenço A. S., et al. Differential contribution of the guanylyl cyclase-cyclic GMP-Protein kinase G pathway to the proliferation of neural stem cells stimulated by nitric oxide. NeuroSignals. 2013;21(1-2):1–13. doi: 10.1159/000332811. PubMed DOI
Stricker S. A. Inhibition of germinal vesicle breakdown by antioxidants and the roles of signaling pathways related to nitric oxide and cGMP during meiotic resumption in oocytes of a marine worm. Reproduction. 2012;143(3):261–270. doi: 10.1530/REP-11-0358. PubMed DOI
Sayed N., Baskaran P., Ma X., Van Den Akker F., Beuve A. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(30):12312–12317. doi: 10.1073/pnas.0703944104. PubMed DOI PMC
Petr J., Rajmon R., Chmelíková E., et al. Nitric-oxide-dependent activation of pig oocytes: the role of the cGMP-signalling pathway. Zygote. 2006;14(1):9–16. doi: 10.1017/s0967199406003546. PubMed DOI
Petr J., Chmelíková E., Krejčová T., Řehák D., Novotná B., Jílek F. Parthenogenetic activation of pig oocytes using pulsatile treatment with a nitric oxide donor. Reproduction in Domestic Animals. 2010;45(3):493–499. doi: 10.1111/j.1439-0531.2008.01275.x. PubMed DOI
Jeseta M., Marin M., Tichovska H., et al. Nitric oxide-donor SNAP induces xenopus eggs activation. PLoS ONE. 2012;7(7, article e41509) doi: 10.1371/journal.pone.0041509. PubMed DOI PMC
Kuo R. C., Baxter G. T., Thompson S. H., et al. NO is necessary and sufficient for egg activation at fertilization. Nature. 2000;406(6796):633–636. doi: 10.1038/35020577. PubMed DOI
Tůmová L., Romar R., Petr J., Sedmíková M. The effect of protein kinase C activator and nitric oxide donor on oocyte activation and cortical granule exocytosis in porcine eggs. Animal. 2013;7(2):279–286. doi: 10.1017/S1751731112001127. PubMed DOI
Predonzani A., Calì B., Agnellini A. H., et al. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World Journal of Experimental Medicine. 2015;5(2):64–76. PubMed PMC
Modun D., Giustarini D., Tsikas D. Nitric oxide-related oxidative stress and redox status in health and disease. Oxidative Medicine and Cellular Longevity. 2014;2014:3. doi: 10.1155/2014/129651.129651 PubMed DOI PMC
Luo Q., Chen X.-J., Ding G.-L., Dong M.-Y., Huang H.-F. Downregulative effects of nitric oxide on oocyte fertilization and embryo development: possible roles of nitric oxide in the pathogenesis of endometriosis-associated infertility. Cellular Physiology and Biochemistry. 2010;26(6):1023–1028. doi: 10.1159/000323977. PubMed DOI
Lee T.-H., Lee M.-S., Huang C.-C., et al. Nitric oxide modulates mitochondrial activity and apoptosis through protein S-nitrosylation for preimplantation embryo development. Journal of Assisted Reproduction and Genetics. 2013;30(8):1063–1072. doi: 10.1007/s10815-013-0045-7. PubMed DOI PMC
Schwarz K. R. L., Pires P. R. L., de Bem T. H. C., Adona P. R., Leal C. L. V. Consequences of nitric oxide synthase inhibition during bovine oocyte maturation on meiosis and embryo development. Reproduction in Domestic Animals. 2010;45(1):75–80. doi: 10.1111/j.1439-0531.2008.01242.x. PubMed DOI
Goud P. T., Goud A. P., Joshi N., Puscheck E., Diamond M. P., Abu-Soud H. M. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertility and Sterility. 2014;102(1):151–159.e5. doi: 10.1016/j.fertnstert.2014.03.053. PubMed DOI
Dong M., Shi Y., Cheng Q., Hao M. Increased nitric oxide in peritoneal fluid from women with idiopathic infertility and endometriosis. Journal of Reproductive Medicine for the Obstetrician and Gynecologist. 2001;46(10):887–891. PubMed
Goud P., Goud A., Diamond M. Chronological age enhances oocyte post ovulatory aging, protein nitration and nitric oxide insufficiency in oocytes and their microenvironment. Fertility and Sterility. 2014;102(3):p. e329. doi: 10.1016/j.fertnstert.2014.07.1114. DOI
Khan S. N., Shaeib F., Thakur M., et al. Peroxynitrite deteriorates oocyte quality through disassembly of microtubule organizing centers. Free Radical Biology and Medicine. 2016;91:275–280. doi: 10.1016/j.freeradbiomed.2015.12.033. PubMed DOI
Mora-Castilla S., Tejedo J. R., Hmadcha A., et al. Nitric oxide repression of nanog promotes mouse embryonic stem cell differentiation. Cell Death & Differentiation. 2010;17(6):1025–1033. doi: 10.1038/cdd.2009.204. PubMed DOI
Mustafa A. K., Gadalla M. M., Sen N., et al. H2S signals through protein S-sulfhydration. Science Signaling. 2009;2(96, article ra72) doi: 10.1126/scisignal.2000464. PubMed DOI PMC
Kimura H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide. 2014;41:4–10. doi: 10.1016/j.niox.2014.01.002. PubMed DOI
Nevoral J., Žalmanová T., Zámostná K., et al. Endogenously produced hydrogen sulfide is involved in porcine oocyte maturation in vitro. Nitric Oxide. 2015;51:24–35. doi: 10.1016/j.niox.2015.09.007. PubMed DOI
Krejcova T., Smelcova M., Petr J., et al. Hydrogen sulfide donor protects porcine oocytes against aging and improves the developmental potential of aged porcine oocytes. PLoS ONE. 2015;10(1) doi: 10.1371/journal.pone.0116964.e0116964 PubMed DOI PMC
Zhao K., Ju Y., Li S., Altaany Z., Wang R., Yang G. S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Reports. 2014;15(7):792–800. doi: 10.1002/embr.201338213. PubMed DOI PMC
Mishanina T. V., Libiad M., Banerjee R. Biogenesis of reactive sulfur species for signaling by hydrogen sulfide oxidation pathways. Nature Chemical Biology. 2015;11(7):457–464. doi: 10.1038/nchembio.1834. PubMed DOI PMC
DeLeon E. R., Gao Y., Huang E., et al. A case of mistaken identity: are reactive oxygen species actually reactive sulfide species? American Journal of Physiology—Regulatory, Integrative and Comparative Physiology. 2016;310(7):R549–R560. doi: 10.1152/ajpregu.00455.2015. PubMed DOI PMC
Yadav P. K., Martinov M., Vitvitsky V., et al. Biosynthesis and reactivity of cysteine persulfides in signaling. Journal of the American Chemical Society. 2016;138(1):289–299. doi: 10.1021/jacs.5b10494. PubMed DOI PMC
Martínez-Ruiz A., Lamas S. S-nitrosylation: a potential new paradigm in signal transduction. Cardiovascular Research. 2004;62(1):43–52. doi: 10.1016/j.cardiores.2004.01.013. PubMed DOI
Gao C., Guo H., Wei J., Mi Z., Wai P. Y., Kuo P. C. Identification of S-nitrosylated proteins in endotoxin-stimulated RAW264.7 murine macrophages. Nitric Oxide—Biology and Chemistry. 2005;12(2):121–126. doi: 10.1016/j.niox.2004.11.006. PubMed DOI
Lefièvre L., Chen Y., Conner S. J., et al. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics. 2007;7(17):3066–3084. doi: 10.1002/pmic.200700254. PubMed DOI PMC
Stroissnigg H., Trančíková A., Descovich L., et al. S-nitrosylation of microtubule-associated protein 1B mediates nitric-oxide-induced axon retraction. Nature Cell Biology. 2007;9(9):1035–1045. doi: 10.1038/ncb1625. PubMed DOI
Grau M., Pauly S., Ali J., et al. RBC-NOS-dependent S-nitrosylation of cytoskeletal proteins improves RBC deformability. PLoS ONE. 2013;8(2) doi: 10.1371/journal.pone.0056759.e56759 PubMed DOI PMC
Kimura H. Production and physiological effects of hydrogen sulfide. Antioxidants & Redox Signaling. 2014;20(5):783–793. doi: 10.1089/ars.2013.5309. PubMed DOI PMC
Foster M. W., Forrester M. T., Stamler J. S. A protein microarray-based analysis of S-nitrosylation. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(45):18948–18953. doi: 10.1073/pnas.0900729106. PubMed DOI PMC
Kumar S., Barthwal M. K., Dikshit M. Cdk2 nitrosylation and loss of mitochondrial potential mediate NO-dependent biphasic effect on HL-60 cell cycle. Free Radical Biology and Medicine. 2010;48(6):851–861. doi: 10.1016/j.freeradbiomed.2010.01.004. PubMed DOI
Ben-Lulu S., Ziv T., Admon A., Weisman-Shomer P., Benhar M. A substrate trapping approach identifies proteins regulated by reversible S-nitrosylation. Molecular and Cellular Proteomics. 2014;13(10):2573–2583. doi: 10.1074/mcp.M114.038166. PubMed DOI PMC
Majumdar U., Biswas P., Sarkar T. S., Maiti D., Ghosh S. Regulation of cell cycle and stress responses under nitrosative stress in Schizosaccharomyces pombe . Free Radical Biology and Medicine. 2012;52(11-12):2186–2200. doi: 10.1016/j.freeradbiomed.2012.03.026. PubMed DOI
Guo W., Kan J.-T., Cheng Z.-Y., et al. Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxidative Medicine and Cellular Longevity. 2012;2012:9. doi: 10.1155/2012/878052.878052 PubMed DOI PMC
Cartwright J. E., Holden D. P., Whitley G. S. J. Hepatocyte growth factor regulates human trophoblast motility and invasion: a role for nitric oxide. British Journal of Pharmacology. 1999;128(1):181–189. doi: 10.1038/sj.bjp.0702757. PubMed DOI PMC
Cartwright J. E., Tse W. K., Whitley G. S. J. Hepatocyte growth factor induced human trophoblast motility involves phosphatidylinositol-3-kinase, mitogen-activated protein kinase, and inducible nitric oxide synthase. Experimental Cell Research. 2002;279(2):219–226. doi: 10.1006/excr.2002.5616. PubMed DOI
Harris L. K., McCormick J., Cartwright J. E., Whitley G. S. J., Dash P. R. S-nitrosylation of proteins at the leading edge of migrating trophoblasts by inducible nitric oxide synthase promotes trophoblast invasion. Experimental Cell Research. 2008;314(8):1765–1776. doi: 10.1016/j.yexcr.2008.02.010. PubMed DOI
Gu Z., Kaul M., Yan B., et al. S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science. 2002;297(5584):1186–1190. doi: 10.1126/science.1073634. PubMed DOI
Dash P. R., Cartwright J. E., Baker P. N., Johnstone A. P., Whitley G. S. J. Nitric oxide protects human extravillous trophoblast cells from apoptosis by a cyclic GMP-dependent mechanism and independently of caspase 3 nitrosylation. Experimental Cell Research. 2003;287(2):314–324. doi: 10.1016/S0014-4827(03)00156-3. PubMed DOI
Lu C., Kavalier A., Lukyanov E., Gross S. S. S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation: a common paradigm for gasotransmitter signaling by H2S and NO. Methods. 2013;62(2):177–181. doi: 10.1016/j.ymeth.2013.05.020. PubMed DOI PMC
Sen N., Paul B. D., Gadalla M. M., et al. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Molecular Cell. 2012;45(1):13–24. doi: 10.1016/j.molcel.2011.10.021. PubMed DOI PMC
Zhang W., Xu C., Yang G., Wu L., Wang R. Interaction of H2S with calcium permeable channels and transporters. Oxidative Medicine and Cellular Longevity. 2015;2015:7. doi: 10.1155/2015/323269.323269 PubMed DOI PMC
Filipovic M. R. Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Vol. 230. Berlin, Germany: Springer; 2015. Persulfidation (S-sulfhydration) and H2S; pp. 29–59. (Handbook of Experimental Pharmacology). PubMed
Di Cristofano A., Pesce B., Cordon-Cardo C., Pandolfi P. P. Pten is essential for embryonic development and tumour suppression. Nature Genetics. 1998;19(4):348–355. doi: 10.1038/1235. PubMed DOI
Ohno K., Okuda K., Uehara T. Endogenous S-sulfhydration of PTEN helps protect against modification by nitric oxide. Biochemical and Biophysical Research Communications. 2015;456(1):245–249. doi: 10.1016/j.bbrc.2014.11.066. PubMed DOI
Kwak Y.-D., Ma T., Diao S., et al. NO signaling and S-nitrosylation regulate PTEN inhibition in neurodegeneration. Molecular Neurodegeneration. 2010;5, article 49:10349–10354. doi: 10.1186/1750-1326-5-49. PubMed DOI PMC
Krishnan N., Fu C., Pappin D. J., Tonks N. K. Biochemistry: H2S-induced sulfhydration of the phosphatase PTP1B and its role in the endoplasmic reticulum stress response. Science Signaling. 2011;4(203, article ra86) doi: 10.1126/scisignal.2002329. PubMed DOI PMC
Rudolph J. Redox regulation of the Cdc25 phosphatases. Antioxidants and Redox Signaling. 2005;7(5-6):761–767. doi: 10.1089/ars.2005.7.761. PubMed DOI
Viry E., Anwar A., Kirsch G., Jacob C., Diederich M., Bagrel D. Antiproliferative effect of natural tetrasulfides in human breast cancer cells is mediated through the inhibition of the cell division cycle 25 phosphatases. International Journal of Oncology. 2011;38(4):1103–1111. doi: 10.3892/ijo.2011.913. PubMed DOI
Heneberg P. Reactive nitrogen species and hydrogen sulfide as regulators of protein tyrosine phosphatase activity. Antioxidants and Redox Signaling. 2014;20(14):2191–2209. doi: 10.1089/ars.2013.5493. PubMed DOI PMC
Hara M. R., Agrawal N., Kim S. F., et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nature Cell Biology. 2005;7(7):665–674. doi: 10.1038/ncb1268. PubMed DOI
Greco T. M., Hodara R., Parastatidis I., et al. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(19):7420–7425. doi: 10.1073/pnas.0600729103. PubMed DOI PMC
Hao G., Derakhshan B., Shi L., Campagne F., Gross S. S. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(4):1012–1017. doi: 10.1073/pnas.0508412103. PubMed DOI PMC
Chung K. K. K., Thomas B., Li X., et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science. 2004;304(5675):1328–1331. doi: 10.1126/science.1093891. PubMed DOI
Vandiver M. S., Paul B. D., Xu R., et al. Sulfhydration mediates neuroprotective actions of parkin. Nature Communications. 2013;4, article 1626 doi: 10.1038/ncomms2623. PubMed DOI PMC
Du J., Huang Y., Yan H., et al. Hydrogen sulfide suppresses oxidized low-density lipoprotein (Ox-LDL)-stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κb (NF-κB) pathway. Journal of Biological Chemistry. 2014;289(14):9741–9753. doi: 10.1074/jbc.M113.517995. PubMed DOI PMC
Nicola J. P., Peyret V., Nazar M., et al. S-nitrosylation of NF-κB p65 inhibits TSH-induced Na+/I− symporter expression. Endocrinology. 2015;156(12):4741–4754. doi: 10.1210/en.2015-1192. PubMed DOI
Kelleher Z. T., Potts E. N., Brahmajothi M. V., et al. NOS2 regulation of LPS-induced airway inflammation via S-nitrosylation of NF-κB p65. American Journal of Physiology—Lung Cellular and Molecular Physiology. 2011;301(3):L327–L333. doi: 10.1152/ajplung.00463.2010. PubMed DOI PMC
Dalle-Donne I., Milzani A., Giustarini D., Di Simplicio P., Colombo R., Rossi R. S-NO-actin: S-nitrosylation kinetics and the effect on isolated vascular smooth muscle. Journal of Muscle Research & Cell Motility. 2000;21(2):171–181. doi: 10.1023/a:1005671319604. PubMed DOI
Thom S. R., Bhopale V. M., Mancini D. J., Milovanova T. N. Actin S-nitrosylation inhibits neutrophil β2 integrin function. The Journal of Biological Chemistry. 2008;283(16):10822–10834. doi: 10.1074/jbc.m709200200. PubMed DOI
Zhang H.-H., Lechuga T. J., Tith T., Wang W., Wing D. A., Chen D.-B. S-nitrosylation of cofilin-1 mediates estradiol-17β stimulated endothelial cytoskeleton remodeling. Molecular Endocrinology. 2015;29(3):434–444. doi: 10.1210/me.2014-1297. PubMed DOI PMC
Altaany Z., Ju Y. J., Yang G., Wang R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Science Signaling. 2014;7(342, article ra87) doi: 10.1126/scisignal.2005478. PubMed DOI
Kloesch B., Steiner G., Mayer B., Schmidt K. Hydrogen sulfide inhibits endothelial nitric oxide formation and receptor ligand-mediated Ca2+ release in endothelial and smooth muscle cells. Pharmacological Reports. 2016;68(1):37–43. doi: 10.1016/j.pharep.2015.05.026. PubMed DOI
Nagy Z. P., Janssenswillen C., Janssens R., et al. Timing of oocyte activation, pronucleus formation and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular spermatozoa and after ICSI or in-vitro fertilization on sibling oocytes with ejaculated spermatozoa. Human Reproduction. 1998;13(6):1606–1612. doi: 10.1093/humrep/13.6.1606. PubMed DOI
Papale L., Fiorentino A., Montag M., Tomasi G. The zygote. Human Reproduction. 2012;27(supplement 1):i22–i49. doi: 10.1093/humrep/des205. PubMed DOI
Han Z., Mtango N. R., Zhong Z., Vassena R., Latham K. E. Early transcription from the maternal genome controlling blastomere integrity in mouse two-cell-stage embryos. American Journal of Physiology—Cell Physiology. 2010;298(5):C1235–C1244. doi: 10.1152/ajpcell.00393.2009. PubMed DOI PMC
Petrussa L., Van de Velde H., De Rycke M. Dynamic regulation of DNA methyltransferases in human oocytes and preimplantation embryos after assisted reproductive technologies. Molecular Human Reproduction. 2014;20(9):861–874. doi: 10.1093/molehr/gau049. PubMed DOI
Mao J., Zhao M.-T., Whitworth K. M., et al. Oxamflatin treatment enhances cloned porcine embryo development and nuclear reprogramming. Cellular Reprogramming. 2015;17(1):28–40. doi: 10.1089/cell.2014.0075. PubMed DOI PMC
Schwarz K. R. L., Pires P. R. L., Adona P. R., Câmara De Bem T. H., Leal C. L. V. Influence of nitric oxide during maturation on bovine oocyte meiosis and embryo development in vitro. Reproduction, Fertility and Development. 2008;20(4):529–536. doi: 10.1071/RD07209. PubMed DOI
Kim B. H., Kim C. H., Jung K. Y., et al. Involvement of nitric oxide duringin vitro fertilization and early embryonic development in mice. Archives of Pharmacal Research. 2004;27(1):86–93. PubMed
Goud P. T., Goud A. P., Diamond M. P., Gonik B., Abu-Soud H. M. Nitric oxide extends the oocyte temporal window for optimal fertilization. Free Radical Biology and Medicine. 2008;45(4):453–459. doi: 10.1016/j.freeradbiomed.2008.04.035. PubMed DOI PMC
Matta S. G. C., Caldas-Bussiere M. C., Viana K. S., et al. Effect of inhibition of synthesis of inducible nitric oxide synthase-derived nitric oxide by aminoguanidine on the in vitro maturation of oocyte-cumulus complexes of cattle. Animal Reproduction Science. 2009;111(2):189–201. doi: 10.1016/j.anireprosci.2008.03.002. PubMed DOI
Petr J., Rajmon R., Rozinek J., et al. Activation of pig oocytes using nitric oxide donors. Molecular Reproduction and Development. 2005;71(1):115–122. doi: 10.1002/mrd.20248. PubMed DOI
Haqqani A. S., Kelly J. F., Chaim Birnboim H. Selective nitration of histone tyrosine residues in vivo in mutatect tumors. The Journal of Biological Chemistry. 2002;277(5):3614–3621. doi: 10.1074/jbc.m105730200. PubMed DOI
Vanin A. F., Ivanov V. I. Interaction of iron ions with oxygen or nitrogen monoxide in chromosomes triggers synchronous expression/suppression oscillations of compact gene groups (‘genomewide oscillation’): hypothesis. Nitric Oxide—Biology and Chemistry. 2008;18(3):147–152. doi: 10.1016/j.niox.2008.01.007. PubMed DOI
Illi B., Colussi C., Grasselli A., Farsetti A., Capogrossi M. C., Gaetano C. NO sparks off chromatin: tales of a multifaceted epigenetic regulator. Pharmacology & Therapeutics. 2009;123(3):344–352. doi: 10.1016/j.pharmthera.2009.05.003. PubMed DOI
Peters A. H. F. M., Mermoud J. E., O'Carroll D., et al. Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin. Nature Genetics. 2002;30(1):77–80. doi: 10.1038/ng789. PubMed DOI
Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Molecular Cell. 2004;16(1):93–105. doi: 10.1016/j.molcel.2004.08.031. PubMed DOI
Watson P. M. D., Riccio A. Nitric oxide and histone deacetylases: a new relationship between old molecules. Communicative and Integrative Biology. 2009;2(1):11–13. doi: 10.4161/cib.2.1.7301. PubMed DOI PMC
Ota H., Eto M., Ogawa S., Iijima K., Akishita M., Ouchi Y. Sirt1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis. Journal of Atherosclerosis and Thrombosis. 2010;17(5):431–435. doi: 10.5551/jat.3525. PubMed DOI
Shang Z., Lu C., Chen S., Hua L., Qian R. Effect of H2S on the circadian rhythm of mouse hepatocytes. Lipids in Health and Disease. 2012;11, article 23 doi: 10.1186/1476-511x-11-23. PubMed DOI PMC
Yetik-Anacak G., Dereli M. V., Sevin G., Ozzayim O., Erac Y., Ahmed A. Resveratrol Stimulates Hydrogen Sulfide (H2S) formation to relax murine corpus cavernosum. The Journal of Sexual Medicine. 2015;12(10):2004–2012. doi: 10.1111/jsm.12993. PubMed DOI
Sauve A. A., Celic I., Avalos J., Deng H., Boeke J. D., Schramm V. L. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry. 2001;40(51):15456–15463. doi: 10.1021/bi011858j. PubMed DOI
Motta M. C., Divecha N., Lemieux M., et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551–563. doi: 10.1016/s0092-8674(04)00126-6. PubMed DOI
Vaquero A., Scher M., Erdjument-Bromage H., Tempst P., Serrano L., Reinberg D. SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature. 2007;450(7168):440–444. doi: 10.1038/nature06268. PubMed DOI
Nevoral J., Sutovsky P., Zamostna K., et al. SIRT1 as a key factor for histone code establishment in early embryo, from a perspective of assisted reproduction. Slovak Journal of Animal Science. 2015;48(4):145–158.
Rios E. C. S., Szczesny B., Soriano F. G., Olah G., Szabo C. Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. International Journal of Molecular Medicine. 2015;35(6):1741–1746. doi: 10.3892/ijmm.2015.2176. PubMed DOI PMC
Tapia-Limonchi R., Cahuana G. M., Caballano-Infantes E., et al. Nitric oxide prevents mouse embryonic stem cell differentiation through regulation of gene expression, cell signaling, and control of cell proliferation. Journal of Cellular Biochemistry. 2016;117(9):2078–2088. doi: 10.1002/jcb.25513. PubMed DOI
Guan W., Sha J., Chen X., Xing Y., Yan J., Wang Z. S-Nitrosylation of mitogen activated protein kinase phosphatase-1 suppresses radiation-induced apoptosis. Cancer Letters. 2012;314(2):137–146. doi: 10.1016/j.canlet.2011.09.022. PubMed DOI
Feng X., Sun T., Bei Y., et al. S-nitrosylation of ERK inhibits ERK phosphorylation and induces apoptosis. Scientific Reports. 2013;3, article 1814 doi: 10.1038/srep01814. PubMed DOI PMC
Stein P., Worrad D. M., Belyaev N. D., Turner B. M., Schultz R. M. Stage-dependent redistributions of acetylated histones in nuclei of the early preimplantation mouse embryo. Molecular Reproduction and Development. 1997;47(4):421–429. PubMed
Bultman S. J., Gebuhr T. C., Pan H., Svoboda P., Schultz R. M., Magnuson T. Maternal BRG1 regulates zygotic genome activation in the mouse. Genes & Development. 2006;20(13):1744–1754. doi: 10.1101/gad.1435106. PubMed DOI PMC
Dahl J. A., Reiner A. H., Klungland A., Wakayama T., Collas P. Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos. PLoS ONE. 2010;5(2, article e9150) doi: 10.1371/journal.pone.0009150. PubMed DOI PMC
Bošković A., Bender A., Gall L., Ziegler-Birling C., Beaujean N., Torres-Padilla M.-E. Analysis of active chromatin modifications in early mammalian embryos reveals uncoupling of H2A.Z acetylation and H3K36 trimethylation from embryonic genome activation. Epigenetics. 2012;7(7):747–757. doi: 10.4161/epi.20584. PubMed DOI
Okuda K., Ito A., Uehara T. Regulation of histone deacetylase 6 activity via S-nitrosylation. Biological and Pharmaceutical Bulletin. 2015;38(9):1434–1437. doi: 10.1248/bpb.b15-00364. PubMed DOI
Xin H., Wang M., Tang W., et al. Hydrogen sulfide attenuates inflammatory hepcidin by reducing IL-6 secretion and promoting SIRT1-mediated STAT3 deacetylation. Antioxidants & Redox Signaling. 2016;24(2):70–83. doi: 10.1089/ars.2015.6315. PubMed DOI PMC
Olson K. R., Donald J. A., Dombkowski R. A., Perry S. F. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respiratory Physiology & Neurobiology. 2012;184(2):117–129. doi: 10.1016/j.resp.2012.04.004. PubMed DOI
Yuan P., Xue H., Zhou L., et al. Rescue of mesangial cells from high glucose-induced over-proliferation and extracellular matrix secretion by hydrogen sulfide. Nephrology Dialysis Transplantation. 2011;26(7):2119–2126. doi: 10.1093/ndt/gfq749. PubMed DOI
Szabo C., Coletta C., Chao C., et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(30):12474–12479. doi: 10.1073/pnas.1306241110. PubMed DOI PMC
Li L., Liu D., Bu D., et al. Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. Biochimica et Biophysica Acta—Molecular Cell Research. 2013;1833(6):1347–1355. doi: 10.1016/j.bbamcr.2013.03.002. PubMed DOI
Guo F., Li X., Liang D., et al. Active and passive demethylation of male and female pronuclear DNA in the mammalian zygote. Cell Stem Cell. 2014;15(4):447–458. doi: 10.1016/j.stem.2014.08.003. PubMed DOI
Yang R., Qu C., Zhou Y., et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity. 2015;43(2):251–263. doi: 10.1016/j.immuni.2015.07.017. PubMed DOI PMC
Pan X., Wang X., Wang X., et al. Nitric oxide regulates blastocyst hatching in mice. International Journal of Clinical and Experimental Medicine. 2015;8(5):6994–7001. PubMed PMC
Huang Y., Tang C., Du J., Jin H. Endogenous sulfur dioxide: a new member of gasotransmitter family in the cardiovascular system. Oxidative Medicine and Cellular Longevity. 2016;2016:9. doi: 10.1155/2016/8961951.8961951 PubMed DOI PMC
Zhu D.-B., Hu K.-D., Guo X.-K., et al. Sulfur dioxide enhances endogenous hydrogen sulfide accumulation and alleviates oxidative stress induced by aluminum stress in germinating wheat seeds. Oxidative Medicine and Cellular Longevity. 2015;2015:11. doi: 10.1155/2015/612363.612363 PubMed DOI PMC
Jin Q., Zhu K., Cui W., Xie Y., Han B., Shen W. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant, Cell & Environment. 2013;36(5):956–969. doi: 10.1111/pce.12029. PubMed DOI
Xu S., Zhu S., Jiang Y., et al. Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant and Soil. 2013;370(1-2):47–57. doi: 10.1007/s11104-013-1614-3. DOI
Hydrogen sulfide and its role in female reproduction
Involvement of K+ATP and Ca2+ channels in hydrogen sulfide-suppressed ageing of porcine oocytes