Optimizing data privacy and security measures for critical infrastructures via IoT based ADP2S technique

. 2025 Mar 21 ; 15 (1) : 9703. [epub] 20250321

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40113930
Odkazy

PubMed 40113930
PubMed Central PMC11926232
DOI 10.1038/s41598-025-94824-2
PII: 10.1038/s41598-025-94824-2
Knihovny.cz E-zdroje

The sensitive nature of the data processed by the critical infrastructures of a shared platform like the internet of things (IoT) makes it vulnerable to a wide range of security risks. These infrastructures must have robust security measures to protect the privacy of the user data transmitted to the processing systems that utilize them. However, data loss and complexities are significant issues when handling enormous data in IoT applications. This paper uses a reptile search optimization algorithm to offer attuned data protection with privacy scheme (ADP2S). This study follows the reptiles' hunting behaviours to find a vulnerability in our IoT service's security. The system activates the reptile swarm after successfully gaining access to explode ice. An attack of protection and authentication measures explodes at the breach location. The number of swarm densities and the extent to which they explore a new area are both functions of the severity of the breach. Service response and related loss prevention time verify fitness according to the service-level fitness value. The user and the service provider contribute to the authentication, which is carried out via elliptic curve cryptography and two-factor authentication. The reptile's exploration and exploitation stages are merged by sharing a similar search location across the initialized candidates. The proposed scheme leverages breach detection and protection recommendations by 11.37% and 8.04%, respectively. It reduces the data loss, estimation time, and complexity by 6.58%, 10.9%, and 11.21%, respectively.

Zobrazit více v PubMed

Shi, M., Jiang, R., Hu, X. & Shang, J. A privacy protection method for health care big data management based on risk access control. Health Care Manag. Sci.23(3), 427–442 (2020). PubMed

Ferdowsi, A., Saad, W. & Mandayam, N. B. Colonel blotto game for sensor protection in interdependent critical infrastructure. IEEE Internet Things J.8(4), 2857–2874 (2020).

Chen, L. et al. An approach of flow compensation incentive based on Q-learning strategy for IoT user privacy protection. AEU Int. J. Electron. Commun.148, 154172 (2022).

Baxley, S. M., Bastin, N., Gurkan, D. & Conklin, W. A. Feasibility of critical infrastructure protection using network functions for programmable and decoupled ICS policy enforcement over WAN. Int. J. Crit. Infrastruct. Prot.39, 100573 (2022).

Galbusera, L., Cardarilli, M., Lara, M. G. & Giannopoulos, G. Game-based training in critical infrastructure protection and resilience. Int. J. Disast. Risk Reduct.78, 103109 (2022).

Li, Y. et al. Joint optimization of structure and protection of interdependent infrastructure networks. Reliab. Eng. Syst. Saf.218, 108163 (2022).

Franchina, L. et al. Passive and active training approaches for critical infrastructure protection. Int. J. Disast. Risk Reduct.63, 102461 (2021).

Zhang, J., Wang, B., Wang, X. A., Wang, H. & Xiao, S. New group user based privacy preserving cloud auditing protocol. Future Gener. Comput. Syst.106, 585–594 (2020).

Al-Kasasbeh, B. Model of the information security protection subsystem operation and method of optimization of its composition. Egypt. Inf. J.23, 511–516 (2022).

Ramirez-Gonzalez, M., Sevilla, F. R. S., Korba, P. & Castellanos-Bustamante, R. Convolutional neural nets with hyperparameter optimization and feature importance for power system static security assessment. Electric Power Syst. Res.211, 108203 (2022).

Huang, S. Listening to users’ personal privacy concerns. The implication of trust and privacy concerns on the user’s adoption of a MaaS-pilot. Case Stud. Transp. Policy10(4), 2153–2164 (2022).

Eldosouky, A., Saad, W. & Mandayam, N. Resilient critical infrastructure: Bayesian network analysis and contract-based optimization. Reliab. Eng. Syst. Saf.205, 107243 (2021).

Kaur, H. & Anand, A. Review and analysis of secure energy efficient resource optimization approaches for virtual machine migration in cloud computing. Meas. Sens.24, 100504 (2022).

Yin, J., Li, H., Wang, D. & Liu, S. Optimization of rural settlement distributions based on the ecological security pattern: A case study of Da’an City in Jilin Province of China. Chin. Geograph. Sci.30(5), 824–838 (2020).

Sascha, K., Thomas, B., Sebastian, G., Ludwig, F. & Günther, F. Optimization of access control policies. J. Inf. Secur. Appl.70, 03301 (2022).

Hao, W., Yao, P., Yang, T. & Yang, Q. Industrial cyber-physical system defense resource allocation using distributed anomaly detection. IEEE Internet Things J.9(22), 22304–22314 (2021).

Chinnasamy, P. et al. Blockchain 6G-based wireless network security management with optimization using machine learning techniques. Sensors24(18), 6143 (2024). PubMed PMC

Oliva, G., Faramondi, L., Setola, R., Tesei, M. & Zio, E. A multi-criteria model for the security assessment of large-infrastructure construction sites. Int. J. Crit. Infrastruct. Protect.35, 100460 (2021).

Dong, S. et al. Integrated infrastructure-plan analysis for resilience enhancement of post-hazards access to critical facilities. Cities117, 103318 (2021).

Silva, P., Gonçalves, C., Antunes, N., Curado, M. & Walek, B. Privacy risk assessment and privacy-preserving data monitoring. Expert Syst. Appl.200, 116867 (2022).

Wang, S., Gu, X., Luan, S. & Zhao, M. Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory. Int. J. Crit. Infrastruct. Protect.35, 100459 (2021).

Rios, E. et al. Security and privacy service level agreement composition for internet of things systems on top of standard controls. Comput. Electr. Eng.98, 107690 (2022).

Feizollahibarough, S. & Ashtiani, M. A security-aware virtual machine placement in the cloud using hesitant fuzzy decision-making processes. J. Supercomput.77(6), 5606–5636 (2021).

Bing, X. Critical infrastructure protection based on memory-augmented meta-learning framework. Neural Comput. Appl.32(23), 17197–17208 (2020).

Chinnasamy, P. et al. Integrating intelligent breach detection system into 6 g enabled smart grid-based cyber physical systems. Wirel. Person. Commun.8, 1–16 (2024).

Brignoli, M. A. et al. A distributed security tomography framework to assess the exposure of ICT infrastructures to network threats. J. Inf. Secur. Appl.59, 102833 (2021).

Bringhenti, D. et al. Automatic, verifiable and optimized policy-based security enforcement for SDN-aware IoT networks. Comput. Netw.213, 109123 (2022).

Miloslavskaya, N. Security zone infrastructure for network security intelligence centers. Proc. Comput. Sci.169, 51–56 (2020).

Javanmardi, S., Shojafar, M., Mohammadi, R., Persico, V. & Pescapè, A. S-FoS: A secure workflow scheduling approach for performance optimization in SDN-based IoT-Fog networks. J. Inf. Secur. Appl.72, 103404 (2023).

Chinnasamy, P., Deepalakshmi, P., Dutta, A. K., You, J. & Joshi, G. P. Ciphertext-policy attribute-based encryption for cloud storage: Toward data privacy and authentication in AI-enabled IoT system. Mathematics10(1), 68 (2021).

Wideł, W., Mukherjee, P. & Ekstedt, M. Security countermeasures selection using the meta attack language and probabilistic attack graphs. IEEE Access10, 89645–89662 (2022).

Dedousis, P., Stergiopoulos, G., Arampatzis, G. & Gritzalis, D. A security-aware framework for designing industrial engineering processes. IEEE Access9, 163065–163085 (2021).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...